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-

AdS/CFT or more generally holography explicitly realizes
the geometrization of dynamaics in CFT’s

{

Tensor networks uses quantum entanglement to represents
the geometrization of quantum states in many body system
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Quantum States
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Tensor Network : An efficient variational ansatz for the
ground state wave functions in quantum many body systems

ML

i
A Tensor Network diagram = _-:Q.' ’..;
A many-body wave-fn .‘. ‘.;’.
220,88

[ PP

A network of tensors that geometrizes
quantum entanglement

Requirement : A good ansatz should reproduce the correct
quantum entanglement of the ground state wave-fn




(" Exponential parameters ==> inefficient )
Generic States :

S1 \I’ SN
52

|\I]>: Z \1151,'“,8N|817"' 35N> 53
\_ isn} _
( . , =1 x )

Polynomial parameters ==> efficient | _
MPS : v J |
[DMRG: White 92,...,
s T; (5) Rommer-Ostlund 95,..]
S J ’
@) =D Tr[T(s1)T(s2) - lsr, 52, -) SUsy by |
S
\ {5} _/
4 , . )
[ Polynomial parameters ==> efﬁ01ent]
MERA :
Vidal 05
& type of tensors ==> |v) = | |
- J
@ )
Examples
- Gapped systems
Matrix Product State(MPS), Density, Matrix Renormalization Group(DMRG)
- Critical or gapped systems
Multi-scale Entanglement Renormalization Anzatz(MERA) )
~ )

Effective variational ansatz for ground state wave-fn :

&Tensor Networks that Optimizes the energy (V|H|V) )




Coarse-graining

- (Dis-) Entangler
Add (Remove) Entanglement
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Multiscale Entanglement Renormalization Ansatz (MERA)
- _J
4 IR (Less Entangled) )
U = —0Q A
u =0
u T
L UV (More Entangled) y
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-2 kindsof Tensors: k[ ,
- Isometry 7 N g =0
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Multiscale Entanglement Renormalization Ansatz (M]

TRA)

For CFT ground states,

a good

™)

\_
4 IR (Less Entangled)
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u =70
U £z
L UV (More Entangled)
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[MERA and time slice of AdS and Entanglement entropyj

( )
u = —0ox0 Z = € - G_U
=0 y
YA
L
~ log —
4 V: y y / / / €
zZ =€
u=>0
o A
U L :sizeof A
\_ ,
ds?® = du? + 6—2de S4 < min,, [#cuts] - logy o log —  AdS/OFT,
2 2
_ dz” +dx Holographic EE saturates this bound
— 22 \_ J
4 )

Hyperbolic space H»
(a time slice of AdSs)

AdS/CFT and tensor network

Significant similarity between geometric expression

of entanglement entropy in AdS/CFT and MERA.
N\

J
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We propose an alternative method using OPTIMIZATION of

EUCLIDEAN PATH-INTEGRALS for ground state wave-fn in CFT’s
. y




( An “OPTIMIZATION” of the Euclidean Path Integral

‘P(sﬁ(x))—/(ﬂ 11 Dsﬁ(xaz)) e~Sertt? [T o(p(e,2) - ¢(2))

r e<z<oo




( An “OPTIMIZATION” of the Euclidean Path Integral

--------------------------------------------------
------------------------
o -

-----------------------
-------------------------------------------------------
.

ooooo
----------------------------------------------

| L €e<z<oco 4 R T ceeeeeessessseseseausesenssnssnssanesanes
The ground state
wave-fn as a functional
of the UV boundary
value of the fields in V
the CFT v The CFT action
The measure of the
path-integration over
the fields in the CEFT

The delta,-fnvensuring
the boundary value for
the field at UV

( z=epsilon ) bdy.



