
Towards a 2nd Law for Lovelock Theory

Nilay Kundu

YITP, Kyoto University



This talk is based on the following preprint

arXiv:1612.04024 [hep-th]

“Towards a second law for Lovelock theories”

Sayantani Bhattacharyya, Felix M. Haehl,
R. Loganayagam, Mukund Rangamani



Introduction and Motivation

Black Holes are "Theoretical Laboratories" for understanding
quantum gravity.

String theory⇒ Despite being successful in some aspects⇒
unresolved issues remaining.

It is, therefore in principle useful to use "general principles" to
constrain admissible low energy theories.

The second law of thermodynamics is one such principle that we
can test on low energy solutions of gravity.



Introduction and Motivation

In Einstein’s theory of gravity BH’s are thermodynamic objects :

They have energy, temperature and entropy.

The entropy is given by the area of BH horizon.

The entropy satisfies a 1st law of thermodynamics.

In dynamical situations the horizon area always increases⇒ The
2nd law

The proof of 1st and 2nd law in general relativity requires
classical EOM’s + certain conditions on the matter stress tensor
(Null Energy Conditions).



Introduction and Motivation

The Einstein-Hilbert action can not be the complete story : The
low energy limit of any UV complete quantum theory of gravity
generate higher derivative corrections to the leading two
derivative action :

I =

∫
ddx
√
−g

[
R + Lmatter + LHD

]
Precise form of LHD depends on particular nature of UV
completion.

Additional corrections in the action⇒ modifications in the EOM’s.

However, BH solutions will continue to exist.

However, since the EOM’s have changed, the earlier proofs of 1st
and 2nd law (for two derivative theories of gravity) will no longer be
valid.



Introduction and Motivation

Wald argued that for stationary black hole solutions of higher
derivative gravity theories, the entropy is a Noether charge
associated with time translations along the horizon generating
Killing field.

Wald entropy was constructed to explicitly satisfy the first law of
thermodynamics, which being an equilibrium statement, can be
understood in the stationary solution.

The 2nd law involves dynamics and thus is a statement beyond
equilibrium.

However, we do not have a general proof that "Wald Entropy"
satisfies 2nd law for any higher derivative theories of gravity.

An open question since then has been whether there is a notion
of second law of black hole mechanics in higher derivative
gravity.



Introduction and Motivation

The precise statement of a 2nd law :

If perturbing one equilibrium configuration (say eq1) one
can reach another equilibrium configuration (say eq2) in

course of time evolution, then
the total entropy of eq2 ≥ the total entropy of eq1

How does this translate to gravity :

Equilibrium configuration⇒ Metric with Killing horizon

Equilibrium entropy⇒Wald entropy on Killing horizon

Suppose, metric1 and metric2 both have Killing horizons and
dynamical perturbations around metric1 eventually evolves to
metric2.

Second law : Wald entropymetric2 ≥ Wald entropymetric1

We will actually consider a local version of second law, a
stronger statement.



Introduction and Motivation

Our eventual target:

To investigate the 2nd law for any dynamical BH solution in
arbitrary higher derivative theories of gravity

or
To find a concrete counter example

What we have attempted in this work is an initial small step
towards this final goal.

We have examined whether 2nd law holds for dynamical black
holes in Lovelock theories of gravity, one special case of higher
derivative theories of gravity.

More precisely, we have extended the Wald entropy (a notion of
equilibrium entropy) to the dynamical setting satisfying a local
version of 2nd law for Lovelock theories.



Strategy of the Proof

Naively, 2nd law is a non-local statement, comparing only the
initial and final configuration : Sfinal

Wald − Sinitial
Wald ≥ 0

To prove this we explicitly construct a function of the system
variables, the "entropy function": Stotal = SWald +Scor

The conditions on the entropy function Stotal will be

it reduces to the familiar notion of entropy SWald , whenever the
geometry has a Killing horizon

(1) Stotal
equilibrium

= SWald

and it is monotonically increasing under time evolution as along as
the time evolution is governed by the higher derivative EOM

