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Entanglement and Rényi entropy

We split the Hilbert space

H = HV ⊗H−V

Define a density matrix

ρV = tr−V |0〉〈0|, trV (ρV ) = 1.

The entanglement entropy

S (V ) = −tr (ρV log ρV ) .

Rényi entropy

Sn (V ) =
1

1− n
log trρnV ,

lim
n→1

Sn (V ) = S (V ) .

y

x
t

V-V

∂V

Figure: The entangling region
(V), its outside (-V), and the
“entangling surface” (∂V )
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Euclidean path integral approach (replica trick)

Sn =
1

1− n
log

(
Zn

(Z1)n

)
I Left: construct the

ground state
wave-function by
integrating from
t = −∞.

I Right: identify
spacial regions to
obtain powers then
sew up to obtain
the trace.

t

x,y

t=0
V-V -V∂V ∂V

Figure: The “replica trick”: constructing
Zn using a multi-sheet path integral.
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Free fields

For free fields and n ∈ N there is an alternative to the
multi-sheet integral: use a field redefinition and defects

βk = e2πi k
n ,

{
k ∈ {0, · · · , n− 1} , bosons
k ∈

{
−n−1

2 , · · · , n−1
2

}
, fermions

n

Option 1

V V  V∂V ∂V

βk

βk

n fields with prescribed 
monodromies

Option 2

Path integral on 
a branched cover

V V  V∂V ∂V

n fields coupled to flat 
connections

Option 3

A μ

A μ

F   is 
non-zero 
here

μν
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Vortex type defect operator

We use co-dimension 2 vortex operators1

I supported on a submanifold γ.
I data given by the holonomy β of a

connection A.
I flux restricted to γ: F = β ? [γ].

F

A

γ
 μν

μ

linking 
loop

dl

They are interesting objects
I 2d twist and winding state operators are of this type.
I supersymmetric versions are available in 22,33,44,55

dimensions.
I duality transformation properties are known in some

cases.
1Witten 1988, Seiberg and Moore 1989
2Hosomoichi (2015) Okuda (2015)
3Kapustin, Willett, IY (2012), Drukker, Okuda, Passerini (2012)
4Gukov, Witten (2006)
5Bullimore and Kim (2014)
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Reinterpretation: Zn gauge theory

Consider the tensor product of n copies of the theory
I There is an Sn “replica symmetry”.
I The action is a sum before, but not after, the field

redefinition.
Gauge a Zn subgroup and introduce the monodromy around
∂V in replica space

M =


0 1 0 . . .
0 0 1 . . .
...

... 0
...

1 0 0 0

 .

I resides in the group: Mn = 1n.
I can be diagonalized to the βk using the field redefinition.
I implements the calculation for the n’th Rényi entropy.
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Lagrangian Zn gauge theory

Starting with n copies of the free theory, couple to a
connection A
1. Consider an associated Zn gauge theory with action

SBF =
in

2π

ˆ
F ∧B, (1)

I F = dA is a gauge field constrained to produce flat Zn

connections.
I B is a d− 2 form field that acts as a Lagrange multiplier.

2. Add co-dimension 2 “electric” operators which carry the
defect parameters

exp

(
ik

2π

˛
∂Σ
B

)
, k ∈ {1 . . . n− 1} .

3. Integrate out B to produce the right holonomy.
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SCFT Rényi entropy

In a CFT, and a spherical entangling surface, one may use a
(large) conformal transformation to calculate Sn as 6

I Partition function on a branched Sd (conical singularity)

ds2 = dθ2 + n2 sin2 θdτ2 + cos θdΩd−2, τ ∈ [0, 2π).

R(3d) = const + 2
n− 1

n

δ (θ)

θ
.

I Thermal partition function on hyperbolic space
(Hd−1 × S1) with singularity at the boundary.

We must decide how to treat the singularity in order to do
QFT
1. Excise: cut and impose boundary conditions.
2. Smooth: we make choices based on supersymmetry.

6Casini, Huerta, Myers (2011)
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Coupling to supergravity - 3d example

The easy way to supersymmetric actions on a curved
3-manifold: couple to rigid N = 2 supergravity

Hµ gµν H ≡ i
2 ? dB Vµ ≡ −i (?dC)µ A

(R)
µ fermions

The multiplet Rµ can be used when the theory has a
conserved U (1)R R-charge.

R-multiplet Rµ Tµν J (Z) j
(Z)
µ j

(R)
µ fermions

The linearized coupling is

L = Tµνg
µν − j(R)

µ

(
A(R)µ − 3

2
V µ

)
+ ij(Z)

µ Cµ − J (Z)H.