( An “OPTIMIZATION” of the Euclidean Path Integral

¥(p() = | (

r e<z<oo

M T pete.: ) 5020 T] (e, ) — (o)

(b)
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Picture taken from
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! Evenbly-Vidal
arXiv:1502.05385

7=09°

Flat Space

Hyperbolic Space

(Euclidean path Integral can
be rewritten as MERA
network but we would like to
get rid of the possible lattice

artifact
\_




Tensor Network Renormalization (TNR) :
OPTIMIZATION of Tensor Networks

Euclidea
Time (-z)

Optimiz3tion of ‘{-:L’tt_
Path-integral ‘ '




[Path-Integra,l Wave-fn : it’s Discretization and Optimization}

- W)= [ [[P#x.0) e -5(p(x) -t =0))

—o0< 7<)
—0< X<00 Y,

‘P[go(x) P gp(x)] N

.
r

=0

Optimize
Time T
(hyperbolic
space)
T=-0° ,
—) High Momentum modes
Space X k>1/tis not important !

(Miyaji, Watanabe,
Takayanagi-2016)



( Another way of looking at it : Free scalar Field )

CFT,on C Free Scalar Sopp = /dxdz (0:0)% + (0:0)°]
z
20 - UV cutoff EOM & regular at z = o0 N
0 T - O(z,x) :/ dkcp(k)eim_lklz
= Vo) = [ ]I Doz ) 6(¢(20,2) = d(x)) - e 5ermO) [ g Son—sneu

> Sonaren=4r [ dx [ kP G(R)0(k)
0 — 00
:27r/

\ At fixed z,only modes with |k S1/=

dk|k|\Oo(k)p(—k
Fg(k)o(=F) contribute in the k-integral

(Miyaji, Watanabe,

e X
278 Takayanagi-2016)
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N<«——

(Position dependent cut-off)

=09

Flat Space

Hyperbolic Space
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For free fields ==> Introducing momentum

e‘lependent cut-off.
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For free fields ==> Introducing momentum
E'lependent cut-off.
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Our first Key Insight :

Rearrangement of the lattice-structure for the tensors in TN, can be
engineered by changing the background metric in the Euclidean Path
Integral, keeping the boundary condition for the fields at UV unchanged.
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Our first Key Insight :
Rearrangement of the lattice-structure for the tensors in TN, can be
engineered by changing the background metric in the Euclidean Path
kIntegr*al, keeping the boundary condition for the fields at UV unchanged. )
4 A

What we are still lacking :

kba,ckgroundl metric ..

What is the counterpart of the OPTIMIZATION algorithm in TN, that will
be the guiding principle to determine the changed (optimized)
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[ Computational complexity of a quantum state v)
= Min. no. of quantum gates required to

prepare it from a given “simple” reference

state

= Min. no. of tensors in the TN description .

N 10)10)10) - -

-
In the literature holographic formulas for computing
complexity is already proposed :

l) Complexity = Max. Volume in AdS (standford-Susskind ..)

&) Complexity = Gravity action in WDW patch of AdS Brown,
Roberts, Susskind, Myers ...)

-
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“PATH-INTEGRAL COMPLEXITY”
= We define the CFT analogue of the Complexity

lylg.,]
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Optimization of TN for a given state is equivalent to Minimizing the path-integral
complexity with respect to the back-ground metric.




4 )
“PATH-INTEGRAL COMPLEXITY” _ ] [ g ]
= We define the CFT analogue of the Complexity Vi&ab
\_ J
z=g _X
A A -
7=09°
Flat Space Hyperbolic Space
(" Our first Key Insight : )
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(" Our second Key Insight (This is our proposal) : )
Optimization of TN for a given state is equivalent to Minimizing the path-integral
\ complexity with respect to the back-ground metric. y

[ The final crucial element :
Do we have a good answer for how to define the path-integral
_complexity given one CFT ..
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FOR a 2D Euclidean CFT We have a very good answer ! )

In a 2D CFT with coordinates z (Euclidean time), x (space)
we can always write any metric in the conformally flat form

ds® = e**"? (dx* +dz*)

Remember, the unoptimized metric is flat space (with UV

cutoff given by “epsilon”)...

ds> = &7 - (dx* +dz%)

