Towards a 2nd Law for Lovelock Theory

Nilay Kundu

YITP, Kyoto University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This talk is based on the following preprint arXiv:1612.04024 [hep-th]

"Towards a second law for Lovelock theories"

Sayantani Bhattacharyya, Felix M. Haehl, R. Loganayagam, Mukund Rangamani

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

- Black Holes are "Theoretical Laboratories" for understanding quantum gravity.
- String theory ⇒ Despite being successful in some aspects ⇒ unresolved issues remaining.
- It is, therefore in principle useful to use "general principles" to constrain admissible low energy theories.
- The second law of thermodynamics is one such principle that we can test on low energy solutions of gravity.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In Einstein's theory of gravity BH's are thermodynamic objects :

- They have energy, temperature and entropy.
- The entropy is given by the area of BH horizon.
- The entropy satisfies a 1st law of thermodynamics.
- In dynamical situations the horizon area always increases \Rightarrow The 2nd law
- The proof of 1st and 2nd law in general relativity requires classical EOM's + certain conditions on the matter stress tensor (Null Energy Conditions).

 The Einstein-Hilbert action can not be the complete story : The low energy limit of any UV complete quantum theory of gravity generate higher derivative corrections to the leading two derivative action :

$$I = \int d^d x \sqrt{-g} \left[R + \mathcal{L}_{matter} + \mathcal{L}_{HD}
ight]$$

- Precise form of *L_{HD}* depends on particular nature of UV completion.
- Additional corrections in the action \Rightarrow modifications in the EOM's.
- However, BH solutions will continue to exist.
- However, since the EOM's have changed, the earlier proofs of 1st and 2nd law (for two derivative theories of gravity) will no longer be valid.

- Wald argued that for stationary black hole solutions of higher derivative gravity theories, the entropy is a Noether charge associated with time translations along the horizon generating Killing field.
 - Wald entropy was constructed to explicitly satisfy the first law of thermodynamics, which being an equilibrium statement, can be understood in the stationary solution.
- The 2nd law involves dynamics and thus is a statement beyond equilibrium.
- However, we do not have a general proof that "Wald Entropy" satisfies 2nd law for any higher derivative theories of gravity.
- An open question since then has been whether there is a notion of second law of black hole mechanics in higher derivative gravity.

• The precise statement of a 2nd law :

If perturbing one equilibrium configuration (say eq_1) one can reach another equilibrium configuration (say eq_2) in course of time evolution, then the total entropy of $eq_2 \ge$ the total entropy of eq_1

- How does this translate to gravity :
 - Equilibrium configuration ⇒ Metric with Killing horizon
 - Equilibrium entropy \Rightarrow Wald entropy on Killing horizon
 - Suppose, *metric*₁ and *metric*₂ both have Killing horizons and dynamical perturbations around *metric*₁ eventually evolves to *metric*₂.
 - Second law : Wald entropy_{metric2} ≥ Wald entropy_{metric1}
- We will actually consider a local version of second law, a stronger statement.

• Our eventual target:

To investigate the 2nd law for any dynamical BH solution in arbitrary higher derivative theories of gravity or To find a concrete counter example

- What we have attempted in this work is an initial small step towards this final goal.
- We have examined whether 2nd law holds for dynamical black holes in Lovelock theories of gravity, one special case of higher derivative theories of gravity.
- More precisely, we have extended the Wald entropy (a notion of equilibrium entropy) to the dynamical setting satisfying a local version of 2nd law for Lovelock theories.

Strategy of the Proof

- Naively, 2nd law is a non-local statement, comparing only the initial and final configuration : $\boxed{S_{Wald}^{final} S_{Wald}^{initial} \ge 0}$
- To prove this we explicitly construct a function of the system variables, the "entropy function": $S_{\text{total}} = S_{Wald} + S_{cor}$
- The conditions on the entropy function S_{total} will be
 - it reduces to the familiar notion of entropy S_{Wald} , whenever the geometry has a Killing horizon

(1)
$$S_{\text{total}} \stackrel{equilibrium}{=} S_{Wald}$$

 and it is monotonically increasing under time evolution as along as the time evolution is governed by the higher derivative EOM

(2)
$$\partial_{v} S_{\text{total}} \geq 0 \Rightarrow \text{for all } v$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Strategy of the Proof