To preserve a supercharge7(
∇µ ± iA(R)

µ

)
ζ = −1

2
Hγµζ − iVµζ −

1

2
εµνρV

νγρζ

7Closset, Dumitrescu, Festuccia, Komargodski (2012)
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A smooth supersymmetric background

There is still a singularity, but now its supersymmetric. We
introduce a supersymmetry preserving resolution

ds2 =
1

fε (θ)
dθ2 + n2 sin2 θdτ2 + cos2 θdφ2,

fε (θ) =

{
1
n2 θ → 0

1 ε < θ ≤ π
2

H = −i
√
fε (θ), A(R) =

1

2

(
n
√
fε (θ)− 1

)
dτ, V = 0

Everything is now smooth, but still preserves the same Killing
spinors! We define a partition function as

Zsingular space (n) ≡ lim
ε→0

Zresolved background (n) .

If n = 1 everything is already smooth and

Zsingular space (1) = ZS3 .



Supersymmetric
Rényi Entropy
and Defect
Operators

Itamar Yaakov
University of
Tokyo - Kavli

IPMU

Introduction

Supersymmetric
Rényi entropy

Supersymmetric
Rényi entropy
from defects

Conclusion

The supersymmetric Rényi entropy (SRE)

Define the supersymmetric Rényi entropy8

Ssusy
n ≡ 1

1− n
<
[
log

(
Zsingular space (n)

(ZSd)n

)]
I Possible non-universal terms are removed by taking the

real part.9

I We concentrate on the finite part, which is universal for
the theories we consider.

I The higher dimensional analogues were defined in
I 4d N = 2 gauge theories: 10

I 5d N =1 gauge theories.11

I Exact calculation by localization reduces the result to a
matrix model (next section).

8Nishioka and IY (2013)
9Closset, Dumitrescu, Festuccia, Komargodski, Seiberg (2012)

10Huang and Zhou (2014), Crossley, Dyer, Sonner (2014)
11Alday, Richmond, Sparks (2014), Hama, Nishioka, Ugajin (2014)
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Squashed sphere and behavior near n = 1

As it turns out, supersymmetric Rényi entropy is related to the
partition function on the squashed sphere (Sdb )

Ssusy
n =

1

1− n
<

[
log

(
ZSd

b
(b =

√
n)

(ZSd)n

)]
.

I The relationship is due to deformation invariance.
The expansion in 3d around n = 1

Ssusy
n = SEntanglement +

π2

16
τrr (n− 1) +O

(
(n− 1)2

)
,

where τrr appears in flat space CFT correlators12

〈Tµν (x)Tρσ (0)〉 = − τrr
64π2

(
δµν∂

2 − ∂µ∂ν
) (
δρσ∂

2 − ∂ρ∂σ
) 1

x2

+ ...

12Closset, Dumitrescu, Festuccia, Komargodski (2012)
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Supersymmetric vortex operators -3d example

The 3d N = 2 1/2 BPS Wilson loop

exp
(
iq

˛
γ
(A − iσd`)

)
has an associated supersymmetric vortex loop, given by the
background

F = dA = 2πqδγ , ?D = −2πiqδγ ∧ d`

which solves the BPS equation on S3(
−iγµ (?F )µ +D

)
ε = 0.

F

A

γ
 μν

μ

linking 
loop

dl

They are SL (2,Z) buddies!
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Supersymmetric BF couplings - 5d example

A vector multiplet gauging a flavor symmetry

{Aµ, σ, YIJ , fermions} ,

couples to a 3−form multiplet{
Bµνρ, N, L

IJ , fermions
}
,

using a supersymmetric BF term

S5d BF =
in

2π

ˆ
S5

(
1

4
B ∧ FA −

√
g

1

2
σN +

√
gLIJYIJ + fermions

)
,

and we introduce a supersymmetric Wilson volume operator
using some fixed KIJ

W (k) = exp

(
ik

˛
S3

[
B + iKIJLIJ

])
.
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The basics of localization

Deformation
I Identify an appropriate conserved supercharge Q.
I Choose V such that {Q,V } is a positive semi-definite

functional and Q2V = 0.
I Path integral deformed by total Q variation
S → S + t{Q,V } is independent of t.

I Add Q closed operators (Wilson loops, defect operators).

