# Ken KIKUCHI 

(Nagoya U.)
hep-th/1612.04552

## Constrained systems are everywhere

- Redundant variables


A block on a ramp

- gauge theory
- gravity

Batalin-Vilkovisky (BV) formalism is an efficient way to treat these constrained systems.

## Motivating analogy

One way to compute holographic Weyl anomalies employ the flow equation (a.k.a. Hamiltonian constraint) $\{S, S\}$, which is

- a $2 n d$ order functional differential eq.,
- a result of the (Hamiltonian) constraint.

Question. Can antibracket $(S, S)$ reproduce flow eq.?

$$
\{S, S\} \leftrightarrow(S, S)
$$

## Outline

1. Introduction
2. BV formalism revisited
3. 1st-class constraints from BV
4. Summary

## BV formalism revisited 1/4

## recipe

1. For all fields $\Phi^{n}=(\phi, A, c, \ldots)$ introduce antifields

$$
K_{n}=\left(K_{\phi}, K_{A}, K_{c}, \ldots\right) .
$$

2. For arbitrary functionals $F[\Phi, K], G[\Phi, K]$, define antibracket

$$
(F, G):=\int d^{d} x\left\{\frac{\delta^{R} F}{\delta \Phi^{n}(x)} \frac{\delta^{L} G}{\delta K_{n}(x)}-\frac{\delta^{R} F}{\delta K_{n}(x)} \frac{\delta^{L} G}{\delta \Phi^{n}(x)}\right\} .
$$

3. Define extended action $S[\Phi, K]$ as a solution of the master eq. $(S, S)=0$ :

$$
S=S_{c}+S_{K}=S_{c}-\int d^{d} x\left(\delta_{\mathrm{BRS}} \Phi^{n}\right) K_{n} .
$$

## BV formalism revisited 2/4

## some observations

- Extended action is given by classical action plus a linear combination of antifields $S=S_{c}+$ ( $K$-linear)
- A linear combination of antifields generates gauge trans.

$$
\left(S_{K}, \Phi^{n}\right)=\delta_{\mathrm{BRS}} \Phi^{n} .
$$

- Nilpotent transformation $(S,(S, \forall F))=0 \longrightarrow$ cohomology
- Antifield = canonical momenta

$$
\left(\Phi^{m}(x), K_{n}(y)\right)=\delta_{n}^{m} \delta^{(d)}(x-y), \quad\left(K_{m}, K_{n}\right)=0
$$

## BV formalism revisited 3/4

These observations would lead to the following identifications;
$q \leftrightarrow \Phi$; generalized coordinates
$\pi_{q} \leftrightarrow K$; canonical momenta
$\{\cdot, \cdot\}_{P} \leftrightarrow(\cdot, \cdot) ;$ brackets
$H \leftrightarrow S$; time evolution generator
$\varphi \leftrightarrow K$; 1st-class constraints.

## BV formalism revisited 4/4

1st-class constraints of systems can be systematically obtained by a simple prescription

$$
\left.\left(S, K_{n}\right)\right|_{K=0} \sim 0
$$

## Outline

1. Introduction
2. BV formalism revisited
3. 1st-class constraints from BV
4. Summary

## 1st-class constraints from BV 1/4

ex) scalar QED

$$
S_{c}[A, \phi]=\int d^{d} x\left\{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+V(\phi)+\frac{1}{2} L_{I J}(\phi) D^{\mu} \phi^{I} D_{\mu} \phi^{J}\right\}
$$

Gauss's law is correctly reproduced (in Lagrangian variables):

$$
\left(S, K_{A}^{0}\right)=\partial_{\mu} F^{0 \mu}-L_{I J}(\phi)\left(i e \phi^{I}\right) D^{0} \phi^{J} \sim 0 .
$$

- Perfect agreement in terms of Hamiltonian variables.


## 1st-class constraints from BV 2/4

ex2) scalar coupled to gravity

$$
S_{c}[g, \phi]=\int d^{d} x \sqrt{g}\left\{V(\phi)-R_{(d)}+\frac{1}{2} L_{I J}(\phi) g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}\right\}
$$

With the help of ADM decomposition

$$
g_{\mu \nu}=\left(\begin{array}{cc}
N^{2}+\lambda^{k} \lambda_{k} & \lambda_{j} \\
\lambda_{i} & h_{i j}
\end{array}\right),
$$

the prescription again reproduces 1st-class constraints:

$$
\begin{aligned}
& \left.\left(S, K_{N}\right)\right|_{K=0} \sim 0, \quad(\text { Hamiltonian const. }) \\
& \left.\left(S, K_{\lambda}^{j}\right)\right|_{K=0} \sim 0 . \quad(\text { momentum const. })
\end{aligned}
$$

## 1st-class constraints from BV 3/4

ex3) (classical) "bulk" action

$$
\begin{aligned}
& S_{c}[g, \phi, A] \\
& =\int d^{d} x \sqrt{g}\left\{V(\phi)-R_{(d)}+\frac{1}{2} L_{I J}(\phi) g^{\mu \nu} D_{\mu} \phi^{I} D_{\nu} \phi^{J}+\frac{1}{4} B(\phi) F_{\mu \nu}^{a} F^{a \mu \nu}\right\}
\end{aligned}
$$

The prescription $\left.\left(S, K_{n}\right)\right|_{K=0} \sim 0$ yields

$$
\begin{aligned}
\left.\left(S, K_{A}^{a 0}\right)\right|_{K=0} \sim 0, & \quad \text { (Gauss's law) } \\
\left.\left(S, K_{N}\right)\right|_{K=0} \sim 0, & \quad \text { (Hamiltonian const.) } \\
\left.\left(S, K_{\lambda}^{j}\right)\right|_{K=0} \sim 0 . & \quad \text { (momentum const.) }
\end{aligned}
$$