(2) ∂v Stotal ≥ 0 ⇒ for all v



Strategy of the Proof

Existence of such a Stotal is enough to prove the 2nd law

(1) Stotal
equilibrium

= SWald and (2) ∂v Stotal ≥ 0

⇒ Sfinal
Wald − Sinitial

Wald =

∫ final

initial
∂v Stotal dv ≥ 0

The steps of the proof

1 Define entropy density : Stotal =
∫

Σv
dd−2x

√
h ρtotal

2 Define Θ : ∂v Stotal =
∫

Σv
dd−2x

√
h Θ

3 We aim to show ∂v Θ ≤ 0

4 We assume : v →∞, Θ→ 0.

5 This implies Θ ≥ 0 for every finite v .

6 Finally we obtain that : ∂v Stotal ≥ 0



Strategy and Final result

Note that our method is a bit indirect : in the sense

We don’t directly try to prove ∂v Stotal ≥ 0,

Rather a stronger and local version : Θ ≥ 0

Also there is no claim for uniqueness.

Our Result :

For Lovelock theory we have been able to construct an Stotal
that works in any time evolution, maintaining spherical
symmetry

Outside spherical symmetry, our construction works provided
a very particular total derivative term is always non-negative
in the course of evolution.



Basic Set Up

Higher derivative terms in the action come with dimensionfull
coefficients⇒ α2 ∼ `s

2 ⇒ length dimension = 2

I =

∫
dd x

√
−g
[
R + α2

(
R2 − 4RµνRµν + RµναβRµναβ

)]
Our initial equilibrium configuration = Stationary BH solution in
this theory.

Perturbing away from equilibrium are parametrized by
(a) the amplitude of the departure from equilibrium : a,

(b) the characteristic frequency : ω

An entropy function should, at the very least, carry information
about these three parameters : α2, a, ω



Basic Set Up : Assumptions

The following summarizes what is known to date:
(a) Wald entropy can be constructed for arbitrary α2 with a = 0
(Iyer-Wald),

(b) Entropy functions are constructed for f (R) theories for finite
range of α2 but arbitrary a, ω. (Jacobson-Kang-Myers)

(c) Some developements are there for f (Lovelock) and general four
derivative theories but for a� 1. (Padmanavan · · · , Wall-Sarkar · · · )

We aim to construct an entropy function in higher derivative
gravity, perturbatively in the couplings α2 � 1, and the frequency
ω`s � 1, but valid for arbitrary amplitudes a

We work perturbatively in the higher derivative terms,
(a) The corrections to Einstein-Hilbert theory are treated in a
gradient expansion,

(b) the effective small dimensionless parameter : ω`s ∼
√
α2 ∂v

(c) no assumption about the amplitude.



Basic Set Up : Assumptions

At horizon higher derivative corrections are suppressed
compared to the Einstein-Hilbert term
⇒ Around horizon, curvature-scales are large compared to
fluctuations of the BH horizon ∼ determined by α2 ∼ `s

A classical description of gravity is valid, i.e., no loop correction
etc. enter our discussion

Despite the 2-derivative theory dominates on the horizon scale,
why do we need to modify the entropy for 2nd law ?

⇒ Because :
Although the leading area contribution is large, it is pos-
sible under evolution, the area variation is anomalously
small and overwhelmed by the higher derivative O(ω`s)
contributions, spoiling the monotonicity of the entropy.



Basic Set Up : Choice of Coordinates

Around horizon we can choose a coordinate system {xµ} such
that the effect of higher derivative corrections are handled in a
derivative expansion⇒ ω`s ∼

√
α2 ∂µ � 1

The geometry must have a horizon⇒ a null hypersurface.

On the horizon H:
(a) define coordinate v ⇒ affine parameter along the null
generators ∂v ,

(b) along constant v slices, Σv : define the spatial coordinates xA .

⇒ {v , xA} are coordinates on H and {xA} are coordinates on Σv

Away from H : define coordinate r ⇒ affinely parametrized along
null geodesics ∂r piercing through the horizon at angle

(∂v , ∂r )

∣∣∣∣
H

= 1, (∂r , ∂A)

∣∣∣∣
H

= 0

Choose the origin of the r coordinate such that horizon is at
r = 0.



