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Plan

• Introduction+Motivation 

• OTOs and Quantum Chaos Bound 

• Various results 

• Open Questions



Motivation

• Which CFTs describe Black Holes and why? 

• Necessary conditions? How can we test them? 

• 2d CFTs and black holes? (n)RCFTs, Large c, WN ,Liouville ? 

• Dynamics of quantum information in 1+1 d? Universality, bounds, etc? 

• What can this teach us about scrambling, quantum chaos…?

Based on:

[P.C,T.Numasawa,A.Veliz-Osorio’16]

[P.C,T.Takayanagi,K.Watanabe,Y.Kusuki to appear]

[P.C,J.Simon, A.Stikonas,K.Watanabe, T.Takayanagi’15]



Black Hole Slogans:

• BH are holographic (entropy) 

• BH are the fastest scramblers of information 

• BH are maximally chaotic 

• BH are (complex) quantum channels 

• BH are the best quantum computers….

HINT: Quantum Information + Time Evolution

This Talk

AdS/CFT is our main tool to make these statements more precise



BH are holographic

BH entropy

SBH =
Area(Horizon)

4GN

In 2d CFT we can relate the BH entropy to Cardy formula for the density of states

BH

[Ryu,Takayanagi’06] 
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This

4

4D N = 4 SU(N) super Yang-Mills theory [2]. The
radius of AdS5 and S5 are given by the same value R =
(4πgsα′2N)

1
4 . The 5D Newton constant is related to the

10D one via G(10)
N = π3R5G(5)

N . Then we obtain from
Eqs. (3.2) and (3.3)

SAS =
N2L2

2πa2
− 2

√
π

(

Γ
(

2
3

)

Γ
(

1
6

)

)3
N2L2

l2
, (3.4)

SAD = N2

[

l2

a2
− log

(

l

a

)

+ O(1)

]

. (3.5)

It is interesting to compare the finite universal term in
Eq. (3.4) with the field theory one. For free real scalars
and fermions in general dimensions, one way to com-
pute SAS is presented in [21] (see also [22]). Indeed,
this leads to the same behavior in a and l as in Eq.
(3.4). Following this approach, we can estimate finite
contributions from 6 scalars and 4 Majorana fermions in
the N = 4 Yang-Mills multiplet. In the end, we obtain
SfreeCFT

finite ∼ −(0.068 + g) · N2L2/l2, where g is the con-
tribution from the gauge field (g = 0.010 if we treat the
gauge field as 2 scalars). On the other hand, our AdS5

result (3.4) leads to SAdS
finite ∼ −0.051 ·N2L2/l2. We may

think this is a good agreement if we remember that the
gravity description corresponds to the strongly coupled
gauge theory instead of the free theory as in [23].

We can also compute the entanglement entropy for the
near horizon limit AdS4×S7 (AdS7×S4) of N M2-branes
(M5-branes)

SM2
AS

=

√
2

3
N3/2

[

L

a
− 4π3

Γ(1/4)4
L

l

]

, (3.6)

SM2
AD

=

√
2π

3
N3/2

[

l

a
− 1

]

, (3.7)

SM5
AS

=
2

3π2
N3

[

L4

a4
− 16π5/2 Γ(3/5)5

Γ(1/10)5
L4

l4

]

, (3.8)

SM5
AD

=
32

9
N3

[

1

4
· l4

a4
− 3

4
· l2

a2
+

3

8
log

l

a

]

. (3.9)

Note that the constant terms in Eqs. (3.6), (3.7) and (3.8)
do not depend on the choice of the cutoff a.

IV. YANG-MILLS AT FINITE TEMPERATURE

As the final example, we discuss the N = 4 super Yang-
Mills theory on R3 at a finite temperature T , which is
dual to the AdS black hole defined by the metric [24]

ds2 = R2

[

du2

hu2
+ u2

(

−hdt2 + dx2
1 + dx2

2 + dx2
3

)

+ dΩ2
5

]

,

(4.1)
where h = 1−u4

0/u4, u0 = πT . For the straight belt AS ,
the area is given by (putting the cut off u ∼ z−1 ∼ a)

AreaAS = 2R3L2

∫ a−1

u∗

du u6

√

(u4 − u4
0)(u

6 − u6
∗
)
, (4.2)
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FIG. 3: (a) Minimal surfaces γA for various sizes of A. (b)
γA and γB wrap the different parts of the horizon.

where u∗ satisfies l/2 =
∫

∞

u∗

du[(u4−u4
0)(u

6/u6
∗
−1)]−1/2.

Eq. (4.2) contains the UV divergence ∼ a−2 as before.
As in the analogous computation of Wilson loops [25], we
also expect a term which is proportional to the area of
A. Indeed, when l is large (u∗ ∼ u0) we find the constant
term ∼ π3R3L2lT 3. This leads to the finite part of SA

Sfinite ≃ π2

2
N2T 3L2l =

π2N2T 3

2
× (Area of AS) .

(4.3)
We can regard this entropy as a part of the Bekenstein-
Hawking entropy of black 5-branes [23], which is propor-
tional to the area of horizon situated at u = u0. Thus we
can interpret the part (4.3) as a thermal entropy contri-
bution to the total entanglement entropy at finite tem-
perature. In our gravitational description, this part arises
because the minimal surface wraps a part of the black
hole horizon (Fig. 3 (a)). If we expand the size of A until
it coincides with the total system (in the global coordi-
nate), γA wraps the horizon completely and SA becomes
equal to the Bekenstein-Hawking entropy as expected.
In a sense, the overall normalization in Eq. (1.5) is fixed
from Eq. (1.1) once we consider the entanglement entropy
at finite temperature. Note that at finite temperature,
SA = SB does not hold generically. In the present situ-
ation, this occurs because the surfaces γA and γB wrap
two different parts of the horizon (Fig. 3 (b)).

As argued in [13, 26], the AdS black hole can be dual to
an entanglement of two different CFTs at the two bound-
aries. It is interesting to look at the minimal surfaces that
connect them. As a specific limit, we may think the black
hole entropy is the same as the entanglement entropy of
the CFTs as the minimal surface wrap the horizon.

V. CONCLUSION

In this paper we proposed a holographic description of
the entanglement entropy in quantum (conformal) field
theories via AdSd+2/CFTd+1 correspondence. This is
summarized as the area law relation (1.5). Based on
our proposal we computed the entanglement entropy for
various systems, e.g. 2D CFTs and the 4D large-N N =
4 super Yang-Mills theory. We checked that in the lowest
dimensional case (d = 1), our formula exactly coincides
with the entropy computed directly from CFT.

Poincare

Global BTZ

1)

2) 3)

SBH = SC = 2⇡

r
c

6
EL + 2⇡

r
c

6
ER

Modulo the assumption that it should be valid for 

c ! 1, EL/R ⇠ c

c � fixed, EL/R ! 1



1) In order to describe BH, CFTs should have:

Large central Charge c ! 1

Sparse Spectrum (Cardy formula valid in “extended” regime)

indicates that a large c expansion may be a useful way to organize the constraints of

modular invariance on non-holomorphic partition functions.

This is similar in spirit to recent e↵orts to derive universal features of entanglement

entropy [12, 13, 14, 15] and gravitational interactions [16] at large c. In fact, since

the second Renyi entropy of two disjoint intervals can be conformally mapped to the

torus partition function at zero angular potential, the entanglement entropy is directly

related. Most of the entanglement calculations rely on a small interval expansion, but

our results do not, so this rules out the possibility of missing saddlepoints in the second

Renyi entropy discussed in [12, 17]. Under what conditions universality holds for higher

genus partition functions (or higher Renyi entropies) is an important open question.

1.1 Summary of results

Operators in a unitary 2d CFT are labeled by their left and right conformal weights

(h, h̄) with h, h̄ � 0 . If we put the theory on a circle of length 2⇡, the operator-state

correspondence associates to each operator a state with energies

EL = h� c

24
, ER = h̄� c

24
(1.6)

and total energy

E = EL + ER = �� c

12
. (1.7)

In section 2 we study the partition function for zero angular potential,

Z(�) =
X

e��E . (1.8)

It is convenient to classify states as light, medium, or heavy :

light : � c

12
 E  ✏ , medium : ✏ < E <

c

12
, heavy : E � c

12
, (1.9)

for some small positive number ✏ that is eventually taken to zero in the large c limit.

We show that the free energy is fixed up to small corrections by the light spectrum.

If in addition we also assume that the spectrum of light states is sparse, by which we

mean that it is bounded as

⇢(E) = exp[S(E)] . exp
h

2⇡
⇣

E +
c

12

⌘i

, E  ✏ (1.10)

4
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4
In practice we can approximate correlators by the identity block.

What does it imply for “physics”: entanglement, CFT quenches….?

[Hartman,Keller,Stoica,14]



2) Black Hole Phenomenology and Chaos



AdS/CFT: BH-TFD duality

HRHL

is the thermofield double state

| �i =
1p
Z(�)

X

n

e�
�
2En |niL |niR (1)

where Z(�) =
P

n e
��En is the standard partition function in one of the Hilbert spaces. |niL

is an eigenstate of the hamiltonian HL acting on HL with eigenvalue En (and similarly for

|niR). Furthermore, |niL is the CPT conjugate of the state |niR and to simplify notation we

write |niL ⌦ |niR as |niL |niR.
By construction, the reduced density matrix of (1) on either Hilbert space equals a

thermal state. For example, tracing over HL gives rise to

⇢R(�) = trHL
(| �i h �|) =

1

Z(�)

X

n2HR

e�En |niR hn|R , (2)

the thermal state in HR. Thus, any correlation functions of observables OR acting on HR

will equal thermal correlation functions

h �| OR(x1

, t
1

) . . .OR(xn, tn) | �i = trHR
(⇢R(�)OR(x1

, t
1

) . . .OR(xn, tn)) . (3)

Even in the absence of interactions, quantum entanglement is responsible for the existence

of non-trivial correlations between HL and HR. These correlations are encoded in two-sided

correlation functions involving operatorsOL,R acting on each Hilbert spaceHL,R, respectively,

h �| OL(x1

, t) . . .OR(x
0
n, t

0
n) | �i . (4)

Remarkably, these two-sided correlators can be computed by analytical continuation

h �| OL(x1

,�t) . . .OR(x
0
n, t

0
n) | �i = trHR

(⇢R(�)OR(x1

, t� i�/2) . . .OR(x
0
n, t

0
n)) . (5)

This observation will play an important role in our CFT entanglement calculations in sec-

tion 5.