Yo D))

Space X

Optimize

=)

PE (o))

The OPTIMIZATION should
maintain the boundary condition

2 -2
& =¢




( FOR a 2D Euclidean CFT We have a very good answer ! )

! In a D CFT path-integral for the wave-fn of vacuum ==
r»background metric

[\PgV' [CD(x)D: [ TID®(r2)e 5 5(@(x) - D(x,2 = 0))

O<z<o0
—00< X<00

Due to Weyl invariance in CFT

v

P00 [(x)] = exp(I[d(x, 2)])- ¥ [@(x)] -
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I[4(x,2)]= LIOUVILLE ACTION
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MINIMIZE exp(I[#(x,z)]) w.rt. ¢(x,z) with e | _ =&~




( Minimize the Liouville action “= path-integral complexity” )

Wiy (0] = exp(1g(x, 2)])- i @)

\Pg=€2¢5b
I[¢]=Log = |=35,[¢]
Y,
| 8=0u |
SL = . dx dz (Ox9)* + (0,0)° + pe??
24w _ .
_ ¢ 2 ;2] _ _C p12=c0  CVIL
oL 241 dwdz [(@Cgb) T (0:0+ Vue?) } 127 /daz[\/ﬁe =" 2 127e
. 1 2 2
(:> Minimum: e*’ = - = ds’ = dx J;dz
Z z

Hyperbolic plane = Time slice of AdS_3



( Minimize the Liouville action “= path-integral complexity” )

( IR (Less Entangled) ~
u = —00 y
u=20
u X
9 UV (More Entangled) )

FSL _ c dr dz f@x )2 4 (az¢)2)+| \
24T _ )
/ \

k . . . , ko 1
Ki . no. ofisometries !! no. of unitaries ! . J

J Czech ‘17




( The Thermo-field double state in 2D CFT )

The path-integral for TFD state —%(E 0) <2< %E 29)

~

N
\I’[@l’@]:/ (H 11 Dw(x"z)) e-Serr@) T 6 (21,2) — ¢1(2)) (¢ (22, 2) — Fa(w))

< oc e’ Y,
<
Minimization of §,
Agr? 2
— €2¢(Z) _ %secZ (ﬂ)
_ B g Y,
y

[Time slice of BTZ blackhole == Einstein-Rosen bridge J




( Optimization of density matrices )

—————————————

- The optimization is done by
introducing the back-ground metric

A+ Optimization

ds® = e*?(dx® + dz*) €¢|Ai =1/e

* Optimization squeezes the
infinite background to finite size.

- Finally one identifies >+ along the boundaries 0> 4+

C
S, =2x dxdz|(0 @) +(0.¢4)" +e*’
The shape of the boundary is - 24r L [ ]
given by extremizing the C
boundary Liouville action +2X 127 Jox ds|K,-¢]

- Impose Neumann boundary condition => The extrinsic curvature K =0
e¢K:n“8a¢+KO:0 % 4 22 =1

The solution is :=> The half circle. => The Entanglement Wedge
for gravity dual of density matrix



(Enta,nglement Entropy from the opti ization‘?)

—————————————

« We should consider the standard n- A(+ Optimization i @ E
sheeted geometry with the two end L =1 m !
points of the slit having conical deficit A- | @ |
angle: o) 1) L_Iqer:t_if_v _____ :

A+ Deficit angle

* After the optimization this deformation A-
is equivalent to changing @ nt/ 2
the boundary condition

S™[4] = j dxdz|(0 4)" +(0.¢)° +e2¢]+— [ ds|K o+ p1,e”

K+ pp=e%(n a0a¢+Ko)+uB=0
K:T‘-(n_l)a ,LLB:/]T(l_’rO

- The Entanglement Entropy is evaluated as

[
Sa=—0, acc) d86¢+C'LLB ds e? :E/ dse¢zflog—
127 Jos, 127 Jos 6 Jos, 3 Ce




[ One-dimensional system ... }

- Another interesting application is the one dimensional case with the metric

( )

ds® = e°®dr?
L] |

U, oo (@(@) = 190, 1(3(2), Sile]=N dr (0:0)> + pe?

