Out-of-Time-Ordered Correlators in 2d CFT

Pawel Caputa

Plan

- Introduction+Motivation
- OTOs and Quantum Chaos Bound
- Various results
- Open Questions

Motivation

- Which CFTs describe Black Holes and why?
- Necessary conditions? How can we test them?
- 2d CFTs and black holes? (n)RCFTs, Large c, Wi , Liouville ?
- Dynamics of quantum information in $1+1$ d? Universality, bounds, etc?
- What can this teach us about scrambling, quantum chaos...?

$$
\begin{array}{ll}
\text { Based on: } & \text { [P.C,T.Takayanagi,K.Watanabe,Y.Kusuki to appear] } \\
& {[P . C, \text { T.Numasawa,A.Veliz-Osorio'16] }} \\
& {[P . C, J . \text { Simon, A.Stikonas, K.Watanabe, T.Takayanagi'15] }}
\end{array}
$$

Black Hole Slogans:

- BH are holographic (entropy)
- BH are the fastest scramblers of information
- BH are maximally chaotic

This Talk

- BH are (complex) quantum channels
- BH are the best quantum computers....

AdS/CFT is our main tool to make these statements more precise

HINT: Quantum Information + Time Evolution

BH are holographic

BH entropy

$$
S_{B H}=\frac{\text { Area }(\text { Horizon })}{4 G_{N}}
$$

In 2d CFT we can relate the BH entropy to Cardy formula for the density of states

$$
S_{B H}=S_{C}=2 \pi \sqrt{\frac{c}{6} E_{L}}+2 \pi \sqrt{\frac{c}{6} E_{R}} \quad c-\text { fixed, } \quad E_{L / R} \rightarrow \infty
$$

Modulo the assumption that it should be valid for

$$
c \rightarrow \infty, \quad E_{L / R} \sim c
$$

1) In order to describe BH, CFTs should have:

Large central Charge $c \rightarrow \infty$

Sparse Spectrum (Cardy formula valid in "extended" regime) [Hartman,Keller,Stoica, 14]

$$
\rho(E)=\exp [S(E)] \lesssim \exp \left[2 \pi\left(E+\frac{c}{12}\right)\right], \quad E \leq \epsilon \quad E=E_{L}+E_{R}=\Delta-\frac{c}{12}
$$

In practice we can approximate correlators by the identity block.

What does it imply for "physics": entanglement, CFT quenches....?
2) Black Hole Phenomenology and Chaos

Eternal BH

$$
\begin{aligned}
& \left|\Psi_{\beta}\right\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\frac{\beta}{2} E_{n}}|n\rangle_{L}|n\rangle_{R}
\end{aligned}
$$

The Butterfly Effect.

$\left|\psi^{\prime}\right\rangle=e^{-i H_{L} t_{w}} O_{L}(x) e^{i H_{L} t_{w}}|\psi\rangle$

$$
I_{A: B}=S_{A}+S_{B}-S_{A \cup B}
$$

Computed both holographically and in CFT

$$
I_{A: B}\left(t_{w}\right)=0 ? \quad t_{w} \sim \beta \log c \sim \beta \log S
$$

gravitational scattering (Regge)

$$
\langle V W(t) V W(t)\rangle \sim G_{N} s \simeq G_{N} e^{\frac{2 \pi}{\beta} t}
$$

Semiclassical Chaos

SOVIET PHYSICS JETP

QtASHCLASSNAL METWOD IN THE THEORY OF SUPERCONDUCTTVITY
A. L. Laukin asd Yu. M. owchannanov

$$
[x(t), p(0)] \simeq-i \hbar\{x(t), p(0)\} \simeq-i \hbar \frac{\partial x(t)}{\partial x(0)}=-i \hbar e^{\lambda_{L} t}
$$

Average square becomes $\mathrm{O}(1)$

$$
\left\langle[x(t), p(0)]^{2}\right\rangle \simeq \hbar^{2} e^{2 \lambda_{L} t}=e^{2 \lambda(t-t *)}
$$

$$
t^{*}=\frac{1}{\lambda_{L}} \log \frac{1}{\hbar}
$$

e.g. Inverted harmonic oscillator

Ehrenfest time (decoherence!)