2.1 Gravity dual description

Whenever the 2d CFTs in the previous discussion have a holographic dual, the AdS/CFT

correspondence asserts the existence of a gravity dual realization of the thermofield double

state. Maldacena proposed the entangled state (1) to be dual to the eternal AdS black hole.

For 2d CFTs, this would correspond to the BTZ black hole [15]. Its Penrose diagram is

shown in figure 1.

The existence of two conformal boundaries matches the presence of two CFTs in our

field theory discussion. Tracing over HL is equivalent to tracing over the region of spacetime

causally connected to it. This is why an observer at infinity, measuring in HR, perceives her

event horizon as a thermal atmosphere. This is in manifest agreement with why observables

measured by such observers are thermal.

3

Eternal BH

TFD

[Maldacena’01] 

t�

t+



| 0i = e�iHLtwO(x)eiHLtw | i

[Shenker,Stanford] 
[Roberts,Stanford] 

[+ Susskind] 

tw ⇠ � log c ⇠ � logSIA:B(tw) = 0?

IA:B = SA + SB � SA[B

L

Computed both holographically and in CFT

[Shenker,Stanford’13][PC,Simon,Stikonas,Takayanagi,Watanabe’15] 

����

Quantum Chaos!?



Holographic computations: general d

gravitational scattering (Regge)

⇠ GNs ' GNe
2⇡
� t

[Shenker,Stanford’14] 

WR(t)

WL(t)

VRVL

Figure 1: Locations on the Penrose diagram of the various operators described in the text.

correlator, even at large t, is scattering at energies with G
N

s ⇠ 1 in AdS units. At these

scales, inelastic e↵ects are parametrically subleading. However, elastic stringy corrections

are important. String theory leads to two related corrections to the picture of scrambling.

First, as might be expected from [5], stringy e↵ects smear out the region of decorrelation

over a scale ⇢ ⇠ `
s

p
t/`

AdS

. Second, due to Regge-ization, the scattering amplitude grows

more slowly with s than in pure gravity. This leads to a “string corrected” scrambling

time

t⇤ =
�

2⇡


1 +

d(d� 1)`2
s

4`2
AdS

+ ...

�
logS (1)

where d is the space-time dimension of the boundary theory.

1.1 Correlation functions that probe chaos

Before getting started, we would like to place the problem of computing h�
L

�
R

i
W

in a

slightly more general context, and to introduce some new notation. (The discussion here

has some overlap with [29].) The case we originally considered, in [1], was a two-sided

correlation function of the form

hW
R

(t)V
L

V
R

W
R

(t)i = hV
L

W
R

(t)V
R

W
R

(t)i (2)

where the expectation value indicates the thermofield double state, and we have switched

L $ R compared to [1].2 In this paper, we will take V and W to be approximately local

operators, that raise the energy of the thermal state by an amount of order ��1. (For

simplicity of notation, we will also assume the operators are Hermitian and that they

2A word on conventions. Given an operator V in a single copy of the CFT, we define VR = 1 ⌦ V ,
acting on the R system. We define VL = V T ⌦ 1, where the transpose is taken in the energy eigenbasis.
Under the Killing time evolution, VL(t) = e�iHLtVLeiHLt and VR(t) = eiHRtVRe�iHRt.

3

hVW (t)VW (t)i



Semiclassical Chaos
, 

SOVIET PHYSICS JETP VOLUME 28, NUMBER 6 JUNE, 1969 

QUASICLASSICAL METHOD IN THE THEORY OF SUPERCONDUCTIVITY 

A. I. LARKIN and Yu. N. OVCHINNIKOV 

Institute of Theoretical Physics, USSR Academy of Sciences 
Submitted June 6, 1968 
Zh. Eksp. Teor. Fiz. 55, 2262-2272 (December, 1968) 

It is shown that replacement of quantum-mechanical averages by the average values of the corre-
sponding classical quantities over all trajectories with a prescribed energy is not valid in the gen-
eral case. The dependence of the penetration depth on the field is found without making any assump-
tions about the weakness of the interaction between the electrons and the field of the impurities; the 
case of very dirty films is also considered. 

1. Use of a quasiclassical method[ 1 ' 21 has turned out to 
be convenient in a number of problems in the theory of 
superconductivity. In this method the calculation of 
various characteristics of a superconductor reduces 
to the calculation of the average value of a product of 
matrix elements of single-particle operators. Usually 
the quantum-mechanical averages are replaced by the 
average values of the corresponding classical quanti-
ties over all classical trajectories of a given energy. 
It is shown below that in certain cases such a substitu-
tion leads to erroneous results. This is associated 
with the fact that the momentum operators of an elec-
tron, situated in an impurity field, do not commute at 
different moments of time. The problem of the depend-
ence of the penetration depth on the magnetic field and 
on the impurity concentration is considered in detail 
in the London case. The interaction between electrons 
and impurities is not assumed to be weak. And in this 
case the dependence of the penetration depth on the 
field is determined not only by the cross sections but 
by the scattering amplitudes themselves. 

The case of very dirty films[3 J is also considered, 
where the interaction with impurities is not assumed 
to be weak or isotropic. The result only depends on 
the transport time Ttr· An equation is found for the 
critical field associated with an arbitrary concentra-
tion of impurities. 

2. The current density is expressed in terms of 
the Green's function by the formula 

6(r-;)pr:,G(;,r), 
m 

"' 
where the Green's function G( r, r' ) satisfies the 
Gor'kov equations which are conveniently written in 
matrix form: 

[ -H+iror:,+ ( _0d. + : (pA)r:,]c(r,r')= 6(r-r'), 

1 [)2 
H =- Zmfii2 + V(r)- Jl, 

(1) 

(2) 

where H is the Hamiltonian of an electron in the field 
of the impurities. 

In the approximation linear with respect to the field, 
the expression for the current in the representation of 
eigenfunctions of the Hamiltonian H takes the form 

i(r)=-( {3) 
"' 

where 
1 ( - en- iro, - d ) 

Gn = -,----- · 
8n2 + ro2 + d 2 d , - 8n + iro 

Changing to a time representation and using the 
weak dependence of the diagonal matrix element on 
energy near the Fermi surface, we obtain 

where 

i(r)= -2nv ( :)'r I {ll(r-r(O))p(O) 

x(p(tt)A(t!)) )> r:,G (- t,)r:,G(tt)dt,, 

p(t) = exp(iHt)p exp(- illt), v = mpo/2rr.2, 

(4) 

and (( ... )) denotes the average over all states at the 
Fermi surface, 

i 
=- 2Ee-Eitl (E sign t + wT, + dr:y), E2 = w 2 + d 2. (5) 

For a Fourier component Eq. (4) takes the form 
Ne2 

j(g)= --;;-Q(g)A(g). (6) 

Below we confine our attention to consideration of 
the limiting London case when the change in the poten-
tial A is small over distances of the order of the size 
of a pair. In this case it is sufficient to find Q( 0 ) . 
Taking formula (5) into account, we obtain 

3nn• r 
Q(O)= J E-2 exp(-2E!t!){p,(O)p,(t))>dt. 

Poz w -XI 

The average appearing in this expression may be 
found with the aid of the kinetic equation and is given 
by 

(7) 

((p,(O)p,(t))) = 1/3Po2 exp(-!tl /Ttr). {8) 

Substituting this expression into formula (7), we obtain 
the usual expression for Q:[ 4 J 

Q(O)= nd2T [E2(E + 1/2-r,r)]-•. (9) 

It is important to note that formula (8) is obtained 
with the aid of the kinetic equation for the pair corre-
lation function. The collision term in this equation is 
expressed in terms of the scattering cross section and 

1200 

[x(t), p(0)] ' �i~ {x(t), p(0)} ' �i~ @x(t)
@x(0)

= �i~e�Lt

Average square becomes O(1)

h[x(t), p(0)]2i ' ~2e2�Lt = e

2�(t�t⇤) t⇤ =

1

�L
log

1

~

Ehrenfest time
e.g. Inverted harmonic oscillator (decoherence!)



Quantum Chaos in QFT [Kitaev…to appear] 

In QFT one can generalise to

h[W (t), V (0)]2i�

for “arbitrary” operators of the theory

hVW (t)W (t)V i� + hW (t)V VW (t)i�
�hW (t)VW (t)V i� � hVW (t)VW (t)i�

Essential information in the ratio

hW (t)VW (t)V i�
hW (t)W (t)i�hV V i�

OTO-correlatorsC�(t) =

Very natural from the TFD perspective!



BH are maximally chaotic

In chaotic systems

C�(t)

1

� t⇤ ⇠ � log c t

[Maldacena,Shenker,Stanford’15] 

C�(t) ⇠ 1�Ae�Lt

BH are maximally chaotic: (=) for a system with a holographic dual (Einstein BH)

C�(t) ⇠ e�a 2⇡t
�

Bound on chaos

�L  2⇡

�

Toy models for black holes, SYK….