• Existence of such a S_{total} is enough to prove the 2nd law

(1)
$$S_{\text{total}} \stackrel{\text{equilibrium}}{=} S_{Wald}$$
 and (2) $\partial_{v} S_{\text{total}} \ge 0$
 $\Rightarrow S_{Wald}^{\text{final}} - S_{Wald}^{\text{initial}} = \int_{\text{initial}}^{\text{final}} \partial_{v} S_{\text{total}} dv \ge 0$

The steps of the proof

1 Define entropy density :
$$S_{\text{total}} = \int_{\Sigma_{v}} d^{d-2}x \sqrt{h} \rho_{\text{total}}$$
2 Define Θ : $\partial_{v} S_{\text{total}} = \int_{\Sigma_{v}} d^{d-2}x \sqrt{h} \Theta$ 3 We aim to show $\partial_{v} \Theta \leq 0$ 4 We assume : $v \to \infty, \ \Theta \to 0.$ 5 This implies $\Theta \geq 0$ for every finite v .6 Finally we obtain that : $\partial_{v} S_{\text{total}} \geq 0$

Strategy and Final result

Note that our method is a bit indirect : in the sense

• We don't directly try to prove $\partial_{v} S_{\text{total}} \geq 0$,

- Rather a stronger and local version : $\Theta \ge 0$
- Also there is no claim for uniqueness.

Our Result :

- For Lovelock theory we have been able to construct an *S*_{total} that works in any time evolution, maintaining spherical symmetry
- Outside spherical symmetry, our construction works provided a very particular total derivative term is always non-negative in the course of evolution.

Basic Set Up

• Higher derivative terms in the action come with dimensionfull coefficients $\Rightarrow \alpha_2 \sim {\ell_s}^2 \Rightarrow$ length dimension = 2

$$I = \int d^{d}x \sqrt{-g} \left[R + \alpha_{2} \left(R^{2} - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta} \right) \right]$$

- Our initial equilibrium configuration = Stationary BH solution in this theory.
- Perturbing away from equilibrium are parametrized by
 - (a) the amplitude of the departure from equilibrium : a,
 - (b) the characteristic frequency : ω
- An entropy function should, at the very least, carry information about these three parameters : α₂, a, ω

Basic Set Up : Assumptions

- The following summarizes what is known to date:
 - (a) Wald entropy can be constructed for arbitrary α_2 with $\mathfrak{a} = 0$ (lyer-Wald),
 - (b) Entropy functions are constructed for *f*(*R*) theories for finite range of α₂ but arbitrary a, ω. (Jacobson-Kang-Myers)
 - (c) Some developments are there for f(Lovelock) and general four derivative theories but for $a \ll 1$. (Padmanavan ..., Wall-Sarkar ...)
- We aim to construct an entropy function in higher derivative gravity, perturbatively in the couplings $\alpha_2 \ll 1$, and the frequency $\omega \ell_s \ll 1$, but valid for arbitrary amplitudes \mathfrak{a}
- We work perturbatively in the higher derivative terms,
 - (a) The corrections to Einstein-Hilbert theory are treated in a gradient expansion,
 - (b) the effective small dimensionless parameter : $\omega \ell_s \sim \sqrt{\alpha_2} \ \partial_\nu$
 - (c) no assumption about the amplitude.

Basic Set Up : Assumptions

- At horizon higher derivative corrections are suppressed compared to the Einstein-Hilbert term
 ⇒ Around horizon, curvature-scales are large compared to fluctuations of the BH horizon ~ determined by α₂ ~ ℓ_s
- A classical description of gravity is valid, i.e., no loop correction etc. enter our discussion
- Despite the 2-derivative theory dominates on the horizon scale, why do we need to modify the entropy for 2nd law ?
 - \Rightarrow Because :

Although the leading area contribution is large, it is possible under evolution, the area variation is anomalously small and overwhelmed by the higher derivative $\mathcal{O}(\omega \ell_s)$ contributions, spoiling the monotonicity of the entropy.

