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Introduction and Motivation

o Black Holes are "Theoretical Laboratories" for understanding
quantum gravity.

o String theory = Despite being successful in some aspects =
unresolved issues remaining.

o ltis, therefore in principle useful to use "general principles” to
constrain admissible low energy theories.

o The second law of thermodynamics is one such principle that we
can test on low energy solutions of gravity.



Introduction and Motivation

o In Einstein’s theory of gravity BH'’s are thermodynamic objects :
o They have energy, temperature and entropy.
o The entropy is given by the area of BH horizon.
o The entropy satisfies a 1st law of thermodynamics.

o In dynamical situations the horizon area always increases = The
2nd law

o The proof of 1st and 2nd law in general relativity requires
classical EOM’s + certain conditions on the matter stress tensor
(Null Energy Conditions).



Introduction and Motivation

o The Einstein-Hilbert action can not be the complete story : The
low energy limit of any UV complete quantum theory of gravity
generate higher derivative corrections to the leading two
derivative action :

| = /ddX\/TQ [R + Lmatter + L:HD}

o Precise form of Lyp depends on particular nature of UV
completion.

o Additional corrections in the action = modifications in the EOM’s.
o However, BH solutions will continue to exist.

o However, since the EOM'’s have changed, the earlier proofs of 1st
and 2nd law (for two derivative theories of gravity) will no longer be
valid.



Introduction and Motivation

o Wald argued that for stationary black hole solutions of higher
derivative gravity theories, the entropy is a Noether charge
associated with time translations along the horizon generating
Killing field.

o Wald entropy was constructed to explicitly satisfy the first law of
thermodynamics, which being an equilibrium statement, can be
understood in the stationary solution.

o The 2nd law involves dynamics and thus is a statement beyond
equilibrium.

o However, we do not have a general proof that "Wald Entropy"
satisfies 2nd law for any higher derivative theories of gravity.

@ An open question since then has been whether there is a notion
of second law of black hole mechanics in higher derivative
gravity.



Introduction and Motivation

o The precise statement of a 2nd law :

If perturbing one equilibrium configuration (say egy) one
can reach another equilibrium configuration (say egz) in
course of time evolution, then
the total entropy of eqg. > the total entropy of eq;

o How does this translate to gravity :
o Equilibrium configuration = Metric with Killing horizon
o Equilibrium entropy = Wald entropy on Killing horizon

o Suppose, metric; and metric, both have Killing horizons and
dynamical perturbations around metric; eventually evolves to
metric,.

o Second law : | Wald entropymetic, > Wald entropymetric,

o We will actually consider a local version of second law, a
stronger statement.



Introduction and Motivation

@ Our eventual target:

To investigate the 2nd law for any dynamical BH solution in
arbitrary higher derivative theories of gravity
or
To find a concrete counter example

o What we have attempted in this work is an initial small step
towards this final goal.

o We have examined whether 2nd law holds for dynamical black
holes in Lovelock theories of gravity, one special case of higher
derivative theories of gravity.

o More precisely, we have extended the Wald entropy (a notion of
equilibrium entropy) to the dynamical setting satisfying a local
version of 2nd law for Lovelock theories.



Strategy of the Proof

o Naively, 2nd law is a non-local statement, comparing only the

imiti i i i . final initial ~,
initial and final configuration : | Sia, — Sy2a >

o To prove this we explicitly construct a function of the system
variables, the "entropy function": ’ Siotal = Swaid + Scor

o The conditions on the entropy function Sioig Will be

o it reduces to the familiar notion of entropy Swais, Whenever the
geometry has a Killing horizon

equilibrium

(1 ) Stotal = SWa/d

o and it is monotonically increasing under time evolution as along as
the time evolution is governed by the higher derivative EOM

’(2) S >0 = forall v




Strategy of the Proof

o Existence of such a Sy is enough to prove the 2nd law

equilibrium

(1) Stota = Swaw  and  (2) 9y Siotar > 0

final
final initial __
= SWald — Swald = / ~ OvSiotal dv > 0
ni

itial

o The steps of the proof

@ Define entropy density : Siotal = J5, d“2x Vh piotal
@ Define©: 0ySow = [z, d"*xvVhO
@ Weaimtoshow 46,06 <0

@ Weassume: Vv — oo, ©—=0.

@ This implies © > 0 for every finite v.

@ Finally we obtain that : 9, Siotal > 0




Strategy and Final result

o Note that our method is a bit indirect : in the sense
o We don’t directly try to prove 9y Siota1 > 0,

o Rather a stronger and local version: © > 0

o Also there is no claim for uniqueness.

Our Result :

o For Lovelock theory we have been able to construct an Sy
that works in any time evolution, maintaining spherical
symmetry

o Outside spherical symmetry, our construction works provided
a very particular total derivative term is always non-negative
in the course of evolution.