OTOs in 2d CFT [Stanford,Roberts’15] 

fzi; z̄ig. The interesting multivaluedness comes from
fðz; z̄Þ. By crossing symmetry, this function is single valued
on the Euclidean section z̄ ¼ z$, but it is multivalued as a
function of independent z and z̄, with branch cuts extending
from one to infinity. Different orderings of the W;V
operators correspond to different sheets of this function.
To determine the correct sheet, wemust assign iϵ’s as above,
and follow the path of the cross ratios, watching to see if they
pass around the branch loci at z ¼ 1 and z̄ ¼ 1.
To carry this out directly, we write

z1 ¼ eð2π=βÞðt
0þiϵ1Þ; z̄1 ¼ e−ð2π=βÞðt

0þiϵ1Þ; ð8Þ
z2 ¼ eð2π=βÞðt

0þiϵ2Þ; z̄2 ¼ e−ð2π=βÞðt
0þiϵ2Þ; ð9Þ

z3 ¼ eð2π=βÞðxþiϵ3Þ; z̄3 ¼ eð2π=βÞðx−iϵ3Þ; ð10Þ
z4 ¼ eð2π=βÞðxþiϵ4Þ; z̄4 ¼ eð2π=βÞðx−iϵ4Þ ð11Þ

as a function of the continuation parameter t0. When t0 ¼ 0,
we have a purely Euclidean correlator, on the principal
sheet of the function fðz; z̄Þ. When t0 ¼ t > x, we have an
arrangement of operators as shown in Fig. 1.
The cross ratios z; z̄ are determined by these coordinates

as in Eq. (6). Their paths, as a function of t0, depend on the
ordering of operators through the associated iϵ prescription.
Representative paths for the three cases of interest are
shown in Fig. 2. The variable z̄ never passes around the
branch point at one, and the z variable does so only in the
case corresponding to WVWV [25].
In the final configuration with t0 ¼ t, the cross ratios are

small. For t ≫ x, we have

z ≈ −eð2π=βÞðx−tÞϵ$12ϵ34; z̄ ≈ −e−ð2π=βÞðxþtÞϵ$12ϵ34; ð12Þ

where we introduced the abbreviation

ϵij ¼ iðeð2π=βÞiϵi − eð2π=βÞiϵjÞ: ð13Þ

For the orderings WWVV and WVVW, no branch cuts are
crossed, so the limit of small cross ratios can be taken on
the principal sheet of Eq. (7). The contribution from
the identity operator dominates, verifying our statement
in the Introduction that both hWðtÞVVWðtÞiβ and
hWðtÞWðtÞVViβ approach hWWihVViβ for large t.
ForWVWV, z passes around the branch point at one. The

hypergeometric functionFða; b; c; zÞ has knownmonodromy
around z ¼ 1, returning to a multiple of itself, plus a multiple
of the other linearly independent solution to the hypergeo-
metric equation, z1−cFð1þ a − c; 1þ b − c; 2 − c; zÞ. For
small z; z̄, we then have

fðz; z̄Þ ≈
X

h;h̄

~pðh; h̄Þz1−hz̄h̄; ð14Þ

where ~p has been defined to absorb the transformation
coefficient. On this sheet, as z; z̄ become small, global
primaries with large spin become important. As a function
of x; t, individual terms in this sum grow like
eðh−h̄−1Þte−ðhþh̄−1Þx. For sufficiently large t, this sumdiverges,
and it must be defined by analytic continuation. In other
words, we must do the sum over h; h̄ before we continue the
cross ratios. In a CFT dual to string theory inAdS3, we expect
this divergence even at a fixed order in the large c expansion,
because of the sum over higher spin bulk exchanges [19].
Virasoro identity block: The primary focus of this Letter

is reproducing the Einstein gravity calculation of the corre-
lation function. This calculation was done by studying free
propagation on a shock wave background, which implicitly
sums an infinite tower of ladder exchange diagrams. In the
CFT, these diagrams are related to terms involving powers
and derivatives of the stress tensor in the OPE representation
of the four-point function. In a two-dimensional CFT, all
such terms can be treated simultaneously using the Virasoro
conformal block of the identity operator, which itself is an
infinite sumofSLð2Þ conformal blocks. Including only these
terms in the OPE amounts to replacing

fðz; z̄Þ → F ðzÞF̄ ðz̄Þ; ð15Þ
where F is the Virasoro conformal block with dimension
zero in the intermediate channel. This substitution is appro-
priate for a large N CFT with a sparse spectrum of single-
trace higher spin operators [29].
The function F is not known explicitly, but there are

several methods for approximating it [14–16]. We will use a
formula from Ref. [15], which is valid at large c, with hw=c
fixed andsmall andhv fixed and large.Here, the formula reads

F ðzÞ ≈
!

zð1 − zÞ−6hw=c

1 − ð1 − zÞ1−12hw=c

"
2hv

: ð16Þ

This function has a branch point at z ¼ 1, as expected.
Following the contour around z ¼ 1 and taking z small, we
find

F ðzÞ ≈
!

1

1 − 24πihw
cz

"
2hv

: ð17Þ

The trajectory of z̄ does not circle the branch point at z̄ ¼ 1, so
for small z̄, we simply have F̄ ðz̄Þ ≈ 1, the contribution of the
identity operator itself. Substituting Eq. (17) in Eq. (15) and
then in Eq. (5), we find

hWðtþ iϵ1ÞVðiϵ3ÞWðtþ iϵ2ÞVðiϵ4Þiβ
hWðiϵ1ÞWðiϵ2ÞiβhVðiϵ3ÞVðiϵ4Þiβ

≈
!

1

1þ 24πihw
ϵ$12ϵ34

eð2π=βÞðt−t$−xÞ

"
2hv

; ð18Þ

where we define the fast scrambling time t$ [17,18] with the
convention

FIG. 2 (color online). The paths taken by the cross ratio z during
the continuations corresponding to (from left to right) hWVWVi,
hWWVVi, and hWVVWi. Only in the first case does the path pass
around the branch point at z ¼ 1.
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In this letter we investigate measures of chaos and entanglement scrambling in rational conformal
field theories in 1+1 dimensions. First, we derive a formula for the late time value of the out-of-time-
order correlators for these class of theories. Our universal result can be expressed as a particular
combination of the modular S-matrix elements known as anyon monodromy scalar. Next, in the
explicit setup of a SU(N)k WZW model, we compare the late time behaviour of the out-of-time
correlators and the purity. Interestingly, in the large-c limit, the purity grows logarithmically but
the out-of-time-order correlators remain constant. Therefore, we find that some systems may display
entanglement scrambling in the absence of chaos.

1. Introduction. Two-dimensional conformal field
theories (2d CFTs) have played an important role in un-
derstanding a number of interesting questions in theoret-
ical physics. In this vein they’ve become central tools in
the study of entanglement [1] and more recently quantum
chaos. Recently, Kitaev proposed that chaotic behavior
in quantum systems can be diagnosed by computing the
expectation value of the square of commutators of local
operators [2]. This essentially amounts to calculating the
out-of-time order (OTO) thermal correlator

C

�
ij(t) ⌘

D
O†

i (t)O†
jOi(t)Oj

E

�D
O†

i Oi

E

�

D
O†

jOj

E

�

. (1)

If this quantity vanishes exponentially at late times then
the quantum system is chaotic. A number of universal
properties of this object can be obtained for 2d CFTs. In
particular, its been argued that chaotic behavior might
be a telling characteristic of holographic CFTs [3–6].

On the other hand, one of the characteristic features of
CFTs at large central charge is a so-called scrambling of
entanglement [12]. One particular incarnation of scram-
bling is the evolution of Rényi entanglement entropies af-
ter local operator excitation and here we will focus on the
second Rényi entropy or simply the purity. Various stud-
ies showed that, for rational CFTs (RCFTs), purity satu-
rates to a constant equal to the logarithm of the quantum
dimension of the local operators conformal family [7–9].
Meanwhile, it is believed that in holographic CFTs (con-
sistent with Ryu-Takayanagi formula [10]) the Rényi en-
tropies will grow logarithmically with time [11, 12] (also
at large-c, the scrambling time can be naturally obtained
in a similar setup from the evolution of the mutual in-
formation in CFT and holographically [13–15][16].). This
means that in large c, holographic CFTs, the information

about non-perturbative constants (like quantum dimen-
sions or modular S-matrix) gets scrambled.

In this work we would like probe the similarity and
di↵erences between the purity and OTOs in the setup of
RCFTs and find out which specific (non-perturbative) in-
formation about the theory is forfeit by quantum chaos.
For that, we first fill the existing gap and compute the
late time value of the OTO correlators valid for any
RCFT. Next, we consider a non-trivial integrable 2d
CFT, the SU(N)k WZW model, where a number of
known results can be put in the new light of entanglement
scrambling and measures of quantum chaos. Moreover,
we consider a large-c ’t Hooft limit that shares some fea-
tures with holographic CFTs and compare the evolution
of purity and OTO correlators in this regime. We ob-
serve that, in the large-c limit, entanglement scrambles,
while the OTO approach a constant, thus, indicating the
absence of quantum chaos.