Localization
I Take the limit t→∞.
I The measure e−S is very small for {Q,V } 6= 0.
I The semi-classical approximation becomes exact, but

there may be many moduli (saddle points) to sum over.
I Exact answer: integrate the classical action and a one

loop contribution over the moduli space.
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Computing SRE with localization

Partition function on n-branched or b =
√
n squashed sphere13

Zsusy
(n) =

√
n

|W |

ˆ
dσ︸ ︷︷ ︸

Coulomb moduli

en
∑

i ci(κ,gYM)Tr(σi)︸ ︷︷ ︸
classical

fixed∏
points

Zpert (n, σ,m)︸ ︷︷ ︸
Γr functions

∑
partitions ~Y

Z~Y (τ/τ̄ , κ, n, σ,m)

︸ ︷︷ ︸
Nekrasov instanton partition function


︸ ︷︷ ︸

holomorphic block

I Parameters: real masses m, Chern-Simons κ and
holomorphic gauge couplings τ .

13Hama and Hosomichi (2012,2013), Källén and Zabzine (2012),
Imamura (2012), Pasquetti (2016)
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Defects on the round sphere with localization

Couple the theory on the round sphere Zsusy
(1) to defects using

the vector multiplet of the Zn theory
I Additional scalar moduli σV and N .
I σV couples like a dynamical real mass term.

Making the extra multiplets dynamical addsˆ
dσV dN ·

The BF term and the “electric” Wilson operator localize to

e−SBF → e2πinσV N , W (k)→ e2πkN ,

Integrating out both multiplets yields an imaginary massˆ
dσV Z

susy
(1) (σV . . .)

ˆ
dN e2πinσV Ne2πkN

→
ˆ
dσV Z

susy
(1) (σV . . .) δ

(
σV − i

k

n

)
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Example: 3d Mirror symmetry

IR duality exchanges U(1) N = 4 gauge theory with a single
charged flavor and a free twisted hypermultiplet (and U(1)J
with U(1)flavor and the FI term with the real mass)14

ZN=4
free twisted hyper =

1

coshπm

←−−−→η ↔ m ZN=4
U(1),Nf=1 =

ˆ
dσ

e2πiση

coshπσ
.

Duality exchanges Wilson loops and (flavor) defect operators15

WqZ
N=4
U(1),Nf=1 (η) =

ˆ
dλ
e2πiηλe2πqλ

2 cosh(πλ)

=
1

2 coshπ(η − iq)
= DqZ

N=4
free twisted hyper (η)

14Kapustin,Strassler (1999)
15Kapustin, Willett, IY (2012)
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What we aim to show

We wish to show that SRE can be calculated in two ways
1. The squashed sphere partition function of the original

theory Z(n).
2. The round sphere with n copies coupled to defects

Zround sphere with defects (n) ≡∑ ˆ
n moduli

[
δmoduli

n−1∏
k=0

Zclassical
(1) Zperturbative

(1) (k,moduli)

]
.

We need to show
I The n sets of moduli can be sewn up (using δmoduli) into

the original set. The fractionalization and sewing reflect
the boundary conditions applied to the non-free modes.

I The classical contributions of the copies add up.
I The defect deformed perturbative contributions magically

multiply to yield the original ones.
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Scalar moduli and classical contributions

The n scalar moduli σk are constant modes on the sphere, so
the boundary conditions simply imply

δscalar moduli =

n−1∏
k=0

δ (σk − σk+1) .

Classical contributions are of the form

ec(κ,gYM)Tr(σ2
k).

They simply collapse

ˆ n−1∏
k=0

[δ (σk − σk+1) dσk] e
∑

i ci(κ,gYM)Tr(σi
k)

→
ˆ
dσen

∑
i ci(κ,gYM)Tr(σi)
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Non-instanton perturbative contributions

One-loop contributions are built out of multiple Γ-functions

Γr (z, ~ω) ≡ exp [∂sζr (s, z, ~ω)]s=0 ,

ζr (s, z, ~ω) ≡
ˆ ∞

0

e−zt∏r
i=1 (1− e−ωit)

ts−1dt.

They satisfy a multiplication identity

n−1∏
k=0

Γr

(
z +

k

n
, ~ω

)
= Γr

(
z, ω1, . . . ωr−1,

ωr
n

)
.

I In the sphere partition functions z = im, with m a mass
or Coulomb branch parameter.