Basic Set Up : Choice of Coordinates

“r = 0” surface → Horizon 

 

∂
r
 - generator 

∂
v
 - generator 

∂
A
 - generator 

Schematics of Horizon coordinates



Basic Set Up : Choice of Metric
In our coordinates the metric metric will take the following form

ds2 = 2dvdr − f (r , v , xA)dv2 + 2kA(r , v , xA)dvdxA + hAB(r , v , xA)dxAdxB

such that f (r , v , xA)

∣∣∣∣
H

= kA(r , v , xA)

∣∣∣∣
H

= ∂r kA(r , v , xA)

∣∣∣∣
H

= 0

Note that any metric with a horizon could be expressed in the
above form

Our construction will be in terms of explicit derivatives of
f (r , v , xA), kA(r , v , xA) and hAB(r , v , xA)

Following notation would be useful

KAB =
1
2
∂v hAB

∣∣∣∣
H
, KAB =

1
2
∂r hAB

∣∣∣∣
H

hAB(r = 0, v , xA) is the induced metric on H



Gauss-Bonnet Theory

We consider Gauss-Bonnet theory :

I =

∫
dd x

√
−g
[
R + α2

(
R2 − 4RµνRµν + RµναβRµναβ

)]
We will add correction to Swald , and ρ and Θ can be written as

Stotal = SWald + Scor =

∫
Σv

dd−2x
√

h [ρeq + ρcor]

∂v Stotal =

∫
Σv

dd−2x
√

h [Θeq + Θcor]

Θeq =
1
√

h
∂v

(√
h ρeq

)
, Θcor =

1
√

h
∂v

(√
h ρcor

)

Finally we want to show : ∂v [Θeq + Θcor] ≤ 0

Condition on the correction term : Scor
equilibrium

= 0



Gauss-Bonnet Theory : Final Result
We consider Gauss-Bonnet theory with Wald entropy

I =

∫
dd x

√
−g
[
R + α2

(
R2 − 4RµνRµν + RµναβRµναβ

)]
SWald =

∫
Σv

dd−2x
√

h (1 + 2 α2R︸ ︷︷ ︸
(=ρeq )

)

We add the correction

Scor =

∫
Σv

dd−2x
√

h ρcor , ρcor = α2
2

∞∑
n=0

κn α
n
2 ∂

n
v
(
h

2(0)

)A
B
∂n

v
(
h

2(0)

)B
A

where
(
h

2(0)

)A
B

= δ
AA1A2
BB1B2

KB1
A1
KB2

A2

We showed that

∂v [Θeq + Θcor] ≤ 0, ⇒ An = 2κn −
κ2

n−1

An−2

for n = −2,−1, 0, · · · , and κ−2 = − 1/2 , κ0 = −1 , κ−1 = −2



Gauss-Bonnet Theory : Details of proof

We consider Gauss-Bonnet theory with Wald entropy

I =

∫
dd x

√
−g
[
R + α2

(
R2 − 4RµνRµν + RµναβRµναβ

)]
SWald =

∫
Σv

dd−2x
√

h (1 + 2 α2R︸ ︷︷ ︸
(=ρeq )

), and Θeq =
1
√

h
∂v

(√
h ρeq

)

Next We compute

∂v Θeq = Term 1 + Term 2 + Term 3 + Term 4 + Term 5

Term 1 = −Tvv , Term 2 = −KABKAB , Term 3 = α2KA
BK

A′
B′MBB′

AA′

Term 4 = α2KA
B ∂v

[
δ

BA1A2
AB1B2

KB1
A1
KB2

A2

]
, Term 5 = ∇AYA

Note thatMBB′

AA′ is some specific four indexed and two derivative
tensor but no ∂v .



Gauss-Bonnet Theory : Details of proof

∂v Θeq = Term 1 + Term 2 + Term 3 + Term 4 + Term 5

Term 1 = −Tvv , Term 2 = −KABKAB , Term 3 = α2
2K

A
BK

A′
B′MBB′

AA′

Term 4 = α2
2K

A
B ∂v

[
δ

BA1A2
AB1B2

KB1
A1
KB2

A2

]
, Term 5 = ∇AYA

For Einstein theory (α = 0) 2-nd law is valid for wald entropy,

∂v Θeq = −Tvv −KABKAB ⇒ ∂v Θeq ≤ 0

Term 1 : Null Energy condition, and Term 2 ≤ 0 .