This letter is organized as follows: In Sec. 2, we com-
pute the late time value of OTO in RCFT and topological
quantum field theory (TQFT). In Sec. 3, we revise the re-
lationship between purity and entanglement scrambling.
In Sec. 4, illustrate both quantities for a SU(N)k WZW
model. Finally, in Sec. 5 study the behavior of these
quantities in the ’t Hooft limit. Finally, we conclude and
place details in two appendices.
2. Late time of OTO in RCFTs

In the present section we compute the late time value of
the OTO correlators (1) with insertion points [4]

z1 = e

2⇡
� (t+i✏1)

, z̄1 = e

� 2⇡
� (t+i✏1)

,

z2 = e

2⇡
� (t+i✏2)

, z̄2 = e

� 2⇡
� (t+i✏2)

,

z3 = e

2⇡
� (x+i✏3)

, z̄3 = e

2⇡
� (x�i✏3)

,

z4 = e

2⇡
� (x+i✏4)

, z̄4 = e

2⇡
� (x�i✏4)

. (2)

The main message from these points is that for the ap-

OTO correlators (all orderings) can be obtained from the Euclidean 4pt 

✏1 < ✏3 < ✏2 < ✏4

(1� z) ! e�2⇡i(1� z)
z, z̄ ! 0, z̄/z � fixed

hW †WV †V i
hW †W ihV †V i = G(z, z̄)



OTOs in large c 2d CFT [Stanford,Roberts’15] 

fzi; z̄ig. The interesting multivaluedness comes from
fðz; z̄Þ. By crossing symmetry, this function is single valued
on the Euclidean section z̄ ¼ z$, but it is multivalued as a
function of independent z and z̄, with branch cuts extending
from one to infinity. Different orderings of the W;V
operators correspond to different sheets of this function.
To determine the correct sheet, wemust assign iϵ’s as above,
and follow the path of the cross ratios, watching to see if they
pass around the branch loci at z ¼ 1 and z̄ ¼ 1.
To carry this out directly, we write

z1 ¼ eð2π=βÞðt
0þiϵ1Þ; z̄1 ¼ e−ð2π=βÞðt

0þiϵ1Þ; ð8Þ
z2 ¼ eð2π=βÞðt

0þiϵ2Þ; z̄2 ¼ e−ð2π=βÞðt
0þiϵ2Þ; ð9Þ

z3 ¼ eð2π=βÞðxþiϵ3Þ; z̄3 ¼ eð2π=βÞðx−iϵ3Þ; ð10Þ
z4 ¼ eð2π=βÞðxþiϵ4Þ; z̄4 ¼ eð2π=βÞðx−iϵ4Þ ð11Þ

as a function of the continuation parameter t0. When t0 ¼ 0,
we have a purely Euclidean correlator, on the principal
sheet of the function fðz; z̄Þ. When t0 ¼ t > x, we have an
arrangement of operators as shown in Fig. 1.
The cross ratios z; z̄ are determined by these coordinates

as in Eq. (6). Their paths, as a function of t0, depend on the
ordering of operators through the associated iϵ prescription.
Representative paths for the three cases of interest are
shown in Fig. 2. The variable z̄ never passes around the
branch point at one, and the z variable does so only in the
case corresponding to WVWV [25].
In the final configuration with t0 ¼ t, the cross ratios are

small. For t ≫ x, we have

z ≈ −eð2π=βÞðx−tÞϵ$12ϵ34; z̄ ≈ −e−ð2π=βÞðxþtÞϵ$12ϵ34; ð12Þ

where we introduced the abbreviation

ϵij ¼ iðeð2π=βÞiϵi − eð2π=βÞiϵjÞ: ð13Þ

For the orderings WWVV and WVVW, no branch cuts are
crossed, so the limit of small cross ratios can be taken on
the principal sheet of Eq. (7). The contribution from
the identity operator dominates, verifying our statement
in the Introduction that both hWðtÞVVWðtÞiβ and
hWðtÞWðtÞVViβ approach hWWihVViβ for large t.
ForWVWV, z passes around the branch point at one. The

hypergeometric functionFða; b; c; zÞ has knownmonodromy
around z ¼ 1, returning to a multiple of itself, plus a multiple
of the other linearly independent solution to the hypergeo-
metric equation, z1−cFð1þ a − c; 1þ b − c; 2 − c; zÞ. For
small z; z̄, we then have

fðz; z̄Þ ≈
X

h;h̄

~pðh; h̄Þz1−hz̄h̄; ð14Þ

where ~p has been defined to absorb the transformation
coefficient. On this sheet, as z; z̄ become small, global
primaries with large spin become important. As a function
of x; t, individual terms in this sum grow like
eðh−h̄−1Þte−ðhþh̄−1Þx. For sufficiently large t, this sumdiverges,
and it must be defined by analytic continuation. In other
words, we must do the sum over h; h̄ before we continue the
cross ratios. In a CFT dual to string theory inAdS3, we expect
this divergence even at a fixed order in the large c expansion,
because of the sum over higher spin bulk exchanges [19].
Virasoro identity block: The primary focus of this Letter

is reproducing the Einstein gravity calculation of the corre-
lation function. This calculation was done by studying free
propagation on a shock wave background, which implicitly
sums an infinite tower of ladder exchange diagrams. In the
CFT, these diagrams are related to terms involving powers
and derivatives of the stress tensor in the OPE representation
of the four-point function. In a two-dimensional CFT, all
such terms can be treated simultaneously using the Virasoro
conformal block of the identity operator, which itself is an
infinite sumofSLð2Þ conformal blocks. Including only these
terms in the OPE amounts to replacing

fðz; z̄Þ → F ðzÞF̄ ðz̄Þ; ð15Þ
where F is the Virasoro conformal block with dimension
zero in the intermediate channel. This substitution is appro-
priate for a large N CFT with a sparse spectrum of single-
trace higher spin operators [29].
The function F is not known explicitly, but there are

several methods for approximating it [14–16]. We will use a
formula from Ref. [15], which is valid at large c, with hw=c
fixed andsmall andhv fixed and large.Here, the formula reads

F ðzÞ ≈
!

zð1 − zÞ−6hw=c

1 − ð1 − zÞ1−12hw=c

"
2hv

: ð16Þ

This function has a branch point at z ¼ 1, as expected.
Following the contour around z ¼ 1 and taking z small, we
find

F ðzÞ ≈
!

1

1 − 24πihw
cz

"
2hv

: ð17Þ

The trajectory of z̄ does not circle the branch point at z̄ ¼ 1, so
for small z̄, we simply have F̄ ðz̄Þ ≈ 1, the contribution of the
identity operator itself. Substituting Eq. (17) in Eq. (15) and
then in Eq. (5), we find

hWðtþ iϵ1ÞVðiϵ3ÞWðtþ iϵ2ÞVðiϵ4Þiβ
hWðiϵ1ÞWðiϵ2ÞiβhVðiϵ3ÞVðiϵ4Þiβ

≈
!

1

1þ 24πihw
ϵ$12ϵ34

eð2π=βÞðt−t$−xÞ

"
2hv

; ð18Þ

where we define the fast scrambling time t$ [17,18] with the
convention

FIG. 2 (color online). The paths taken by the cross ratio z during
the continuations corresponding to (from left to right) hWVWVi,
hWWVVi, and hWVVWi. Only in the first case does the path pass
around the branch point at z ¼ 1.
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Large c vacuum block for HHLL captures this

Identity Block at large central charge c

coe�cients. The conformal block decomposition of equation (2.12) will not in general

converge. In the presence of an unbounded sum over spins `, it appears that the Lyapunov

exponent cannot be extracted until after performing the sum. We will discuss the infinite

sum over ubiquitous ‘double-trace’ operators [19, 21, 22] in section 4.1.

We see from the structure of equation (2.12) that the contributions of large dimension

operators will be suppressed at large x, leading to an x-dependent Lyapunov exponent.

The limit of large x and t is a lightcone OPE limit [19] for the CFT correlator; this limit

suppresses contributions from large twist. For example, AdS string states are massive, and

therefore correspond to large twist operators in the CFT, which do not a↵ect the �
L

(x)

at large x [5]. In circumstances where only a single conformal block dominates at large

c, or when we can sum all relevant contributions, we can make predictions about �
L

(x).

Our main focus in this paper will be classical and quantum gravitational e↵ects in AdS3,

computed using recent work on Virasoro conformal blocks [11].

3. Quantum Corrections to Chaos from the Virasoro Identity Block

We are interested in studying gravitational interactions in AdS and their impact on chaos.

We will begin by reviewing known results and then discuss corrections in 1/c, where c is

the central charge of the CFT2.

Graviton states in AdS3 are created by the CFT2 stress tensor, which has a holomorphic

mode expansion T (z) =
P

n

z�2�nL
n

in terms of the Virasoro generators L
n

. Thus all

multi-graviton states in AdS3 lie within a single irreducible representation of the Virasoro

algebra. The holomorphic Virasoro vacuum block V(z) represents of the exchange of all of

these states between WW and V V in the correlator F of equation (2.1). The full vacuum

block contribution is a product V(z)V(z̄) of holomorphic and anti-holmorphic blocks, which

depend independently on the holomorphic and anti-holomorphic dimensions h
W

, h
V

and

h̄
W

, h̄
V

, and on c.

The Virasoro vacuum block can only be computed in closed form in certain limits. At

leading order in the large central charge c ! 1 limit with fixed holomorphic conformal

dimensions h
W

and h
V

, the Virasoro vacuum block reduces to the vacuum contribution

plus a 1-graviton global conformal block

V(z) = 1 +
2h

W

h
V

c
z22F1(2, 2, 4, z) +O

✓
1

c2

◆

= 1 +
2h

W

h
V

c

✓
6(z � 2) log(1 � z)

z
� 12

◆
+O

✓
1

c2

◆
(3.1)
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This one-graviton contribution is su�cient to extract the Lyapunov exponent �
L

at leading

order in a 1/c expansion. We see explicitly that the analytic continuation of Figure 4 shifts

log(1� z) ! log(1� z)� 2⇡i.5 Expanding the result at large t, or small z = �4ie
2⇡(x�t)

� , we

have

V(z) ⇡ 1 +
48⇡ih

W

h
V

cz
= 1 � 12⇡h

W

h
V

c
e

2⇡
�
(t�x) (3.2)

This takes the form anticipated in equation (2.3), with �
L

= 2⇡
�

. Note that z̄ ⇡ e�
2⇡
�
(x+t) ! 0

in the relevant limit, and z̄ has not been analytically continued o↵ of the first sheet, so the

anti-holomorphic V(z̄) ⇡ 1.

We are interested in the regime � ⌧ t ⌧ t⇤, as depicted in Figure 1. Thus we can

employ a slightly more systematic parameterization and fix y = cz in the limit of large c.6

This does not alter equation (3.2), but it is useful in some more complicated examples.