Basic Set Up

o Higher derivative terms in the action come with dimensionfull
coefficients = ap ~ ¢s° = length dimension = 2

/= /ddx V=g [R +an (R2 — 4R, R" + F?W&gF?“”“ﬂ)]

o Our initial equilibrium configuration = Stationary BH solution in
this theory.

o Perturbing away from equilibrium are parametrized by
o (a) the amplitude of the departure from equilibrium : a,

o (b) the characteristic frequency : w

@ An entropy function should, at the very least, carry information
about these three parameters : ap, a,w



Basic Set Up : Assumptions

o The following summarizes what is known to date:
o (a) Wald entropy can be constructed for arbitrary a, with a =0
(lyer-Wald),
o (b) Entropy functions are constructed for f(R) theories for finite
range of a but arbitrary a, w. (Jacobson-Kang-Myers)

o (c) Some developements are there for f(Lovelock) and general four
derivative theories but for a < 1. (Padmanavan - - -, Wall-Sarkar - - -)

@ We aim to construct an entropy function in higher derivative
gravity, perturbatively in the couplings a» <« 1, and the frequency
wls < 1, but valid for arbitrary amplitudes a

o We work perturbatively in the higher derivative terms,

o (a) The corrections to Einstein-Hilbert theory are treated in a
gradient expansion,

o (b) the effective small dimensionless parameter : wls ~ \/az dy
o (c) no assumption about the amplitude.



Basic Set Up : Assumptions

o At horizon higher derivative corrections are suppressed
compared to the Einstein-Hilbert term
= Around horizon, curvature-scales are large compared to
fluctuations of the BH horizon ~ determined by ap ~ /5

o A classical description of gravity is valid, i.e., no loop correction
etc. enter our discussion

o Despite the 2-derivative theory dominates on the horizon scale,
why do we need to modify the entropy for 2nd law ?

= Because :

Although the leading area contribution is large, it is pos-
sible under evolution, the area variation is anomalously
small and overwhelmed by the higher derivative O(w/s)
contributions, spoiling the monotonicity of the entropy.




Basic Set Up : Choice of Coordinates

@ Around horizon we can choose a coordinate system {x*} such
that the effect of higher derivative corrections are handled in a
derivative expansion = wls ~ /o 0, < 1

o The geometry must have a horizon = a null hypersurface.

@ On the horizon H:
o (a) define coordinate v = affine parameter along the null
generators 9y,
o (b) along constant v slices, ¥, : define the spatial coordinates x4 .
= {v, x"} are coordinates on H and {x*} are coordinates on I,

o Away from H : define coordinate r = affinely parametrized along
null geodesics 9, piercing through the horizon at angle

(6V7al‘) = 1a (8F78A)

H

=0
H

@ Choose the origin of the r coordinate such that horizon is at
r=0.



Basic Set Up : Choice of Coordinates

Schematics of Horizon
coordinates

9, - generator
d, - generator

9, - generator
\d
“r = 0” surface — Horizon
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Basic Set Up : Choice of Metric

In our coordinates the metric metric will take the following form

ds? = 2dvdr — f(r, v, x*)dv? + 2ka(r, v, x*)dvdx? + hag(r, v, x*)dx?dx?

suchthat f(r,v,x?)| = ka(r,v,x?)| = 8rka(r,v, x| =0
H H H

Note that any metric with a horizon could be expressed in the
above form

Our construction will be in terms of explicit derivatives of
f(r,v,x%), ka(r,v,x?) and hag(r, v, x*)

Following notation would be useful

1 — 1
Kag = z0vhag| , Kag= ;0rhag
2 H 2 H

has(r = 0, v, x4) is the induced metric on H



Gauss-Bonnet Theory

o We consider Gauss-Bonnet theory :
[ = /ddx N, [R+ ap (R2 — 4R, RM + HWQBR“”QB)]

o We will add correction to Sy,i4, and p and © can be written as

Siotal = Swald + Scor = d?2xvh [peq + pcor]
Xy

Ov Siotal = / d"2xvh [©eq + Ocor]
pav

Oeg = %8‘, (\/E Peq) , Ocor = #(% (\/E Pcor)

o Finally we want to show : 9,[O¢q + Ocor] <0

" . equilibrium
o Condition on the correction term :  Scor W2 g



Gauss-Bonnet Theory : Final Result

o We consider Gauss-Bonnet theory with Wald entropy

I:/ddx VG [R+az (R — 4R A + RuasRH)]