Quantum Chaos in QFT

In QFT one can generalise to

$$
\left\langle[W(t), V(0)]^{2}\right\rangle_{\beta}
$$

for "arbitrary" operators of the theory

$$
\begin{gathered}
\langle V W(t) W(t) V\rangle_{\beta}+\langle W(t) V V W(t)\rangle_{\beta} \\
-\langle W(t) V W(t) V\rangle_{\beta}-\langle V W(t) V W(t)\rangle_{\beta}
\end{gathered}
$$

Essential information in the ratio

$$
C^{\beta}(t)=\frac{\langle W(t) V W(t) V\rangle_{\beta}}{\langle W(t) W(t)\rangle_{\beta}\langle V V\rangle_{\beta}}
$$

OTO-correlators

Very natural from the TFD perspective!

BH are maximally chaotic

In chaotic systems

Bound on chaos

$$
\lambda_{L} \leq \frac{2 \pi}{\beta}
$$

BH are maximally chaotic: (=) for a system with a holographic dual (Einstein BH)

OTOs in 2d CFT

OTO correlators (all orderings) can be obtained from the Euclidean 4pt

$$
\frac{\left\langle W^{\dagger} W V^{\dagger} V\right\rangle}{\left\langle W^{\dagger} W\right\rangle\left\langle V^{\dagger} V\right\rangle}=G(z, \bar{z})
$$

$$
\begin{array}{ll}
z_{1}=e^{\frac{2 \pi}{\beta}\left(t+i \epsilon_{1}\right)}, & \bar{z}_{1}=e^{-\frac{2 \pi}{\beta}\left(t+i \epsilon_{1}\right)}, \\
z_{2}=e^{\frac{2 \pi}{\beta}\left(t+i \epsilon_{2}\right)}, & \bar{z}_{2}=e^{-\frac{2 \pi}{\beta}\left(t+i \epsilon_{2}\right)}, \\
z_{3}=e^{\frac{2 \pi}{\beta}\left(x+i \epsilon_{3}\right)}, & \bar{z}_{3}=e^{\frac{2 \pi}{\beta}\left(x-i \epsilon_{3}\right)}, \\
z_{4}=e^{\frac{2 \pi}{\beta}\left(x+i \epsilon_{4}\right)}, & \bar{z}_{4}=e^{\frac{2 \pi}{\beta}\left(x-i \epsilon_{4}\right)} .
\end{array}
$$

$$
\epsilon_{1}<\epsilon_{3}<\epsilon_{2}<\epsilon_{4}
$$

$$
(1-z) \rightarrow e^{-2 \pi i}(1-z) \quad z, \bar{z} \rightarrow 0, \quad \bar{z} / z-\text { fixed }
$$

OTOs in large c 2d CFT

Identity Block at large central charge c

$$
\mathcal{V}(z)=1+\frac{2 h_{W} h_{V}}{c} z^{2}{ }_{2} F_{1}(2,2,4, z)+O\left(1 / c^{2}\right)
$$

After OTO continuation

$$
\mathcal{V}(z) \approx 1+\frac{48 \pi i h_{W} h_{V}}{c z}=1-\frac{12 \pi h_{W} h_{V}}{c} e^{\frac{2 \pi}{\beta}(t-x)}+O\left(1 / c^{2}\right)
$$

Large c vacuum block for HHLL captures this

$$
\left(\frac{1}{1+\frac{24 \pi i h_{w}}{\epsilon_{12}^{*} \epsilon_{34}} e^{(2 \pi / \beta)\left(t-t_{*}-x\right)}}\right)^{2 h_{v}}
$$

OTOs and Quantum Chaos?

- OTOs and "Standard definitions" of Quantum Chaos
- Quantum Chaos and Non-Integrability?
- Experimental access to OTOs!
(a)
[Yao et al]

$$
\begin{aligned}
& C_{i j}^{\beta}(t) \equiv \frac{\left\langle\mathcal{O}_{i}^{\dagger}(t) \mathcal{O}_{j}^{\dagger} \mathcal{O}_{i}(t) \mathcal{O}_{j}\right\rangle_{\beta}}{\left\langle\mathcal{O}_{i}^{\dagger} \mathcal{O}_{i}\right\rangle_{\beta}\left\langle\mathcal{O}_{j}^{\dagger} \mathcal{O}_{j}\right\rangle_{\beta}}=\mathcal{G}(z, \bar{z}) \\
& \mathcal{G}(z, \bar{z})=\sum_{p} \mathcal{F}_{j j}^{i i}(p \mid z) \overline{\mathcal{F}}_{j j}^{i i}(p \mid \bar{z}) \\
& C_{i j}^{\beta}(t) \rightarrow \frac{1}{d_{i} d_{j}} \frac{S_{i j}^{*}}{S_{00}} \quad \mathcal{F}_{j j}^{i i}(p \mid z) \rightarrow \sum_{q} \mathcal{M}_{p q} \mathcal{F}_{j j}^{i i}(q \mid z) \\
& \mathcal{M}_{00}=\frac{S_{i j}^{*}}{S_{00}} \frac{S_{00}}{S_{0 i}} \frac{S_{00}}{S_{0 j}}
\end{aligned}
$$

"Monodromy scalar" can be measured in anyon interferometry experiments!