The Virasoro vacuum block can also be computed in the limit of large c while fixing

h
W

/c and h
V

to any value. In this limit the W operator corresponds to an object in AdS3

with mass proportional to the Planck scale, while V is a light probe with mass much less

than the Planck scale. In this heavy-light limit, the leading in c [7] contributions have

been computed and matched to AdS3 calculations, and more recently the sub-leading 1/c

corrections have been computed [11]. After analytically continuing and expanding to leading

order in 1/c with y = cz fixed, one finds [15]

F
�

(t, x) ⇡
 

1

1 � 24⇡ihW

y

!2hV

(3.3)

where y ⇡ �4ie
2⇡(x+t⇤�t)

� as follows from equation (2.7). If we expand this result to first

order in 1/c with fixed z we match equation (3.2). Thus the complete heavy-light Virasoro

block does not provide any new information about the Lyapunov exponent as compared to

1-graviton exchange. However, it does provide a nice case study for F
�

(t) [15], as it displays

the expected behavior for all times, pictured in Figure 1. In particular, in a 1/c expansion

there are an infinite number of 1/(cz)n = 1/yn terms that individually have singular behavior

at y ⇠ 0, and (3.3) is an explicit example of these resumming into something regular that

actually vanishes at y ! 0.

5One can pass to the second sheet by taking (1 � z) ! e2⇡i(1 � z) or (1 � z) ! e�2⇡i(1 � z). In this
subsection, we choose the latter in order to be consistent with the conventions in [15].

6In fact one could fix crz with 0 < r < 1, which would correspond to t / rt⇤. Fixing z corresponds to
taking t completely independent of c as c ! 1, which in practice would mean t & td.
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After OTO continuation 

+O(1/c2)

+O(1/c2)

[Fitzpatrick,Kaplan’16] 
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OTOs and Quantum Chaos?  

Mushroom Billiards
Mason A. Porter and Steven Lansel
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T
wo 20th century discoveries transformed
scientists’ understanding of nonlinear
phenomena [16]. One was Kolmogorov-
Arnold-Moser (KAM) theory, which
demonstrated the stability of regular dy-

namics for small perturbations of Hamiltonian sys-
tems [4, 5, 11, 15]. The other was the theory of sto-
chasticity of dynamical systems (loosely called
“chaos theory”), which demonstrated the stability
of strongly irregular dynamics under small per-
turbations [3, 18, 20]. To gain a better under-
standing of complicated nonlinear dynamics, there
have been extensive studies of model systems such
as billiards.

The mathematical idealization of a (classical)
billiard, a ubiquitous Hamiltonian system [9, 21],
consists of a confined point particle colliding elas-
tically against the boundaries of a container of
some shape [17, 19]. Like their real-life namesakes,
these sorts of billiards have long held the interest
of both mathematicians and physicists. They have
led to numerous advancements in ergodic theory

and dynamical systems and can even be constructed
in experimental settings such as microwave cavi-
ties [12] and atom optics [10].

Geometrically, an orbit of the billiard flow of a
confined particle is described by a union of line seg-
ments, with the link after a boundary collision de-
termined according to the rule that the angle of in-
cidence equals the angle of reflection. Keeping
track only of the location and incidence angles of
the collisions gives a discrete-time billiard map.

The best-known examples of chaotic billiards,
whose flow is hyperbolic, ergodic, mixing, and
Bernoulli [17, 19], are the “dispersing” Sinai billiard
(a square table with a circular barrier at its center)
and the Bunimovich stadium (shaped like a rec-
tangle with two “focusing” circular caps). Neigh-
boring parallel orbits diverge when they collide
with dispersing components of a billiard’s bound-
ary. In chaotic focusing billiards, neighboring par-
allel orbits converge at first, but divergence prevails
over convergence on average. Divergence and con-
vergence are balanced in integrable billiards such
as circles and ellipses, the position spaces (“con-
figuration spaces”) of which are continuously foli-
ated by one or more families of “caustics”. A curve
is called a caustic if whenever any link of some tra-
jectory is tangent to it, then all other links of the
same trajectory are also tangent to it.
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Figure 1. (Left) Axially symmetric mushroom billiard with a semicircular cap. The red trajectory lies
in the integrable region of phase space (the ambient space of positions and velocities), and the blue
one lies in the chaotic region. (Right) Billiard map showing discretizations of these trajectories. The

vertical lines delineate singular points (corners) between different arcs of the mushroom.
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Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.
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Interferometric Approach to Probing Fast Scrambling
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Out-of-time-order correlation functions provide a proxy for diagnosing chaos in quantum systems.
We propose and analyze an interferometric scheme for their measurement, using only local quantum
control and no reverse time evolution. Our approach utilizes a combination of Ramsey interferometry
and the recently demonstrated ability to directly measure Renyi entropies. To implement our
scheme, we present a pair of cold-atom-based experimental blueprints; moreover, we demonstrate
that within these systems, one can naturally realize the transverse-field Sherrington-Kirkpatrick
(TFSK) model, which exhibits certain similarities with fast scrambling black holes. We perform
a detailed numerical study of scrambling in the TFSK model, observing an interesting interplay
between the fast scrambling bound and the onset of spin-glass order.

PACS numbers: 05.45.Mt, 03.67.-a, 04.60.-m, 37.10.Jk

Much of statistical mechanics rests on the assumption
that generic systems will, after su�cient time, arrive at
a state close to thermal equilibrium. In isolated quan-
tum systems, the approach to equilibrium is character-
ized by the spreading of entanglement and quantum in-
formation. That there might exist fundamental limits
on the rate of thermalization has a long history [1–6]. At
one extreme are strongly disordered systems, where ther-
malization is absent and quantum information spreads
slowly [7–14]. At the other extreme, certain gauge theo-
ries appear to spread quantum information very rapidly
[15–17]. However, these gauge theories are special—their
thermal states are “holographically dual” to black holes
in Einstein gravity [18]. They are also highly symmetri-
cal, display scale invariant physics, and do not order at
low temperatures despite strong interactions.

Thus, a key question is: Where do typical interacting
systems fall between these two extremes? The lack of
general theoretical tools in this context suggests that ex-
periments will be essential to explore the nature of infor-
mation spreading or “scrambling” in many-body systems
[15]. More precisely, scrambling describes the delocaliza-
tion of quantum information over all of a system’s de-
grees of freedom. The analog of scrambling in a classical
system is chaos and is diagnosed by the butterfly e↵ect,
which describes the exponential sensitivity of a particle’s
motion to small changes in its initial conditions. As an
example, the Poisson bracket of position and momen-
tum, {x(t), p} = @x(t)/@x(0), can be used to quantify
the butterfly e↵ect [1]. The strength of quantum scram-
bling can similarly be diagnosed using the commutator,
C(t) = h[W (t), V (0)]†[W (t), V (0)]i, where V and W are
unitary operators [15, 16, 19–21].

The functional onset of scrambling is particularly in-
triguing, with certain systems exhibiting a parametric
period of exponential growth, C(t) ⇠ e�Lt [21–24]. In
semi-classical systems, �L can be interpreted as a Lya-
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FIG. 1. (a) Schematic of our interferometric protocol. An
ancilla qubit is coupled to two copies of a quantum system
(prepared at inverse temperature �/2) at di↵erent locations
i, j and i0, j0. By performing ancilla-state dependent interac-
tions both before and after time evolution, one can measure
out-of-time-order correlation functions. (b) Circuit diagram
illustrating the interferometric protocol. After preparing the
ancilla in 1/

p
2(|"i+ |#i), controlled unitaries are performed,

first conditioned on |"i (V ) and then conditioned on |#i (W ).
Simultaneous measurement of �

x

on the ancilla and SWAP
on the systems results in the correlator F (t).

punov exponent characterizing the strength of chaos. For
gauge theories dual to black holes, there exists a param-
eter N , such that the large-N limit is semi-classical and
�L = 2⇡kBT/~, saturating a recently proposed upper
bound on the rate of scrambling [17].

While intriguing, the scrambling behavior of systems
dual to black holes is only one extreme of a largely un-
explored landscape. For example, although temperature
provides the only natural energy scale for a black hole,
generic quantum many-body systems can exhibit a multi-
tude of additional energy scales governed, e.g. by micro-
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• OTOs and “Standard definitions” of Quantum Chaos  

• Quantum Chaos and Non-Integrability? 

• Experimental access to OTOs!
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Scrambling without chaos in RCFT
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In this letter we investigate measures of chaos and entanglement scrambling in rational conformal
field theories in 1+1 dimensions. First, we derive a formula for the late time value of the out-of-time-
order correlators for these class of theories. Our universal result can be expressed as a particular
combination of the modular S-matrix elements known as anyon monodromy scalar. Next, in the
explicit setup of a SU(N)k WZW model, we compare the late time behaviour of the out-of-time
correlators and the purity. Interestingly, in the large-c limit, the purity grows logarithmically but
the out-of-time-order correlators remain constant. Therefore, we find that some systems may display
entanglement scrambling in the absence of chaos.

1. Introduction. Two-dimensional conformal field
theories (2d CFTs) have played an important role in un-
derstanding a number of interesting questions in theoret-
ical physics. In this vein they’ve become central tools in
the study of entanglement [1] and more recently quantum
chaos. Recently, Kitaev proposed that chaotic behavior
in quantum systems can be diagnosed by computing the
expectation value of the square of commutators of local
operators [2]. This essentially amounts to calculating the
out-of-time order (OTO) thermal correlator

C

�
ij(t) ⌘

D
O†

i (t)O†
jOi(t)Oj

E

�D
O†

i Oi

E

�

D
O†

jOj

E

�

. (1)

If this quantity vanishes exponentially at late times then
the quantum system is chaotic. A number of universal
properties of this object can be obtained for 2d CFTs. In
particular, its been argued that chaotic behavior might
be a telling characteristic of holographic CFTs [3–6].

On the other hand, one of the characteristic features of
CFTs at large central charge is a so-called scrambling of
entanglement [12]. One particular incarnation of scram-
bling is the evolution of Rényi entanglement entropies af-
ter local operator excitation and here we will focus on the
second Rényi entropy or simply the purity. Various stud-
ies showed that, for rational CFTs (RCFTs), purity satu-
rates to a constant equal to the logarithm of the quantum
dimension of the local operators conformal family [7–9].
Meanwhile, it is believed that in holographic CFTs (con-
sistent with Ryu-Takayanagi formula [10]) the Rényi en-
tropies will grow logarithmically with time [11, 12] (also
at large-c, the scrambling time can be naturally obtained
in a similar setup from the evolution of the mutual in-
formation in CFT and holographically [13–15][16].). This
means that in large c, holographic CFTs, the information

about non-perturbative constants (like quantum dimen-
sions or modular S-matrix) gets scrambled.