Term 3� Term 2 ⇒ Term 2 + Term 3 = KA
BK

A′
B′

[
δB

Aδ
B′
A′ + α2MBB′

AA′

]
Term 4 is naively small compared to Term 2 : But not always true

Term 2 + Term 4 = KA
B

[
KB

A + α2 ∂v

[
δ

BA1A2
AB1B2

KB1
A1
KB2

A2

]]
Term 4 & Term 2 ⇒ ∂v Θeq � 0

Need to add corrections to Wald entropy to handle it.



Gauss-Bonnet Theory : Details of proof
We decide the correction term

Stotal = SWald + Scor =

∫
Σv

dd−2x
√

h [ρeq + ρcor]

∂v Stotal =

∫
Σv

dd−2x
√

h [Θeq + Θcor]

∂v Θeq = −Tvv −KABKAB + α2KA
B ∂v HB

A +∇AYA + Negligible Terms

HB
A = δ

BA1A2
AB1B2

KB1
A1
KB2

A2

We add Scor to adjust ∂v Θcor such that

∂v Θcor =α4 γ ∂v HB
A ∂v HA

B

∂v [Θeq + Θcor] =− Tvv −
[
KA

B −
α2

2
∂v HA

B

]2
− α4

(
γ −

1
4

)
∂v HB

A ∂v HA
B

⇒ ∂v [Θeq+Θcor] ≤ 0 if γ ≤ 1/4

We need to impose : ∇AYA = ∇A∇AZAB = 0, which is true for
spherically symmetric evolution.



Extension to Lovelock Theories
We extended the analysis beyond Gauss-Bonnet to Lovelock
theories

I ≡
∫ √

−g
[
R + αm `2m−2

s Lm + Lmatter

]
Lm = δ

µ1ν1···µmνm
ρ1σ1···ρmσm Rρ1µ1

σ1ν1 · · ·R
ρm

µm
σm

νm

δ
µ1ν1···µmνm
ρ1σ1···ρmσm = determinant of (n × n) matrix whose (ij)-th element is δµi

νj

The correction we need to add

Stotal = SWald + Scor =

∫
Σv

dd−2x
√

h [ρeq + ρcor]

ρeq =
δLgrav

δRv v r r

∣∣∣∣
R→R

, Lgrav = R + αm `2m−2
s Lm

ρcor =
∞∑

n=0

κn

[
`ns∂

n
v

(
1
2

δ2Lgrav

δRA
A1

C1 v δRv
B1

D1 B

∣∣∣∣
R→R

KC1
A1
KD1

B1

)]2

The replacement rule : R → R ⇒ replace all the curvature
tensors of the spacetime with those intrinsic to Σv



Extension to Lovelock Theories

Stotal = SWald + Scor =

∫
Σv

dd−2x
√

h [ρeq + ρcor]

ρeq =
δLgrav

δRv v r r

∣∣∣∣
R→R

, Lgrav = R + αm `2m−2
s Lm

ρcor =
∞∑

n=0

κn

[
`ns∂

n
v

(
1
2

δ2Lgrav

δRA
A1

C1 v δRv
B1

D1 B

∣∣∣∣
R→R

KC1
A1
KD1

B1

)]2

∂v S ≥ 0 in any time evolution maintaining spherical symmetry
provided the κn’s satisfy the following recursive inequality

An = 2κn −
κ2

n−1

An−2
≤ 0 , for n = −2,−1, 0, · · · .

initial condition : κ−2 = −
1
2
, κ−1 = −2 .

The Obstruction term in the form of a toal derivative is still there.



Conclusions

For Lovelock theory we have been able to construct an Stotal
satisfying 2nd law, surely for spherical symmetry.

We need to understand the implications of the obstruction term.

Our construction is not unique, for example
Instead of ∂v Θ ≤ 0 we prove ∂v (Z Θ) ≤ 0 for some Z ≥ 0, and it
would do the job.
In fact this is how 2nd law is proved for f (R) theories.

Field redifinitions and foliation dependence.

The method is indirect : It is possible that ∂v Stotal not
monotonically decreasing. To obtain some constraints on the
structure of the higher derivative corrections we need a direct
method ∂v Stotal < 0

Possible connection with Holographic Entanglement entropy⇒
Myers, Dong, Camps analysis.



Thank You For Attention