Large c but "rational": SU(N)k WZW

State excited by the operator in the fundamental rep.

$$
g_{\beta}^{\alpha}(x)|0\rangle \quad h=\bar{h}=\frac{N^{2}-1}{2 N(k+N)}
$$

4-point correlator from K-Z equations

$$
\mathcal{G}(z, \bar{z})=\sum_{i, j} I_{i} \bar{I}_{j} \sum_{n} X_{n n} \mathcal{F}_{i}^{(n)}(z) \mathcal{F}_{j}^{(n)}(\bar{z})
$$

From the monodromy of F we can confirm our constant!

$$
C_{i j}^{\beta}(t) \rightarrow \cos \left(\frac{2 \pi}{k+2}\right) \cos ^{-1}\left(\frac{\pi}{k+2}\right)
$$

For $\operatorname{SU}(2)$ at level k
$\left(T^{2}\right)^{n} / \mathbb{Z}_{n}$
OTO correlators with W, V given by twist operators as functions of the radius η

$$
C_{\beta}(t)=|1-z|^{-4 \Delta_{n}} F_{n}(z, \bar{z})
$$

e.g. $n=2$ we can write

$$
F_{2}(z, \bar{z})=\frac{\Theta^{2}(0 \mid T)}{f_{1 / 2}(z) \bar{f}_{1 / 2}(\bar{z})}=2^{-4 / 3}|z|^{1 / 3}|1-z|^{1 / 3} Z_{\eta}^{2}(\tau, \bar{\tau})
$$

modular parameter is related to the cross-ratios as

$$
\tau \equiv \frac{i f_{1 / 2}(1-z)}{f_{1 / 2}(z)} \quad f_{1 / 2}(z)={ }_{2} F_{1}(1 / 2,1 / 2,1, z)
$$

OTO continuation is equivalent to

$$
\tau \rightarrow \frac{\tau}{1+2 \tau}
$$

$$
S \bar{T}^{2} S
$$

Rational radius behaves as in standard RCFTs
$\mathrm{n}=2$

$$
C_{\beta}(t) \rightarrow\left(S \bar{T}^{2} S\right)_{00}
$$

for higher n , and $p q \in n \mathbb{Z}$

$$
C_{\beta}(t) \rightarrow \frac{n}{(2 p q)^{n-1}}
$$

Irrational radius $\quad \eta \neq \frac{p}{q}$

$$
C_{\beta}(t) \rightarrow\left(\frac{\beta}{t}\right)^{n-1}
$$

$$
\eta=\frac{p}{q}
$$

values sensitive to pq

We can consider the $4 p t$ correlator of $(f, 1)$ and $(1, f)$ in

$$
\frac{\mathrm{SU}(N)_{k} \otimes \mathrm{SU}(N)_{1}}{\mathrm{SU}(N)_{k+1}} \quad c=(N-1)\left(1-\frac{N(N+1)}{p(p+1)}\right)
$$

both operators increase entanglement entropies by the log [N]
Operators ($f, 1$) are consider as light but $(1, f)$ as heavy.

Their 4pt correlator

$$
G_{\phi_{+} \phi_{-}}(x)=|1-x|^{-2 \Delta_{+}}|x|^{\frac{2}{N}}\left|1+\frac{1-x}{N x}\right|^{2}
$$

The OTO shows no chaos.

Summary

- OTOs allow us to sharpen our constraints on Black Holes in AdS/CFT.
- OTOs are interesting new tools to explore aspects of quantum chaos
- In 2d CFTs we can compute them in various models and explore their properties
- We get a new perspective on the known CFT data from OTOs (classification of RCFTs?)
- OTOs already got their "own life" in MB physics (MBL), similarly to Entanglement Entropy.

Open Questions

- Black hole slogans and quantum chaos? Are the "necessary conditions" independent?
- Can we interpret OTOs or extract the same information from some QI tools ? QI Metric, Fidelity, Loschmidt echo [M.Miyaji '16]?
- CFT data and bootstrap: can we make some general arguments about OTOs, late time values, Lyapunov exponent?
- Higher-point OTOs and Jones polynomials? Is CFT a quantum computer?
- Late time physics beyond the scrambling time? Recurrences ?
- Other tools: Gutzwiller trace formula, spectral form factors...

どうもありがとう！