In this work we would like probe the similarity and
di↵erences between the purity and OTOs in the setup of
RCFTs and find out which specific (non-perturbative) in-
formation about the theory is forfeit by quantum chaos.
For that, we first fill the existing gap and compute the
late time value of the OTO correlators valid for any
RCFT. Next, we consider a non-trivial integrable 2d
CFT, the SU(N)k WZW model, where a number of
known results can be put in the new light of entanglement
scrambling and measures of quantum chaos. Moreover,
we consider a large-c ’t Hooft limit that shares some fea-
tures with holographic CFTs and compare the evolution
of purity and OTO correlators in this regime. We ob-
serve that, in the large-c limit, entanglement scrambles,
while the OTO approach a constant, thus, indicating the
absence of quantum chaos.

This letter is organized as follows: In Sec. 2, we com-
pute the late time value of OTO in RCFT and topological
quantum field theory (TQFT). In Sec. 3, we revise the re-
lationship between purity and entanglement scrambling.
In Sec. 4, illustrate both quantities for a SU(N)k WZW
model. Finally, in Sec. 5 study the behavior of these
quantities in the ’t Hooft limit. Finally, we conclude and
place details in two appendices.
2. Late time of OTO in RCFTs

In the present section we compute the late time value of
the OTO correlators (1) with insertion points [4]

z1 = e

2⇡
� (t+i✏1)

, z̄1 = e

� 2⇡
� (t+i✏1)

,
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2⇡
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, z̄2 = e

� 2⇡
� (t+i✏2)

,

z3 = e

2⇡
� (x+i✏3)

, z̄3 = e

2⇡
� (x�i✏3)

,

z4 = e

2⇡
� (x+i✏4)

, z̄4 = e

2⇡
� (x�i✏4)

. (2)

The main message from these points is that for the ap-
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propriate ordering of epsilons ✏i (see the figures) as we
increase t the cross-ratio z = (z12z34)/(z13z24) encircles
clockwise the point z = 1 in the complex plane and comes
back to 0 (this doesn’t happen with z̄). The role of the
temperature in this specific behavior of z is not crucial
and it is only used to extract the universal predictions
for the quantum chaos. More precisely, in chaotic CFTs,
these correlators are expected to damp after the so-called
scrambling time [3]. In contrast, for RCFTs, which are
integrable systems, one expects C

�
ij(t) to reach constant

values. Indeed, as we shall see, they are given by
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at late times, where S

⇤
ij is the complex conjugate of the

modular S-matrix. The argument proceeds as follows,
first we write

D
O†

i (z1, z̄1)Oi(z2, z̄2)O†
j(z3, z̄3)Oj(z4, z̄4)

E

= |z12|�4hi |z34|�4hj
f(z, z̄). (4)

Then, we express f(z, z̄) in terms of the conformal blocks
of the theory F ii

jj(p|z) (and their anti-holomorphic coun-
terparts F̄ ii

jj(p|z̄))

f(z, z̄) =
X

p

F ii
jj(p|z)F̄ ii

jj(p|z̄). (5)

At early times, since z ⇡ 0 and z̄ ⇡ 0, the contribu-
tion from the identity channel (p = 0) dominates; thus,
f(z, z̄) ⇡ 1. At late times, once again z ⇡ 0 and z̄ ⇡ 0.
However, as time goes by, the cross-ratio z traverses a
non-trivial contour around z = 1 in the complex plane
(this is not the case for z̄). As shown in [3], extract-
ing this monodromy from the explicit form of the large-c
conformal block [17] one can see the butterfly e↵ect in 2d
CFT. In RCFTs the monodromy of conformal blocks is
given by a finite matrix and we have

F ii
jj(p|z) !

X

q

MpqF ii
jj(q|z) . (6)

Because cross ratio z goes around z = 1 and finally comes
back to z = 0, the only relevant component is M00.
Therefore, we obtain

lim
t!1 G(z, z̄) = M00F ii

jj(0|z)F̄ ii
jj(0|z̄). (7)

Moreover, for RCFTs this monodromy matrix element
can be expressed in terms of the modular S-matrix as
[18]:

M00 =
S

⇤
ij

S00

S00

S0i

S00

S0j
. (8)

Below, we also derive this late time value of OTO us-
ing 3d TQFT [19]. As time passes, the operators evolve
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FIG. 1. The orbit of chiral part of operators in complex plane
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FIG. 2. 3d TQFT counterpart. Here, 0 denotes the identity
channel of the conformal blocks.

as depicted in Fig.1. Their orbits are mapped to 3d links
made by the corresponding anyons as in Fig.2. The re-
lation between 2d CFT and 3d TQFT is given as fol-
lows. First, the initial state of 3d TQFT is determined
by the sector of conformal block we choose. In this case
we choose the identity sector in CFT and in 3d TQFT
the pairs of anyons are created from the vacuum. Then,
because there is a monodromy in CFT side, there is a
link in 3d TQFT side. Finally, corresponding to taking
the identity sector at late time, anyons fuse to the vac-
uum, which means that the final state in the 3d TQFT
is given by the pair annihilation of anyons. As a result,
we obtain the Hopf link of two Wilson loops. From this
observation, we find that the monodromy matrix element
is given by the expectation value of the Hopf link divided
by the expectation value of two non-linked Wilson loops.
Based in results from [19], we find

C
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i j

i j

⌘ 1
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S

⇤
ij

S00
. (9)

This exactly matches with the r.h.s of (8) and naturally
explains why this combination appears in late time OTO.
If we apply this formula to the Ising model CFT, we
reproduce exactly the results from the explicit calculation
of monodromy in Appendix B of [3].

Let us finally mention that the above late time value,
known as monodromy scalar, is proposed as a measure of
non-abelian anyons in interferometry experiments [20].
It would be interesting to explore this connection as a
possible ”experimental” measure of quantum chaos.
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non-trivial contour around z = 1 in the complex plane
(this is not the case for z̄). As shown in [3], extract-
ing this monodromy from the explicit form of the large-c
conformal block [17] one can see the butterfly e↵ect in 2d
CFT. In RCFTs the monodromy of conformal blocks is
given by a finite matrix and we have

F ii
jj(p|z) !

X

q

MpqF ii
jj(q|z) . (6)

Because cross ratio z goes around z = 1 and finally comes
back to z = 0, the only relevant component is M00.
Therefore, we obtain

lim
t!1 G(z, z̄) = M00F ii

jj(0|z)F̄ ii
jj(0|z̄). (7)

Moreover, for RCFTs this monodromy matrix element
can be expressed in terms of the modular S-matrix as
[18]:

M00 =
S

⇤
ij

S00

S00

S0i

S00

S0j
. (8)

Below, we also derive this late time value of OTO us-
ing 3d TQFT [19]. As time passes, the operators evolve

Oi(0)

O†
i (0)

O†
j

Oj
✏4

✏3

✏2
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t

x

time evolution
O†

j

Oj
✏4

✏3

✏2

✏1

x

Oi(t)

O†
i (t)

FIG. 1. The orbit of chiral part of operators in complex plane

O†
j

Oj

Oi(t)

O†
i (t)

3D TQFT picture

i

j

0

0

t

FIG. 2. 3d TQFT counterpart. Here, 0 denotes the identity
channel of the conformal blocks.

as depicted in Fig.1. Their orbits are mapped to 3d links
made by the corresponding anyons as in Fig.2. The re-
lation between 2d CFT and 3d TQFT is given as fol-
lows. First, the initial state of 3d TQFT is determined
by the sector of conformal block we choose. In this case
we choose the identity sector in CFT and in 3d TQFT
the pairs of anyons are created from the vacuum. Then,
because there is a monodromy in CFT side, there is a
link in 3d TQFT side. Finally, corresponding to taking
the identity sector at late time, anyons fuse to the vac-
uum, which means that the final state in the 3d TQFT
is given by the pair annihilation of anyons. As a result,
we obtain the Hopf link of two Wilson loops. From this
observation, we find that the monodromy matrix element
is given by the expectation value of the Hopf link divided
by the expectation value of two non-linked Wilson loops.
Based in results from [19], we find

C

�
ij(t) !

i j

i j

⌘ 1

didj

S

⇤
ij

S00
. (9)

This exactly matches with the r.h.s of (8) and naturally
explains why this combination appears in late time OTO.
If we apply this formula to the Ising model CFT, we
reproduce exactly the results from the explicit calculation
of monodromy in Appendix B of [3].