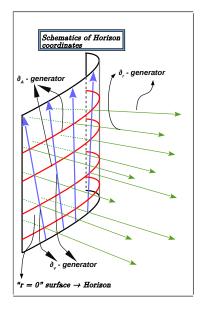
Basic Set Up : Choice of Coordinates

- Around horizon we can choose a coordinate system $\{x^{\mu}\}$ such that the effect of higher derivative corrections are handled in a derivative expansion $\Rightarrow \omega \ell_s \sim \sqrt{\alpha_2} \ \partial_{\mu} \ll 1$
- The geometry must have a horizon \Rightarrow a null hypersurface.
- On the horizon \mathcal{H} :
 - (a) define coordinate v ⇒ affine parameter along the null generators ∂_v,
 - (b) along constant v slices, Σ_v : define the spatial coordinates x_A .
 - $\Rightarrow \{v, x^A\}$ are coordinates on \mathcal{H} and $\{x^A\}$ are coordinates on Σ_v
- Away from *H* : define coordinate *r* ⇒ affinely parametrized along null geodesics ∂_r piercing through the horizon at angle

$$(\partial_{\nu},\partial_{r})\Big|_{\mathcal{H}}=1, \ (\partial_{r},\partial_{A})\Big|_{\mathcal{H}}=0$$

• Choose the origin of the r coordinate such that horizon is at r = 0.

Basic Set Up : Choice of Coordinates



▲目▶▲目▶ 目 のへで

Basic Set Up : Choice of Metric

In our coordinates the metric metric will take the following form

$$ds^{2} = 2dvdr - f(r, v, x^{A})dv^{2} + 2k_{A}(r, v, x^{A})dvdx^{A} + h_{AB}(r, v, x^{A})dx^{A}dx^{B}$$

such that $f(r, v, x^{A})\Big|_{\mathcal{H}} = k_{A}(r, v, x^{A})\Big|_{\mathcal{H}} = \partial_{r}k_{A}(r, v, x^{A})\Big|_{\mathcal{H}} = 0$

- Note that any metric with a horizon could be expressed in the above form
- Our construction will be in terms of explicit derivatives of $f(r, v, x^A)$, $k_A(r, v, x^A)$ and $h_{AB}(r, v, x^A)$
- Following notation would be useful

$$\mathcal{K}_{AB} = \frac{1}{2} \partial_{\nu} h_{AB} \Big|_{\mathcal{H}}, \quad \overline{\mathcal{K}}_{AB} = \frac{1}{2} \partial_{r} h_{AB} \Big|_{\mathcal{H}}$$

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

•
$$h_{AB}(r = 0, v, x^A)$$
 is the induced metric on \mathcal{H}

Gauss-Bonnet Theory

We consider Gauss-Bonnet theory :

$$I = \int d^{d}x \sqrt{-g} \left[R + \alpha_{2} \left(R^{2} - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta} \right) \right]$$

• We will add correction to S_{wald} , and ρ and Θ can be written as

$$\begin{split} S_{\text{total}} &= S_{\text{Wald}} + S_{\text{cor}} = \int_{\Sigma_{\nu}} d^{d-2}x \sqrt{h} \left[\rho_{eq} + \rho_{\text{cor}} \right] \\ \partial_{\nu} S_{\text{total}} &= \int_{\Sigma_{\nu}} d^{d-2}x \sqrt{h} \left[\Theta_{eq} + \Theta_{\text{cor}} \right] \\ \Theta_{eq} &= \frac{1}{\sqrt{h}} \partial_{\nu} \left(\sqrt{h} \rho_{eq} \right), \ \Theta_{cor} = \frac{1}{\sqrt{h}} \partial_{\nu} \left(\sqrt{h} \rho_{cor} \right) \end{split}$$

• Finally we want to show : $\partial_{\nu}[\Theta_{eq} + \Theta_{cor}] \leq 0$

• Condition on the correction term : $S_{cor} \stackrel{\text{equilibrium}}{=} 0$

Gauss-Bonnet Theory : Final Result

We consider Gauss-Bonnet theory with Wald entropy

$$I = \int d^{d}x \sqrt{-g} \left[R + \alpha_{2} \left(R^{2} - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta} \right) \right]$$
$$S_{\text{Wald}} = \int_{\Sigma_{\nu}} d^{d-2}x \sqrt{h} \left(\underbrace{1 + 2\alpha_{2}\mathcal{R}}_{(=\rho_{eq})} \right)$$