Swaid = / d2xvVh(1 +20,R)
Ty N—

(:Peq)

o We add the correction

Soor = | A" 2xVhpor, poor = 3> knaf 9] (0,0))5 9% (9,00))

v n=0

A _ AAA, By =B
where (b,(0)) = 9,5, Ka; Ky

o We showed that

2
Kp_1

—2
for n=-2,-1,0,---, and k_o=—-1/2, kg=—-1, k1 =-2

Ov[O@eq + Ocor] <0, = Ap=2rp—

n




Gauss-Bonnet Theory : Details of proof

o We consider Gauss-Bonnet theory with Wald entropy

= f [ o (4R s B

.
Swag = [ d92xVh(1+2a,R), and Oeg = ——dy (ﬁ peq>
Ty N——r ﬁ

(:Peq)

o Next We compute

OyOe¢q = Term 1 + Term 2 4 Term 3 + Term 4 4 Term 5
Term1 = —Ty, Term2 = —KgK"E, Term3 = azicg/cgimﬁﬁi

Term 4 = oKC4 Ay [523;35@1 Eﬁﬂ , Term5 = V)4

o Note that M5E is some specific four indexed and two derivative
tensor but no 9,.



Gauss-Bonnet Theory : Details of proof

OyOeq = Term 1 + Term 2 4+ Term 3 + Term 4 + Term 5

Term 1= —Ty, Term2 = —KapK"E, Term3 = agnglcgiMﬁﬁf

Term 4 = a3K4 dy {55@;3;&2?,?;} , Term5 = V)

o For Einstein theory (o = 0) 2-nd law is valid for wald entropy,
OOeq = —Tw — ’CAB’CAB = 0yOeg <0

o Term 1 : Null Energy condition, and Term 2 <0 .
o Term3 <« Term2 = Term2+ Term 3 = K4K4, {5555, + aZMﬁg,}

o Term 4 is naively small compared to Term 2 : But not always true

Term 2 + Term 4 = K3 {Kﬁ +a20, {5%‘: K Eﬁg”

Term4 > Term2 = 9yOeq £ 0

Need to add corrections to Wald entropy to handle it.



Gauss-Bonnet Theory : Details of proof

o We decide the correction term

Siotal = Swald + Scor = d?2xvh [peq + peor]
pa

Ov Sotal = /)Z d9=2xvh [©eq + Ocor]

Oeq = —Tiw — KagK"B + a2KA 8y HZ + V4V + Negligible Terms

B _ BAAy By =Bz
HA = g8, Ky

o We add S to adjust 9,0, such that

OvOcor =ao* ¥ 8VHE Bng
2 2 1
O [Oeq + Ocorl = — Tw — {’Cé — % 8vH§} —ao* (’y — Z) BVHE 8VH§

=  O[Oeq+Ocar] <0 if y<1/4

o We need to impose : V)4 = V4V 4248 = 0, which is true for
spherically symmetric evolution.



Extension to Lovelock Theories

o We extended the analysis beyond Gauss-Bonnet to Lovelock
theories

/= / V-9 [R +am "2 Ly + Lmaner]

_ SHAVpmY
Lm= kit bmem gev o1, ..

Pm om
P1O1°"PmOm 1 R e

m Ym

Spio1- pmem = determinant of (n x n) matrix whose (ij)-th element is 4,/

P1O1°"PmIm

o The correction we need to add

Stotal = Swald + Scor = g d““2xVh [peq + peor]
v
5£grav 2m—2
- . Lga =R 2m=2p
Peq SR |laon grav +am £ m

2
Ci17=Dy
Kq' Kg!
R—R

o The replacement rule : R — R =- replace all the curvature
tensors of the spacetime with those intrinsic to ¥,

i o (] 52 Laay
= K P S S —
Pcor 2~ n s\ 5 5Fi’AA1 cr, 5":'"/81 Dig




Extension to Lovelock Theories

Stotal = Swad + Scor = / d?2xVh [peq + peor]
Ty

d ﬁgrav

om—2
Pea = 5Rv.r, » Lgav=R+am " Lm

R—R
2
52L, Cy7=D
nqn grav 1
Pcor = Znn {Z oy (2 SRA, c1 vORYg, Dig H—)RKA1 Kg ):|
@ 9,S > 0 in any time evolution maintaining spherical symmetry
provided the k,’s satisfy the following recursive inequality

2
n—1
n—2

K
An:2nan <o, forn=-2,-1,0,---

1
initial condition: k_, = 3 K_1=—-2.

o The Obstruction term in the form of a toal derivative is still there.



Q

Conclusions

For Lovelock theory we have been able to construct an S
satisfying 2nd law, surely for spherical symmetry.

We need to understand the implications of the obstruction term.

@ Our construction is not unique, for example

9

Q

o Instead of 9,© < 0 we prove 9,(Z ©) < 0 for some Z > 0, and it
would do the job.
In fact this is how 2nd law is proved for f(R) theories.

Field redifinitions and foliation dependence.

The method is indirect : It is possible that 9, Siotg NOt
monotonically decreasing. To obtain some constraints on the
structure of the higher derivative corrections we need a direct
method 9, Siptal < O

Possible connection with Holographic Entanglement entropy =
Myers, Dong, Camps analysis.



Thank You For Attention