Let us finally mention that the above late time value,
known as monodromy scalar, is proposed as a measure of
non-abelian anyons in interferometry experiments [20].
It would be interesting to explore this connection as a
possible ”experimental” measure of quantum chaos.

fzi; z̄ig. The interesting multivaluedness comes from
fðz; z̄Þ. By crossing symmetry, this function is single valued
on the Euclidean section z̄ ¼ z$, but it is multivalued as a
function of independent z and z̄, with branch cuts extending
from one to infinity. Different orderings of the W;V
operators correspond to different sheets of this function.
To determine the correct sheet, wemust assign iϵ’s as above,
and follow the path of the cross ratios, watching to see if they
pass around the branch loci at z ¼ 1 and z̄ ¼ 1.
To carry this out directly, we write

z1 ¼ eð2π=βÞðt
0þiϵ1Þ; z̄1 ¼ e−ð2π=βÞðt

0þiϵ1Þ; ð8Þ
z2 ¼ eð2π=βÞðt

0þiϵ2Þ; z̄2 ¼ e−ð2π=βÞðt
0þiϵ2Þ; ð9Þ

z3 ¼ eð2π=βÞðxþiϵ3Þ; z̄3 ¼ eð2π=βÞðx−iϵ3Þ; ð10Þ
z4 ¼ eð2π=βÞðxþiϵ4Þ; z̄4 ¼ eð2π=βÞðx−iϵ4Þ ð11Þ

as a function of the continuation parameter t0. When t0 ¼ 0,
we have a purely Euclidean correlator, on the principal
sheet of the function fðz; z̄Þ. When t0 ¼ t > x, we have an
arrangement of operators as shown in Fig. 1.
The cross ratios z; z̄ are determined by these coordinates

as in Eq. (6). Their paths, as a function of t0, depend on the
ordering of operators through the associated iϵ prescription.
Representative paths for the three cases of interest are
shown in Fig. 2. The variable z̄ never passes around the
branch point at one, and the z variable does so only in the
case corresponding to WVWV [25].
In the final configuration with t0 ¼ t, the cross ratios are

small. For t ≫ x, we have

z ≈ −eð2π=βÞðx−tÞϵ$12ϵ34; z̄ ≈ −e−ð2π=βÞðxþtÞϵ$12ϵ34; ð12Þ

where we introduced the abbreviation

ϵij ¼ iðeð2π=βÞiϵi − eð2π=βÞiϵjÞ: ð13Þ

For the orderings WWVV and WVVW, no branch cuts are
crossed, so the limit of small cross ratios can be taken on
the principal sheet of Eq. (7). The contribution from
the identity operator dominates, verifying our statement
in the Introduction that both hWðtÞVVWðtÞiβ and
hWðtÞWðtÞVViβ approach hWWihVViβ for large t.
ForWVWV, z passes around the branch point at one. The

hypergeometric functionFða; b; c; zÞ has knownmonodromy
around z ¼ 1, returning to a multiple of itself, plus a multiple
of the other linearly independent solution to the hypergeo-
metric equation, z1−cFð1þ a − c; 1þ b − c; 2 − c; zÞ. For
small z; z̄, we then have

fðz; z̄Þ ≈
X

h;h̄

~pðh; h̄Þz1−hz̄h̄; ð14Þ

where ~p has been defined to absorb the transformation
coefficient. On this sheet, as z; z̄ become small, global
primaries with large spin become important. As a function
of x; t, individual terms in this sum grow like
eðh−h̄−1Þte−ðhþh̄−1Þx. For sufficiently large t, this sumdiverges,
and it must be defined by analytic continuation. In other
words, we must do the sum over h; h̄ before we continue the
cross ratios. In a CFT dual to string theory inAdS3, we expect
this divergence even at a fixed order in the large c expansion,
because of the sum over higher spin bulk exchanges [19].
Virasoro identity block: The primary focus of this Letter

is reproducing the Einstein gravity calculation of the corre-
lation function. This calculation was done by studying free
propagation on a shock wave background, which implicitly
sums an infinite tower of ladder exchange diagrams. In the
CFT, these diagrams are related to terms involving powers
and derivatives of the stress tensor in the OPE representation
of the four-point function. In a two-dimensional CFT, all
such terms can be treated simultaneously using the Virasoro
conformal block of the identity operator, which itself is an
infinite sumofSLð2Þ conformal blocks. Including only these
terms in the OPE amounts to replacing

fðz; z̄Þ → F ðzÞF̄ ðz̄Þ; ð15Þ
where F is the Virasoro conformal block with dimension
zero in the intermediate channel. This substitution is appro-
priate for a large N CFT with a sparse spectrum of single-
trace higher spin operators [29].
The function F is not known explicitly, but there are

several methods for approximating it [14–16]. We will use a
formula from Ref. [15], which is valid at large c, with hw=c
fixed andsmall andhv fixed and large.Here, the formula reads

F ðzÞ ≈
!

zð1 − zÞ−6hw=c

1 − ð1 − zÞ1−12hw=c

"
2hv

: ð16Þ

This function has a branch point at z ¼ 1, as expected.
Following the contour around z ¼ 1 and taking z small, we
find

F ðzÞ ≈
!

1

1 − 24πihw
cz

"
2hv

: ð17Þ

The trajectory of z̄ does not circle the branch point at z̄ ¼ 1, so
for small z̄, we simply have F̄ ðz̄Þ ≈ 1, the contribution of the
identity operator itself. Substituting Eq. (17) in Eq. (15) and
then in Eq. (5), we find

hWðtþ iϵ1ÞVðiϵ3ÞWðtþ iϵ2ÞVðiϵ4Þiβ
hWðiϵ1ÞWðiϵ2ÞiβhVðiϵ3ÞVðiϵ4Þiβ

≈
!

1

1þ 24πihw
ϵ$12ϵ34

eð2π=βÞðt−t$−xÞ

"
2hv

; ð18Þ

where we define the fast scrambling time t$ [17,18] with the
convention

FIG. 2 (color online). The paths taken by the cross ratio z during
the continuations corresponding to (from left to right) hWVWVi,
hWWVVi, and hWVVWi. Only in the first case does the path pass
around the branch point at z ¼ 1.
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Large c but “rational”: SU(N)k  WZW

State excited by the operator in the fundamental rep.

4-point correlator from K-Z equations

h = h̄ =
N2 � 1

2N(k +N)

G(z, z̄) =
X

i,j

IiĪj
X

n

XnnF (n)
i (z)F (n)

j (z̄)

[P.C,Numasawa,Veliz-Osorio’16] 

g

↵
� (x) |0i

From the monodromy of F we can confirm our constant!

4

with i, j, n 2 {1, 2} and SU(N) factors I1 = �

↵2
↵1

�

↵4
↵3

, I2 =
�

↵4
↵1

�

↵2
↵3

. In our arguments we will only use X11 = 1, more
details can be found in [25].

Let us compute the purity first. In order to extract the
late time value, we apply the fusion transformation that
mixes conformal blocks

G(1 � z, z̄) =
X

i,j

IiĪj

X

n,m

XnncnmF (m)
3�i (z)F (n)

j (z̄) , (17)

where the relevant coe�cient is

c11 = N

�(N/)�(�N/)

�(1/)�(�1/)
= [N ]�1 = d

�1
g , (18)

with dg being the quantum dimension for the fundamen-
tal representation, where the quantum numbers are de-
fined as

[x] =
q

x/2 � q

�x/2

q

1/2 � q

�1/2
q = e

� 2⇡i
N+k

. (19)

Taking the limit of the conformal blocks for (z, z̄) !
(1, 0) (see App.A) leaves us with the log of the quantum
dimension multiplied by the appropriate singularity such
that we get the log [N ] at late times. It is also interest-
ing to see that even though the four-point correlator is
expanded in terms of the a�ne conformal blocks, that
are sums of the Virasoro blocks, the relevant constant
is still hidden in the vacuum block. Moreover, from the
definition, we have [N ] = [k] which is in fact the conse-
quence of the level-rank duality for quantum dimensions
inherited by the purity.

Now, let us study the OTOC. Extracting the mon-
odromy around z = 1 brings us to

f(z, z̄) = e

�2⇡i(h✓�2h)
X

i,j

IiĪj

X

n,m

XnnBnmf

(m)
i (z)f (n)

j (z̄).

(20)
where Bnm are the monodromy matrix elements of the
solutions of the hypergeometric equation (see e.g. [28]).
Taking the limit of (z, z̄) ! (0, 0) leaves only the terms

from f

(1)
1 and we are left with the overall exponent pref-

actor and the coe�cient B11 given by

B11 = 1 � 2ie

�i⇡(1�N
 ) sin2(⇡

 )

sin(⇡(1 � N
 ))

. (21)

After some algebra, and expressing the answer in terms
of quantum numbers we find that at late times

C

�
ij(t) ! e

�2⇡i(h✓�2h)
B11 = q

1
N + 1

2

⇣
q

�N+2
2 + [N � 1]

⌘

[N ]
.

(22)
We can compare this answer with our RCFT result
Eq. (3). Indeed, the S-matrix element for the present
example has been computed in [23] and it reads

S

⇤
↵↵

S00
= q

1
N + 1

2

⇣
q

�N+2
2 + [N � 1]

⌘
[N ] , (23)

and inserting di = dj = [N ] beautifully matches (3). For
example, for the SU(2)k model, the late time OTO (22)
reduces to

C

�
ij(t) ! cos

✓
2⇡

k + 2

◆
cos�1

✓
⇡

k + 2

◆
, (24)

which can be extracted from the explicit form of the
SU(2)k modular S-matrix

Sij =

r
2

2 + k

sin

✓
(i + 1)(j + 1)⇡

k + 2

◆
, (25)

by setting i = j = 1. Note that, in general, the elements
of the modular S-matrix can be complex (except the first
row that are related to quantum dimensions which are
real).