I The shift by k/n is an imaginary mass or, equivalently, a
coupling to a co-dimension 2 defect.
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The instanton partition function for SU (N)

The 4d and 5d calculations include
instanton/contact-instanton contributions

Zinst =
∑

~Y∈partitions

q|~Y|Z5d-CS
~Y,κ

(~a, ε1, ε2, β)Z~Y (~a, ~mf , ε1, ε2, β) ,

I The equivariant parameters ε1, ε2 are related to the
squashing parameter on the squashed S4,5 and hence to
n. β is the size of the 5d circle fiber, and can also be
related to n. β → 0 is the 4d limit.

I In the singular space limit one has to count the
instantons on a ramified covering.

We need to check
1. How do the partitions, which are moduli, fractionalize and

glue?
2. Do the fluctuations Z~Y satisfy multiplication identities?



Supersymmetric
Rényi Entropy
and Defect
Operators

Itamar Yaakov
University of
Tokyo - Kavli

IPMU

Introduction

Supersymmetric
Rényi entropy

Supersymmetric
Rényi entropy
from defects
Supersymmetric
defect
operators
Results from
localization
Equivalence

Conclusion

Instanton gluing I - Partitions

Yli Ylp

i

p

k=0

p

k=2

p

k=1

lhs: a partition in the full squashed/branched theory.
rhs: partitions in each of the decoupled n-copies.

We explicitly glue the instanton moduli back together.
I Every box has a well defined weight j under the

equivariant action and we decompose i = np+ k.
I The “gluing” of the moduli ~Y is related to orbifold

partitions.16

16Dijkgraaf and Sulkowski (2007)
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Instanton gluing II - third point in 5d calculation

5d calculation: contact-instantons localized at 3 points on
CP 2. At two of these we have β = 2π and the orbifold
partitions from the previous slide. On the third we have
β = 2πn (a larger circle fiber)

Zvector
~k

=

Nc∏
l,m

∏
s∈Yl

(
1− eiβ(`Ym (s)ε1−(aYl (s)+1)ε2+al−am)

)
∏
t∈Ym

(
1− eiβ(−(`Yl (t)+1)ε1+aYm (t)ε2+al−am)

)
,

It glues back together by decomposing the KK modes as
m = np+ k in

∞∏
m=−∞

(m+ a) = 1−e2πia,

n−1∏
k=0

(
1− e2πi(a+ k

n)
)

= 1−e2πina.
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Example: 5d hypermultiplet fluctuations

The fluctuation part of the instanton partition function for a
5d hypermultiplet

q ≡ eiβε2 , t ≡ e−iβε1 , Ql ≡ eiβal , Qmf
≡ eiβmf .

Z5d
hyper (q, a,mf , ε1, ε2) =

N∏
l=1

∞∏
j=1

(
Q−1
mf
Qlqt

−j ; q
)
∞(

Q−1
mfQlq

Ylj+1t−j ; q
)
∞
,

I (x, q)∞ ≡
∏∞
p=0 (1− xqp) is the q-Pochhammer symbol.

I a is the Coulomb branch modulus. On the sphere it is set
to iσ.

I mf is a “real mass”. It should be set to a specific value
for a CFT, with real part m0.
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Example: 5d hypermultiplet fluctuations

Adding some imaginary masses makes the squashed sphere
version look like the round sphere. These “masses” are the
defects. In addition, the k’th fluctuation determinant can only
see the k’th partition.

Z fund hyper
~Y

(
~a,m0

f ,
1

n
, 1, 2π

)
=

N∏
l=1

∞∏
j=1

(
Qlqt

− j−1
n ; q

)
∞(

Qlq
Ylj+1t−

j−1
n ; q

)
∞

=

n−1∏
k=0

 N∏
l=1

∞∏
j=1

(
Qlqt

− j−1
n ; q

)
∞(

Qlq
Ylj+1t−

j−1
n ; q

)
∞


j=np−k

=

n−1∏
k=0

 N∏
l=1

∞∏
p=1

(
Q−1
mf

(k)Qlqt
−(p−1); q

)
∞(

Q−1
mf (k)Qlq

Yl,np−k+1t−(p−1); q
)
∞


Q−1

mf
(k)≡t−

k
n
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Summary and questions

We proved that supersymmetric defects compute SRE by
showing

Zsquashed sphere
n = Zround sphere with defects

n

Some interesting directions to explore
I The examples in 3d and 4d show a strange feature

Zsusy
n = Zsusy

1/n

I Is there some direct physical interpretation of the “super
entanglement spectrum”? is it computable? Does it
represent the spectrum of a real Hamiltonian?

I Is there a computable analogue for 4d N = 1?
I What can one say about the holographic dual of the

defect computation?
I Can we use some generalizations of the discrete gauge

theory?
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Thank you
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