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Wilson-Fisher theory

CFT(conformal field theory)

D>2
recently developing rapidly
[Rattazzi, Rychkov, Tonni, Vichi 08], …



D=2 CFT with Boundary

has rich structure and useful

(eg. [Cardy])

(eg. D-brane [Polchinski])



Generalization

D=2

Boundary

D>2

Defect
with newly developed 
technique

Today’s talk



l Critical phenomena

l UV complete QFT

l Worldsheet of string theory

l AdS/CFT correspondence

Fixed point

Renormalized 
trajectory

solid

gas

liquid

T
P

Motivation to study CFT
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Defect: 1. generalization of boundary
２dim Boundary CFT

(open string)

Generalization
We also have a theory here

１dim defect in 2 dim

D dim defect in d dim
generalization



Defect: 2. generalization of Wilson line

Wilson line: Introduce a test particle which 
couples to the gauge field electorically.

Introduce external test object

generalization



Example of defect: “Twist defect”

codimension 2, monodromy

Eg. : 3dim  Ising
spin operator

defect

��

�

�

cf ２dim orbifold CFT 
vertex operators in 
the twisted sector.

[Billo, Caselle, Gaiotto, Gliozzi, Meineri], [Gaiotto, Mazac, Paulos]



Relation to entanglement Renyi entropy defect

defectCFT global symmetry G

� 2 G
�

��
monodromy

a specialization

entanglement 
Renyi entropy 

defect

our defect

another 
specialization



Summary of the result

Obtained the scaling dimensions 
in Rychkov-Tanʼ s framework.

4-ε dim O(N) model  Wilson-Fisher(WF) fixed point
（CFT）

Twist defect

local operators on the defect
�s

Analogue of spectrum of open string



Plan

lReview of Rychkov-Tan

lTwist defect

lDiscussion



ε-expansion by
Rychkov-Tan



Theory
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Theory

WF

free

d dimensions
43 4-ε

In 4-εdim, WF is close to free

Perturbation is good
Old ε-expansion [Wilson, Fisher]



Theory

WF

free

d dimensions43 4-ε

RT: Do not want to use Lagrangian as 
far as possible.

Conformal symmetry＋α
What you should take



Axiom I:
Theory at WF fixed point is CFT

Put a few axioms and find 
the consequence of them.

We will use conformal symmetry

Strategy:



Axiom II
In ε→０
４−εdim WF CFT → free

+α  characterize WF CFT

Free CFT also satisfy this axiom.
We need more characterization.



notation

In ε→０
local operator in WFVn(x)
Vn(x) ! �

n(x)
（They exists from Axiom II）

Axiom III a constant �

⇤V1 = �V3

To distinguish WF theory from free theory



Idea

Vn+1(x)Vn(0) = · · · + (V1(0) + V3(0) + · · · ) + · · ·

1
�
⇤V1(0)

�n+1,�n ,�1Determined by

free inε→０
�

n+1(x)�n(0) = · · · + (�(0) + �

3(0) + · · · ) + · · ·

Calculated by Wickʼs theorem

Compare

�n+1,�n ,�1
Relation between



Results

�n = n � n
�

2 +
1
6n(n � 1)� +O(�2), n = 2, 3, 4, . . .

�1 = 1 � �

2 +
�2

108 +O(�
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scaling dimension of �n Vn



Twist defect



bulk-defect OPE

Oa(x) =’
Oi (0)

Oa(x) =
’
i
Cai (x)Oi (0)

Local operators on the defect

[Cardy], [McAvity, Osborn]



�

�

r1

r2

�1

�2

�1

�2
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information on the operators on the defect.
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4 dim free theory

h�(x1)�(x2)idefect

h�(x1)�(x2)idefect =
’

s 2Z+1/2
G0(x1,x2, s)

cf bulk-to-bulk 
propagator in AdS

[Gaiotto, Mazac, Paulos]
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Read the information of local operators 
on the defect
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local operators on the defect
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scaling dimensions
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How about WF CFT？

local operators on the defect
�s (�)

scaling dimensions

s 2 Z + 1/2

|s | + 1

exist



�

3(x) = · · · � 3
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Employ Rychkov-Tanʼs framework.

４dim free CFT bulk-defect OPE



4-εdim WF theoy,  bulk-defect OPE

Axiom II For an arbitrary operator Ofree in the 4-dimensional free theory (on the defect)

there is an operator OWF in the WF theory (on the defect) such that

lim
✏!0

OWF = Ofree.

Axiom II implies that there exists a local operator Vn in the WF theory which satisfies

lim✏!0 Vn = 'n. Axiom II also implies the existence of the counterpart of  s in the WF

theory. We use the same notation  s for the WF theory and the 4-dimensional free theory.

The third axiom states the relation between V1 and V3.

Axiom III V3 is not a primary operator but a descendant of V1 i.e.

⇤V1 = ↵V3,

where ↵ is a constant and ⇤ is the Laplacian.

We need the following two facts obtained in [1] starting from the axioms. The constant
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After the above preparation, the scaling dimensions �s of  s are obtained as follows.

Axiom I implies the existence of the bulk-defect OPE. The bulk-defect OPE of V1(x) contains

the leading spin s term, which is fixed by the scale symmetry, as

V1(x) = · · ·+ C1s
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By comparing (5) and (1) we obtain lim✏!0 C1s = 1. Similarly by comparing (6) and (2) we
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Compare this inε→0 with free CFT
�s



Result

※Agree with Feynman diagrammatic calculation
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[Gaiotto, Mazac, Paulos]



O(N) model
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※Agree with Feynman diagrammatic calculation
[SY, work in progress]



Summary of the result

Obtained the scaling dimensions 
in Rychkov-Tanʼ s framework.

4-ε dim O(N) model  Wilson-Fisher(WF) fixed point
（CFT）

Twist defect

local operators on the defect
�s



Prospects: validity of various methods

l Large N
l Numerical bootstrap
l Monte Carlo
l Large s ?
l Experiments ?

Study O(N) model by



Is the defect CFT a miniature of AdS/CFT?

AdSd�1 ⇥ S1flat space + defect

Weyl transf

×

Same as AdS/CFT correspondence

 s 's Each KK mode
Local operator 
on the defect

In the large N limit �s =
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