Summarizing, we have shown that late time values of
the purity and OTOC are given in terms of the quantum
dimensions as well as the modular S-matrix. It is inter-
esting that, in RCFTs, OTOCs give us the access to the
entire modular S-matrix whereas Rényi entropies only to
the first row S0i. It is also interesting to consider the
classical limit (k ! 1) of WZW models where the pu-
rity becomes the log of the dimension of the fundamental,
and the OTOC equals one.
5.OTOC and purity in the large-c limit

Finally, it is interesting to compare the behavior of the
purity and the OTOC in the large-c limit. In the SU(N)k

WZW the central charge is given by

c =
k(N2 � 1)

k + N

. (26)

By introducing the ’t Hooft coupling constant

� =
N

k

, (27)

we can define a ’t Hooft limit of large central charge with
the coupling fixed (weak or strong). The four-point cor-
relator has been analyzed in detail in this limit by [27]
and we apply their analysis in our context. For c ! 1,
the 4-point correlator becomes (see App A) (Note that
here, unlike in [4], all our operators are light: h/c ! 0
as c ! 1). Using this correlator, one can see that for a
large central charge the singularities leading to the quan-
tum dimension are absent, which leads to a logarithmic
growth of the purity

�S

(2)
A (t) ' 2h log

✓
2t

✏

◆
� log(2). (28)

This behavior comes from discarding terms proportional
to 1p

c
. However, if we include such corrections, then the

late time answer becomes the logarithm of the quantum
dimension in the large-c limit. It is illustrative to verify
this in the strong coupling regime, where h = 1/2 and

For SU(2) at level k 
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OTO correlators with W,V given by twist operators as functions of the radius  
1 OTO correlators

The normalized four-point function in (T 2)n/S
n

that we need for OTO is given by

C
�

(t) = |1� z|�4�
nF

n

(z, z̄) (1.1)

where

F
n

(z, z̄) =
2n�1⌘n�1⇥2(0|⌘�)
Q

n�1
k=1 Ik/n(z, z̄)

=
⇥(0|T )2

Q
n�1
k=1 fk/n(z)f̄k/n(z̄)

(1.2)

For n = 2 the theta function with matrix

T =

✓
i⌘⌧2 ⌧1
⌧1 i⌧2/⌘

◆
, (1.3)

with entries parametrized by the modular parameter

⌧ ⌘
if1/2(1� z)

f1/2(z)
= ⌧1 + i⌧2, (1.4)

is directly related to the compact free boson partition function on the torus

F2(z, z̄) =
⇥2(0|T )

f1/2(z)f̄1/2(z̄)
= 2�4/3|z|1/3|1� z|1/3Z2

⌘

(⌧, ⌧̄) (1.5)

with

Z
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)
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(1.6)

with

q = e2⇡i⌧ , q̄ = e�2⇡i⌧̄ . (1.7)

1.1 Rational radius

If we consider the rational compactification radius ⌘ = p/q then we can further write

Z
p/q

(⌧, ⌧̄) =
N�1X

�=0

K
�

(⌧)K
!0�(⌧̄) (1.8)

where N = 2pq, !0 = qr0+ps0 mod N and (r0, s0) is a unique pair in the range 1  r0  p�1,

1  s0  q � 1, ps < qr satisfying qr0 � ps0 = 1 and !2
0 = 1 mod 2N .
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modular parameter is related to the cross-ratios as

f1/2(z) = 2F1(1/2, 1/2, 1, z)

OTO continuation is equivalent to

⌧ ! ⌧

1 + 2⌧ ST̄ 2S

⌘
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WN

We can consider the 4pt correlator of (f,1) and (1,f) in

Minimal Model Holography 2

1. Introduction

The search for simple examples of holography is important in the effort to penetrate

the AdS/CFT correspondence. It involves seeking a hard-to-achieve balance between

analytic tractability and intrinsic complexity. One wants to be able to capture enough
of the physics of holography, especially of the aspects relevant to the puzzles of quantum

gravity, with quantitive precision so as to be able to transfer the resulting understanding

to more ‘realistic examples’.

In this article, we review one such attempt in this search which appears to have a

number of promising features. It is a particular instance of the general class of examples

involving Vasiliev higher spin gauge theories on AdS with dual vector-like CFTs (in a
large N limit). The articles in this issue discuss various aspects as well as examples

of higher spin holography. Here we focus on the specific case of a class of interacting

vector like 2d (generically non-supersymmetric) CFTs and their AdS3 duals in terms of

a higher spin gauge theory coupled to matter fields.

Two dimensional CFTs are among the best understood nontrivial quantum field

theories [18] and, moreover, have wide applications in diverse areas of physics. Since one
has a high degree of analytic control over these theories, they can potentially provide a

rich source of CFTs with interesting bulk AdS3 duals. Of course, an essential ingredient

in having a classical bulk dual is to have a large number of degrees of freedom as in a

large N vector or matrix theory. It is in such a family of theories that one can recover

classical gravitational physics (not necessarily described by an Einstein Lagrangian) in

a parametrically controlled manner from the finite N quantum regime.
However, systematic studies of the large N limit of families of 2d CFTs have not

been carried out until recently. One can imagine at least two categories of such theories:

these are the vector-like, and the gauge-like models whose number of degrees of freedom

(i.e. the central charge) scales as N or N2, respectively; here N is the rank of some

underlying gauge group. In complexity the former are obviously simpler, as is familiar

from the usual large N vector models. Nevertheless, even these are quite intricate in

their detailed structure as we will see in this article. Thus these theories may strike
a good balance between complexity and tractability. We will only briefly mention the

case of the matrix-like families, which have just begun to be analysed, see e.g. [71], at

the end of this review.

More specifically, the family of theories we will be considering are so-called coset

CFTs of the form
SU(N)k ⊗ SU(N)1

SU(N)k+1
. (1)

They have central charge

cN,k = (N − 1)
[

1− N(N + 1)

(N + k)(N + k + 1)

]

≤ (N − 1) , (2)

and hence are vector-like. We will review many of the already known properties of

these CFTs in Sec. 2.2. In our context the most important characteristic is that they

This makes the duality of [1] an interesting case, since it has qualitatively different features

from all other known examples of AdS/CFT dualities. What ensures that the presence of

an additional sector of light states with very large entropy does not completely contaminate

the small “ordinary” sector of the higher spin theory? The answer lies in the underlying

integrability of the boundary theory. While there are 3-point functions between ordinary and

additional states that are nonzero, these couplings are quite non-generic. For a given choice

of ordinary states only very special additional states can be produced. Most of the 3-point

functions are zero, except for very special combinations allowed by the CFT fusion rules that

we review below. Therefore the naive estimate of a decay rate of ordinary into additional

states, where we simply multiply with the number of final states with the same energy is not

correct. This non-genericity of the couplings is what saves the ordinary states from being

totally mixed with the additional sector.

2.2 Review of the Spectrum

Now, we briefly review the spectrum of both sides of the duality proposed in [1]. The duality

links a higher spin theory on AdS3 to a WN minimal model on the boundary which is defined

by a WZW-coset construction of the form

ŝu(N)k ⊕ ŝu(N)1
ŝu(N)k+1

where we take k,N → ∞ keeping λ ≡ N
k+N fixed. The central charge of the CFT is

c = (N − 1)

(
1− N(N + 1)

p(p+ 1)

)
(2.1)

where we defined

p ≡ N + k (2.2)

On the bulk side, only the free spectrum of the theory is known. This comprises two

scalars of mass given by

M2 = −1 + λ2 , (2.3)

and a number of other massless gauge fields of spin 2, 3, . . . that give rise to the WN symme-

try. The two bulk scalars correspond to two scalar operators in the CFT of (holomorphic)

conformal dimension4

h± =
1± λ

2
(2.4)

These values correspond to the two possible quantization of a scalar field of mass (2.3) in

AdS3. We denote the two scalars, and the dual operators in the boundary CFT, by φ+ and

φ−.

4We have h± = h± hence the full conformal dimension is ∆± = 1± λ.
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both operators increase entanglement entropies by the log [N]

with

N1 = −
Γ(k+2N−1

k+N )Γ
( −N
k+N

)2
Γ
(
2k+3N+1

k+N

)

Γ(−k−2N−1
k+N )Γ

(
1−N
k+N

)
Γ
(
2k+3N
k+N

)2) (3.7)

where we remind the reader that the conformal dimension ∆+ is given by (2.12).

Four point function of φ−:

In the Appendix, it is shown that this four point function is given by:

Gφ−φ−(x) = |(1− x)x|−2∆−

[ ∣∣∣∣(1− x)
1+k

k+N+1 2F1
( k +N

k +N + 1
,

1

k +N + 1
;

N

k +N + 1
;x
)∣∣∣∣

2

+N2

∣∣∣∣x
1+k

k+N+1 2F1
( k + 2

k + n+ 1
,
2k +N + 1

k +N + 1
;
2k +N + 2

k +N + 1
;x
)∣∣∣∣

2
]

(3.8)

with ∆− given by (2.12).

N2 = −
Γ
(

N
k+N+1

)2
Γ
(
2k+N+1
k+N+1

)
Γ( k+2

k+N+1)

Γ
(

N−1
k+N+1

)
Γ
(
2k+N+2
k+N+1

)2
Γ( −k

k+N+1)
(3.9)

Mixed four point function of φ+ and φ−:

We now turn to the most interesting case. In the appendix, it is shown that the mixed

correlator is given by a remarkably simple expression

Gφ+φ−(x) = |1− x|−2∆+ |x|
2
N

∣∣∣∣1 +
1− x

Nx

∣∣∣∣
2

(3.10)

Double trace of φ− with φ+:

This answer is also given by a very simple expression:

Gφ2−φ+
(x) = 2 |1− x|−2∆+ |x|

4
N

∣∣∣∣1 + 2
1 − x

Nx

∣∣∣∣
2

, (3.11)

Double trace of φ+ with φ−:

This answer is almost identical to the expression above:

Gφ2−φ+
(x) = 2 |1− x|−2∆− |x|

4
N

∣∣∣∣1 + 2
1− x

Nx

∣∣∣∣
2

, (3.12)

3.2 Limiting behaviour of correlators at large N and small distance

To gain some intuition for these answers, let us expand these answer in various limits. In the

large N limit, we expect that the fields φ+ and φ− should become free. So, all the correlators
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The OTO shows no chaos.

Operators (f,1) are consider as light but (1,f) as heavy.

Their 4pt correlator



Summary

• OTOs allow us to sharpen our constraints on Black Holes in AdS/CFT. 

• OTOs are interesting new tools to explore aspects of quantum chaos  

• In 2d CFTs we can compute them in various models and explore their properties 

• We get a new perspective on the known CFT data from OTOs (classification of 
RCFTs?) 

• OTOs already got their “own life” in MB physics (MBL), similarly to Entanglement 
Entropy. 



Open Questions

• Black hole slogans and quantum chaos? Are the “necessary conditions“ 
independent? 

• Can we interpret OTOs or extract the same information from some QI tools ? QI 
Metric, Fidelity, Loschmidt echo [M.Miyaji ’16]? 

• CFT data and bootstrap: can we make some general arguments about OTOs, late 
time values, Lyapunov exponent? 

• Higher-point OTOs and Jones polynomials? Is CFT a quantum computer? 

• Late time physics beyond the scrambling time? Recurrences ?  

• Other tools: Gutzwiller trace formula, spectral form factors… 



どうもありがとう!