\. J

- To stabilize the optimization procedure for AdS-2/CFT-1, one
needs to add the conformal symmetry breaking Schwarzian
derivative term, which is explicitly realized in the SYK model.

« The end result is again time slice of 2-dim AdS



{ Excited state in 2D - CFT's ]

- a primary operator O, with conformal dimension = h, is inserted at the
origin of a disk .. _ 3
& O(w,w) x e 2o U, —e2s5,,(P) eSL . g7 2he(0) U, =6., (D). }

- We are considering a 2-D CFT defined on the disk, and the EOM looks like

. The solution ig => €*? = 4 a” |w|=1
p [wPAO (1 = Jwf?)?

« Compare with time slice of 3D - AdS

and matches when the back-reaction H-

is small \

a— /120

C
h < c




{ Excited state in 2D - CFT's ]

- a primary operator O, with conformal dimension = h, is inserted at the
origin of a disk .. _ 3
& O(w,w) x e 2o U, —e2s5,,(P) eSL . g7 2he(0) U, =6., (D). }

- We are considering a 2-D CFT defined on the disk, and the EOM looks like

- The solution is => ¢*¢ = ) o [w|=1
p [wPAO (1 = Jwf?)?
« Compare with time slice of 3D - AdS
and matches when the back-reaction H-
is small \
a1 240 Time
’ Optimize
h < c
o
Map
[Goto-TT 17]

| Local Excitation Fine grained metri




[I—Iigher dimensional CFT’s ? We don’t have a “very” good answer !g

We can not write the metric with just a Weyl mode !

For convenience we just focus on the Weyl form
ds* = e*?™?) (a’z2 + d)_c'z)

We argue that the path-integral complexity should be given by
4 = = )

(@-2¢  p
[6]= N[ dzdx®"| ® +e“2%(5 ¢V + e 2%(0 g +— 0
J[81=N| _ (0.¢) 00+ ey
" @24 - )
+2N| dx| =< Ko | Hs jus ] JYaC ~ DR |
v d-D)d-2) d-1 _ 167G,
- y

Suchthat  lim[/,[#]-1,[0]]=5,[¢]-S,[0]
We then show that
1) time slice of AdS_(d+1) ==vacua of CFT
&) For a spherical round ball ==> HEE is reproduced ..
3) AdS BH deformation is also produced



Higher dimensional CFT’s ¢
Ewvaluation of path-integral complexity

r o] D
2d CFT (1) Poincare AdS3: C = .—.
127 ¢

(2) global AdS3: C = 5-[1—1}.
6 | ¢

cl1 x°
(3) BTZ(TFD):C = 5[;— 2,8}

3d CFT global Ads4: C = 4%N{%+%+log(zﬂ.
E E

4d CFT global AdS5: C = 2772N{i3+l—31.
3¢7 ¢ 12

. _J

An Universal divergence structure :

complexity = Volume law divergence + sub-leading terms
Holographic results : Myers et.al., Reynolds-Ross



[A connection to “Complexity = Action” Proposa,lj

Consider the following patch of pure AdS_(d+1):

\_

( X 4 )
ds’ = R~ di* +cos” t-e*  hdxdx”) | f—n—

—m/2 <t < 7/2 )

This patch precisely covers the WAW patch K patch
in the literature

When &> .h dx“dx” is the hyperbolic plane

We obtain

WD W

167zG
=(d—-2)-n,-1,[¢]+ (IR surface term).

d \
dy’ di]— g[R—2A]+ (bdy. term)




[ Ssummary j

s 1) We introduce the optimization of path integral in CFTs and
obtain the time slice of AdS

&) Provide a proposal for computational complexity for CFTSs :
path-integral complexity

3) The minimization of path-integral complexity : time slice of
AdS

_4) We provided generalizations to higher dim cases .. y
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