We add the correction

$$\begin{split} S_{\text{cor}} = & \int_{\Sigma_{\nu}} d^{d-2} x \sqrt{h} \, \rho_{\text{cor}} \,, \quad \rho_{\text{cor}} = \alpha_2^2 \sum_{n=0}^{\infty} \kappa_n \, \alpha_2^n \, \partial_{\nu}^n \left(\mathfrak{h}_{2(0)} \right)_B^A \, \partial_{\nu}^n \left(\mathfrak{h}_{2(0)} \right)_A^B \\ \text{where} \quad \left(\mathfrak{h}_{2(0)} \right)_B^A = \delta_{BB_1B_2}^{AA_1A_2} \, \mathcal{K}_{A_1}^{B_1} \, \overline{\mathcal{K}}_{A_2}^{B_2} \end{split}$$

We showed that

$$\partial_{V}[\Theta_{eq} + \Theta_{cor}] \leq 0, \quad \Rightarrow \quad A_{n} = 2\kappa_{n} - \frac{\kappa_{n-1}^{2}}{A_{n-2}}$$

for $n = -2, -1, 0, \cdots$, and $\kappa_{-2} = -1/2, \ \kappa_{0} = -1, \ \kappa_{-1} = -2$

Dac

Gauss-Bonnet Theory : Details of proof

We consider Gauss-Bonnet theory with Wald entropy

$$I = \int d^{d}x \sqrt{-g} \left[R + \alpha_{2} \left(R^{2} - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta} \right) \right]$$
$$S_{\text{Wald}} = \int_{\Sigma_{v}} d^{d-2}x \sqrt{h} \left(\underbrace{1 + 2\alpha_{2}R}_{(=\rho_{eq})} \right), \text{ and } \Theta_{eq} = \frac{1}{\sqrt{h}} \partial_{v} \left(\sqrt{h} \rho_{eq} \right)$$

Next We compute

$$\begin{split} \partial_{\nu}\Theta_{eq} &= \text{Term 1} + \text{Term 2} + \text{Term 3} + \text{Term 4} + \text{Term 5} \\ \text{Term 1} &= -\mathcal{T}_{\nu\nu}, \ \text{Term 2} &= -\mathcal{K}_{AB}\mathcal{K}^{AB}, \ \text{Term 3} &= \alpha^{2}\mathcal{K}^{A}_{B}\mathcal{K}^{A'}_{B'}\mathcal{M}^{BB'}_{AA'} \\ \text{Term 4} &= \alpha^{2}\mathcal{K}^{A}_{B} \ \partial_{\nu} \bigg[\delta^{BA_{1}A_{2}}_{AB_{1}B_{2}}\mathcal{K}^{B_{1}}_{A_{1}}\overline{\mathcal{K}}^{B_{2}}_{A_{2}} \bigg], \ \text{Term 5} &= \nabla_{A}\mathcal{Y}^{A} \end{split}$$

Note that M^{BB'}_{AA'} is some specific four indexed and two derivative tensor but no ∂_v.

Gauss-Bonnet Theory : Details of proof

$$\begin{split} \partial_{\nu}\Theta_{eq} &= \text{Term 1} + \text{Term 2} + \text{Term 3} + \text{Term 4} + \text{Term 5} \\ \text{Term 1} &= -T_{\nu\nu}, \ \text{Term 2} &= -\mathcal{K}_{AB}\mathcal{K}^{AB}, \ \text{Term 3} &= \alpha_2^2\mathcal{K}_B^A\mathcal{K}_{B'}^{A'}\mathcal{M}_{AA'}^{BB'} \\ \text{Term 4} &= \alpha_2^2\mathcal{K}_B^A \ \partial_{\nu} \bigg[\delta_{AB_1B_2}^{BA_1A_2}\mathcal{K}_{A_1}^{B_1} \overline{\mathcal{K}}_{A_2}^{B_2} \bigg], \ \text{Term 5} &= \nabla_A \mathcal{Y}^A \end{split}$$

• For Einstein theory ($\alpha = 0$) 2-nd law is valid for wald entropy,

$$\partial_{\nu}\Theta_{eq} = -T_{\nu\nu} - \mathcal{K}_{AB}\mathcal{K}^{AB} \quad \Rightarrow \quad \partial_{\nu}\Theta_{eq} \leq 0$$

• Term 1 : Null Energy condition, and Term 2 \leq 0 .