## 1st-class constraints from BV 4/4

e.g. Hamiltonian constraint (flow equation)

$$
\begin{aligned}
& \left(S, K_{N}\right) \\
& =\sqrt{h}\left\{V(\phi)-R_{(d-1)}+\frac{1}{2} L_{I J}(\phi) h^{i j} D_{i} \phi^{I} D_{j} \phi^{J}+\frac{1}{4} B(\phi) h^{i k} h^{j l} F_{i j}^{a} F_{k l}^{a}\right. \\
& \\
& \left.\quad+\frac{1}{h}\left(\frac{1}{d-2} \pi^{2}-\pi^{i j} \pi_{i j}\right)-\frac{1}{2 h}\left(L^{-1}(\phi)\right)^{I J} \pi_{I} \pi_{J}-\frac{1}{2 h B(\phi)} h_{i j} \pi^{a i} \pi^{a j}\right\} \\
& \\
& \quad+(K \text { terms })
\end{aligned}
$$

BV correctly reproduces the known forms of the flow eq.

## Summary

- The motivating analogy $\{S, S\} \leftrightarrow(S, S)$ works.
- 1st-class constraints are systematically obtained by

$$
\left.\left(S, K_{n}\right)\right|_{K=0} \sim 0
$$

- Another analogy $\varphi \leftrightarrow K$ would enable us to treat (1st-class) constraints consistently just in Lagrangian variables.
- future direction: 2nd-class constraints, higher spin, etc.


## Appendix

## Some details of the BV formalism

Antifields are assigned (quantum) numbers as follows so that $S_{K}=-\int\left(\delta_{\mathrm{BRS}} \Phi^{n}\right) K_{n}$ is bosonic and has ghost \# zero:

| antifield | $\epsilon[\cdot] \bmod 2$ | ghost \# |
| :---: | :---: | :---: |
| $K_{n}$ | $\epsilon\left[\Phi^{n}\right]+1$ | $-\operatorname{gh}\left[\Phi^{n}\right]-1$ |

For arbitrary functionals $F[\Phi, K], G[\Phi, K]$ and $H[\Phi, K]$,

- $(F, G)=(-)^{(\epsilon[F]+1)(\epsilon[G]+1)}(G, F)$,
- $(-)^{\epsilon[F] \epsilon[H]+\epsilon[G]}(F,(G, H))+($ cyclic terms $)=0$.

Since $(S, \cdot)$ is nilpotent on the space of functionals $F[\Phi, K] \in \mathcal{F}$, we can define cohomology as usual:

$$
\begin{aligned}
\mathcal{C} & :=\{X \in \mathcal{F} \mid(S, X)=0\}, \\
\mathcal{E} & :=\{X \in \mathcal{F} \mid \exists Y \in \mathcal{F} \text { s.t. } X=(S, Y)\}, \\
\mathcal{H} & :=\mathcal{C} / \mathcal{E} .
\end{aligned}
$$

Then gauge fixing is realized by adding an exact term to an old extended action

$$
S \mapsto S^{\prime}:=S+(S, \Psi[\Phi, K]) .
$$

## ADM decomposition in BV formalism

A definition

$$
g_{\mu \nu}=\left(\begin{array}{cc}
N^{2}+\lambda^{k} \lambda_{k} & \lambda_{j} \\
\lambda_{i} & h_{i j}
\end{array}\right)
$$

and a requirement (or definition)

$$
\left(\boldsymbol{\delta}_{\mathrm{BRS}} g_{\mu \nu}\right) K_{g}^{\mu \nu}=\left(\boldsymbol{\delta}_{\mathrm{BRS}} N\right) K_{N}+\left(\boldsymbol{\delta}_{\mathrm{BRS}} \lambda_{j}\right) K_{\lambda}^{j}+\left(\boldsymbol{\delta}_{\mathrm{BRS}} h_{i j}\right) K_{h}^{i j}
$$

give new antifields in terms of old ones:

$$
K_{N}:=2 N K_{g}^{00}, \quad K_{\lambda}^{j}:=2 \lambda^{j} K_{g}^{00}+2 K_{g}^{j 0}, \quad K_{h}^{i j}:=K_{g}^{i j}-\lambda^{i} \lambda^{j} K_{g}^{00} .
$$

## Explicit forms of the other (1st-class) constraints

$$
\begin{aligned}
\left(S, K_{A}^{a 0}\right)=D_{\mu}[ & \left.N \sqrt{h} B(\phi) F^{a 0 \mu}\right]-\frac{\sqrt{h}}{N} L_{I J}(\phi)\left(D_{0} \phi^{I}-\lambda^{j} D_{j} \phi^{I}\right)\left(i T^{a} \phi\right)^{J} \\
& +(K \text { terms }) \\
\left(S, K_{\lambda}^{i}\right)=\sqrt{h}\{ & \frac{2}{N} h^{i j}\left(R_{0 j}-\lambda^{k} R_{k j}\right)-\frac{1}{N} L_{I J}(\phi) h^{i j}\left(D_{0} \phi^{I}-\lambda^{k} D_{k} \phi^{I}\right) D_{j} \phi^{J} \\
& \left.-\frac{B(\phi)}{N} h^{i j} h^{k l} F_{j l}^{a}\left(F_{0 k}^{a}-\lambda^{p} F_{p k}^{a}\right)\right\}+
\end{aligned}
$$

