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Easy version of the information problem for large

AdS black holes

Large BHs in AdS can be in equilibrium with thermal radiation. Other
signals of information loss?
Late time behavior of two-point functions in the BH background
[Maldacena,’01]

I Gravity calculation: solve for Green’s function in black hole
background ! decays to zero for large t exponentially, set by lowest
quasinormal mode

I CFT calculation: calculate the thermal (or typical high energy state)
two-point function.
Late time average:
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assuming discrete spectrum (BH has finite entropy!). Typically of
order e�S .



Easy version of the information problem for large

AdS black holes

Questions:
I What happens after the two-point function hits ⇠ e�S?
I How to understand it from a bulk perspective?

Here we are mainly concerned with the first question.



Example: Sachdev-Ye-Kitaev model

I Model of N interacting Majorana fermions with quenched disorder
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are drawn from a Gaussian distribution with zero mean
and � = J /N3/2

I Maximally chaotic (Lyapunov exponent is maximal)
I Emergent reparametrization symmetry in the IR, with effective

action agreeing with that of AdS
2

-dilaton gravity for the breaking of
the symmetry

Strongly indicates that it describes some near extremal black hole



Example: Sachdev-Ye-Kitaev model

I 2pt-function
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I Model: spectral form factor (cancellation of phases is the important
phenomenon)
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I In SYK: early time behavior is governed by GR, late time by Random
matrix theory [Cotler+many authors, ’16]

2 4 6 8 10
Log(t)

10

100

1000

104

105

106

Fβ=1

0 2 4 6 8 10 12
Log(t)

1000

104

105

106

Fβ=1



Example: Sachdev-Ye-Kitaev model

I Do black holes really do this? Can we check the validity of the late
time prediction in a stringy top-down model?

I Is the dip-ramp phenomena a diagnostic for chaos?

A zeroth order step: D1D5 system at orbifold point



D1D5 CFT

IIB compactified on S1 ⇥ T 4 with S1 large compared to T 4

Gauge theory flows in the IR (near horizon) to a marginal deformation of
the symmetric orbifold
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Two charge black holes in D1D5

I Three charge black hole: Strominger-Vafa system
1

4

-BPS in 5d $ Extremal BTZ in AdS
3

$ RR-sector states with
only left moving excitations h

L

= P
I Two charge black holes: Ramond ground states
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Two point function in D1D5

Two point function [Balasubramanian,Kraus,Shigemori,’05]
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I Not protected quantity, turning on the coupling modifies it!
I Still, for times t . `

AdS

agrees with M = 0 BTZ result
I M = 0 implies ⇠ t�2 decay instead of quasinormal ringdown



Two point function in D1D5
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Two point function in D1D5 vs M = 0 BTZ
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Late time sporadic behaviour

I To analyse the late time sporadic behaviour, we need smoothing
I Recall: spectral form factor
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I RMT and SYK: smoothing by ensemble average
I In D1D5 (or other stringy models): no random variables

Try to smooth with a temporal kernel
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Time average vs ensemble average in RMT
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Time average vs ensemble average in RMT
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Time average vs ensemble average in RMT
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Time average vs ensemble average in RMT
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Time average vs ensemble average in RMT

Progressive average:
�t = at
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Ensemble average

I No a priori knowledge of time scale is required
I Even spacing on log-log plots...
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Time average vs ensemble average in RMT
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Time average vs ensemble average in RMT

Progressive average:
�t = at
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Time average vs ensemble average in RMT

Progressive average:
�t = at

Dependence on a?
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I Late times: does not matter at all (due to Gaussian nearest
neighbour spacing)

I Around the dip: pick a such that deviation from decay part is small,
while still good smoothing



Two point function in D1D5
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Two point function in D1D5
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Two point function in D1D5
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Two point function in D1D5
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I Qualitative agreement with RMT and SYK
I What about the scales involved?



Derivation of plateau height

Rewrite the regularized two point function as double Fourier series, to
facilitate its spectral decomposition (states propagating)
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Derivation of plateau height

Rewrite the regularized two point function as double Fourier series, to
facilitate its spectral decomposition (states propagating)
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Derivation of plateau height

Rewrite the regularized two point function as double Fourier series, to
facilitate its spectral decomposition (states propagating)
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Derivation of plateau height

Infinite time average

¯G = lim

T!1

1

T

Z
T

0

dt ˆG(�t, t) =
1

N

NX

n=1

N
n

1

n3

2n�2X

m=0

⇢
n

(m)

2 G
n

(2m+ 2)

The function G
n

(2m+ 2) vanishes unless 2m+ 2 is a multiple of n. This
requires that

m =

n

2

� 1, n� 1,
3n

2

� 1 n even

m = n� 1 n odd

Evaluating ⇢
n

(m) at these values yields the plateau height

¯G =

1

N

 
3

2

NX

n even

N
n

+

NX

n odd

N
n

!



Derivation of plateau height

Large N scaling

Consider ‘typical state’ (grand canonical average)

N
n

=

8

sinh ⌘n
; N ⇡ 2⇡2

⌘2
. (1)

¯G ⇡ 1

N

 1X

s=1

8

sinh(⌘s)
+

1

2

1X

s=1

8

sinh(2⌘s)

!
, (2)

When N is large, approximate with integrals:

¯G ⇡ 1

N
· 8
⌘

Z 1

�⌘

du

sinhu
+

1

N
· 1
2

· 8

2⌘

Z 1

2�⌘

du

sinhu

⇡ 5⌘

⇡2

log

✓
1

⌘

◆

⇠ logS

S
,

Contrast to an ergodic system with discrete spectrum, where e�cS is
expected.



Estimate the ramp
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Estimate the ramp
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Estimate the ramp
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Two point function in D1D5

Qualitative behaviour is similar but scales naturally differ from RMT

D1D5 RMT
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I Ramp is not linear but still seems to be parametrically long (persist
for N ! 1). Definition of the dip time is not straightforward.

I This is for a grand canonical ‘typical’ microstate. Variances among
random superpositions of RR ground states are entropy surpressed
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p
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[Balasubramanian,Czech,Hubeny,Larjo,Rangamani,Simon,’08]



Key questions

I Can we turn on the marginal coupling (at least perturbatively)?
Intuition: the plateau time is set by the smallest spacing in the
spectrum. At the orbifold point, there is no mixing between different
long string sectors leading to a large spacing. Interactions introduce
mixing, bringing down the spacing to e�S . The corresponding
plateau time is consistent with RMT. Do we get an RMT-curve at
finite coupling?

I Examined case: zero coupling, zero temperature (but large entropy).
Consistent with holographic regime of SYK 1 << �J << N .
Tractable question: what happens at zero coupling and finite
temperature? Do we still have a dip-ramp-plateau? Or is it really an
‘echo of chaos’?

I Bulk understanding of late time behaviour: orbifold D1�D5 is dual
to zero slope limit of string theory in the bulk, contains Vasiliev as a
subsector [Gaberdiel,Gopakumar,2014]. Can we understand the
ramp and plateau from a bulk higher spin perspective?



Questions?