• Term 3
$$\ll$$
 Term 2 \Rightarrow Term 2 + Term 3 = $\mathcal{K}^{A}_{B}\mathcal{K}^{A'}_{B'}\left[\delta^{B}_{A}\delta^{B'}_{A'} + \alpha^{2}\mathcal{M}^{BB'}_{AA'}\right]$

Term 4 is naively small compared to Term 2 : But not always true

$$\begin{array}{l} \text{Term 2} + \text{Term 4} = \mathcal{K}_{\mathcal{B}}^{\mathcal{A}} \bigg[\mathcal{K}_{\mathcal{A}}^{\mathcal{B}} + \alpha^2 \; \partial_{V} \bigg[\delta_{\mathcal{A}\mathcal{B}_{1}\mathcal{B}_{2}}^{\mathcal{B}\mathcal{A},\mathcal{A}_{1}} \overline{\mathcal{K}}_{\mathcal{A}_{2}}^{\mathcal{B}_{2}} \bigg] \bigg] \\ \\ \text{Term 4} \gtrsim \text{Term 2} \quad \Rightarrow \quad \partial_{V} \Theta_{eq} \nleq 0 \end{array}$$

Need to add corrections to Wald entropy to handle it.

Gauss-Bonnet Theory : Details of proof

We decide the correction term

$$\begin{split} S_{\text{total}} &= S_{\text{Wald}} + S_{\text{cor}} = \int_{\Sigma_{V}} d^{d-2}x \sqrt{h} \left[\rho_{eq} + \rho_{\text{cor}} \right] \\ \partial_{V}S_{\text{total}} &= \int_{\Sigma_{V}} d^{d-2}x \sqrt{h} \left[\Theta_{eq} + \Theta_{\text{cor}} \right] \\ \partial_{V}\Theta_{eq} &= -T_{VV} - \mathcal{K}_{AB}\mathcal{K}^{AB} + \alpha^{2}\mathcal{K}^{A}_{B} \partial_{V}\mathcal{H}^{B}_{A} + \nabla_{A}\mathcal{Y}^{A} + \text{ Negligible Terms} \\ \mathcal{H}^{B}_{A} &= \delta^{BA_{1}A_{2}}_{AB_{1}B_{2}}\mathcal{K}^{B_{1}}_{A_{1}}\overline{\mathcal{K}}^{B_{2}}_{A_{2}} \end{split}$$

• We add S_{cor} to adjust $\partial_{\nu}\Theta_{cor}$ such that

$$\begin{split} \partial_{\nu} \Theta_{\text{cor}} &= \alpha^{4} \gamma \; \partial_{\nu} H^{B}_{A} \; \partial_{\nu} H^{A}_{B} \\ \partial_{\nu} [\Theta_{eq} + \Theta_{\text{cor}}] &= - \; T_{\nu\nu} - \left[\mathcal{K}^{A}_{B} - \frac{\alpha^{2}}{2} \; \partial_{\nu} H^{A}_{B} \right]^{2} - \alpha^{4} \left(\gamma - \frac{1}{4} \right) \; \partial_{\nu} H^{B}_{A} \; \partial_{\nu} H^{A}_{B} \\ \Rightarrow \quad \partial_{\nu} [\Theta_{eq} + \Theta_{\text{cor}}] &\leq 0 \quad \text{if} \quad \gamma \leq 1/4 \end{split}$$

• We need to impose : $\nabla_A \mathcal{Y}^A = \nabla_A \nabla_A \mathcal{Z}^{AB} = 0$, which is true for spherically symmetric evolution.

・ロト・4回ト・4回ト・4回ト・4回ト

Extension to Lovelock Theories

We extended the analysis beyond Gauss-Bonnet to Lovelock theories

$$I \equiv \int \sqrt{-g} \left[R + \alpha_m \ \ell_s^{2m-2} \ \mathcal{L}_m + \mathcal{L}_{matter} \right]$$
$$\mathcal{L}_m = \delta_{\rho_1 \sigma_1 \cdots \rho_m \sigma_m}^{\mu_1 \nu_1 \cdots \mu_m \nu_m} \ R^{\rho_1}{}_{\mu_1}{}^{\sigma_1}{}_{\nu_1} \cdots R^{\rho_m}{}_{\mu_m}{}^{\sigma_m}{}_{\nu_m}$$

 $\delta_{\rho_1\sigma_1\cdots\rho_m\sigma_m}^{\mu_1\nu_1\cdots\mu_m\nu_m}$ = determinant of $(n \times n)$ matrix whose (*ij*)-th element is $\delta_{\nu_j}^{\mu_i}$

The correction we need to add

$$\begin{split} S_{\text{total}} &= S_{\text{Wald}} + S_{\text{cor}} = \int_{\Sigma_{\nu}} d^{d-2}x \sqrt{h} \left[\rho_{eq} + \rho_{\text{cor}} \right] \\ \rho_{eq} &= \frac{\delta \mathcal{L}_{\text{grav}}}{\delta R^{\nu} v^{r} r} \Big|_{R \to \mathcal{R}}, \qquad \mathcal{L}_{\text{grav}} = R + \alpha_{m} \ell_{s}^{2m-2} \mathcal{L}_{m} \\ \rho_{\text{cor}} &= \sum_{n=0}^{\infty} \kappa_{n} \left[\ell_{s}^{n} \partial_{\nu}^{n} \left(\frac{1}{2} \frac{\delta^{2} \mathcal{L}_{\text{grav}}}{\delta R^{A}_{A_{1}} C_{1} \sqrt{\delta} R^{\nu} B_{1} D_{1} B} \Big|_{R \to \mathcal{R}} \mathcal{K}_{A_{1}}^{C_{1}} \overline{\mathcal{K}}_{B_{1}}^{D_{1}} \right) \right]^{2} \end{split}$$

The replacement rule : R → R ⇒ replace all the curvature tensors of the spacetime with those intrinsic to Σ_ν

(日本) (日本) (日本) (日本) (日本)

Extension to Lovelock Theories

$$\begin{split} S_{\text{total}} &= S_{\text{Wald}} + S_{\text{cor}} = \int_{\Sigma_{V}} d^{d-2}x \sqrt{h} \left[\rho_{eq} + \rho_{\text{cor}} \right] \\ \rho_{eq} &= \frac{\delta \mathcal{L}_{\text{grav}}}{\delta R^{\nu} v^{r}_{\nu}} \Big|_{R \to \mathcal{R}}, \qquad \mathcal{L}_{\text{grav}} = R + \alpha_{m} \ \ell_{s}^{2m-2} \mathcal{L}_{m} \\ \rho_{\text{cor}} &= \sum_{n=0}^{\infty} \kappa_{n} \left[\ell_{s}^{n} \partial_{v}^{n} \left(\frac{1}{2} \frac{\delta^{2} \mathcal{L}_{\text{grav}}}{\delta R^{A}_{A_{1}} C_{1} \sqrt{\delta} R^{\nu} B_{1} D_{1} B} \Big|_{R \to \mathcal{R}} \mathcal{K}_{A_{1}}^{C_{1}} \overline{\mathcal{K}}_{B_{1}}^{D_{1}} \right) \right]^{2} \end{split}$$

• $\partial_{\nu}S \ge 0$ in any time evolution maintaining spherical symmetry provided the κ_n 's satisfy the following recursive inequality

$$A_n = 2 \kappa_n - \frac{\kappa_{n-1}^2}{A_{n-2}} \le 0$$
, for $n = -2, -1, 0, \cdots$
initial condition : $\kappa_{-2} = -\frac{1}{2}$, $\kappa_{-1} = -2$.

• The Obstruction term in the form of a toal derivative is still there.

Conclusions

- For Lovelock theory we have been able to construct an *S*_{total} satisfying 2*nd* law, surely for spherical symmetry.
- We need to understand the implications of the obstruction term.
- Our construction is not unique, for example
 - Instead of ∂_vΘ ≤ 0 we prove ∂_v(Z Θ) ≤ 0 for some Z ≥ 0, and it would do the job.
 In fact this is how 2nd law is proved for f(R) theories.
- Field redifinitions and foliation dependence.
- The method is indirect : It is possible that $\partial_{\nu} S_{\text{total}}$ not monotonically decreasing. To obtain some constraints on the structure of the higher derivative corrections we need a direct method $\partial_{\nu} S_{\text{total}} < 0$
- Possible connection with Holographic Entanglement entropy ⇒ Myers, Dong, Camps analysis.

Thank You For Attention

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○</p>