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the geometrization of dynamics in CFT’s 

Tensor networks uses quantum entanglement to represents 
the geometrization of quantum states in many body system  
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④ Tensor Network and Emergent Spacetime

A Tensor Network diagram = 
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Tensor networks

Multi-scale Entanglement Renormalization Anzatz(MERA)

Matrix Product State(MPS), Density, Matrix Renormalization Group(DMRG)

Efficient method to produce ground state of given 
Hamiltonian.
• Real space, variational method: Using Hamiltonian.

• No sign problem: No Monte-Carlo method unlike lattice 
gauge theory.

• Efficiency: Computable on usual computers

• Gapped systems

• Critical or gapped systems

Examples

Efficiency of Tensor Network Descriptions

Generic States : 

Exponential …

Polynomial !!

Efficient !!

# of Parameters

MPS : Tensors

MERA :

Tensors Polynomial !!
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MERA (Multiscale Entanglement Renormalization Ansatz):

⇒ An efficient variational ansatz for CFT ground states. 
[Vidal 05]

To increase entanglement in a CFT,  we add (dis)entanglers.
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Unitary transf.
between 2 spins

Ex. Matrix Product State (MPS) [DMRG: White 92,…, 
Rommer-Ostlund 95,..]
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MERA Network
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MERA  (Multi-scale Entanglement Renormalization Ansatz) network
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- Layer by layer RG transformation 

Lattice scale changes exponentially

Entanglement Renormalization
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AdS/CFT and tensor network 

⇥ log�

number of bonds of surface γ

Significant similarity between geometric expression 
of entanglement entropy in AdS/CFT and MERA.

SA =
Area(�)

4GN

Ryu-Takayanagi formula:  

Entanglement entropy is 
given by area of minimal 
surface γ devided by 
Newton constant.

MERA:  

Entanglement entropy is bounded 
by number of bond of minimal 
surface γ. This bound is often 
approximately saturated.

�

A A

�

SA 

[Evenbly, Vidal(2014)]
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Evidences :  
1) A real-space RG structure of MERA :: The extra radial 

direction and evolution in bulk AdS 
2) If the entanglement bound in MERA saturates :: it coincides 

with the HEE
Doubts :  
1) Is it possible to explore locality beyond the AdS scale .. 
2) Why do we need to have saturation of entanglement entropy 

..  
3) Is the full conformal symmetry structure realizable ? 
4)  Ultimately we want to go beyond the lattice formulation and 

see the AdS in true continuum sense ..

We propose an alternative method using OPTIMIZATION of 
EUCLIDEAN PATH-INTEGRALS for ground state wave-fn in CFT’s
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The ground state 
wave-fn as a functional 
of the UV boundary 
value of the fields in 
the CFT

The measure of the 
path-integration over 
the fields in the CFT

The CFT action

The delta-fn ensuring 
the boundary value for 
the field at UV 
( z=epsilon ) bdy.
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Euclidean path Integral can 
be rewritten as MERA 
network but we would like to 
get rid of the possible lattice 
artifact 

Another motivation: Tensor network renormalization
[Evenbly-Vidal 14, 15]

We can rewrite the Euclidean path-integral into a MERA 
tensor network.

Picture taken from
Evenbly-Vidal 
arXiv:1502.05385

In this talk, we would like to have a general argument 
which does not assume any particular tensor networks to 
avoid any lattice artifacts. 
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Optimization of Path-Integral

Tensor Network Renormalization
(TNR) = Optimization of TN

Optimization of 
Path-integral

Euclidean 
Time (-z)

Space (x)

Hyperbolic Space = Time slice of AdS3

ε
Lattice 
Constant

[Evenbly-Vidal 14, 15]
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⑤ Optimization of Path-Integral and AdS/CFT
[Miyaji-Watanabe-TT 2016 + work in progress]

How to find the ground state of a given quantum many-

body system ?

⇒（１）Variational Method： First constrain the possible 

quantum states and next minimize its energy.

Ex.  Look at behaviors of quantum entanglement 

(e.g.  Area law)  → The idea of tensor networks    

⇒（２）Path-integral： Path-integrate for a long time in 

Euclidean theory: 0lim ψψβ
β =−

∞→
He
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Tensor Network Renormalization (TNR) : 
OPTIMIZATION of Tensor Networks
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Discretized Path-integral and Its Optimization
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The idea:    Tensor Network of MERA (∃scale inv.)
= a time slice of AdS space 

Qualitative evidences

(i) Real space RG = radial evolution in AdS
→ something we usually expect in AdS/CFT.

(ii) The bound of EE in MERA:  
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Path-Integral Wave-fn : it’s Discretization and Optimization

(Miyaji, Watanabe, 
Takayanagi-2016)



Another way of looking at it : Free scalar FieldEuclidean Path-Integral for Ground State

CFT2 on 

EOM & regular at

Free Scalar

At fixed    ,only modes with
contribute in the    -integral

: UV cutoff
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(Miyaji, Watanabe, 
Takayanagi-2016)

AdS/CFT and tensor network 

⇥ log�

number of bonds of surface γ

Significant similarity between geometric expression 
of entanglement entropy in AdS/CFT and MERA.

SA =
Area(�)

4GN

Ryu-Takayanagi formula:  

Entanglement entropy is 
given by area of minimal 
surface γ devided by 
Newton constant.

MERA:  

Entanglement entropy is bounded 
by number of bond of minimal 
surface γ. This bound is often 
approximately saturated.

�

A A

�

SA 

[Evenbly, Vidal(2014)]
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Position dependent cut-off
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What we learn so far: 

In the language of Tensor networks  
==> Eliminating extra tensors in TN is 
creating most efficient TN  
==> The algorithm at work for this, is the 
“OPTIMIZATION” of TN for a given state. 

For free fields ==> Introducing momentum 
dependent cut-off.
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For free fields ==> Introducing momentum 
dependent cut-off.

Our first Key Insight :  

Rearrangement of the lattice-structure for the tensors in TN, can be 
engineered by changing the background  metric in the Euclidean Path 
Integral, keeping the boundary condition for the fields at UV unchanged.
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What we learn so far: 

In the language of Tensor networks  
==> Eliminating extra tensors in TN is 
creating most efficient TN  
==> The algorithm at work for this, is the 
“OPTIMIZATION” of TN for a given state. 

For free fields ==> Introducing momentum 
dependent cut-off.

Our first Key Insight :  

Rearrangement of the lattice-structure for the tensors in TN, can be 
engineered by changing the background  metric in the Euclidean Path 
Integral, keeping the boundary condition for the fields at UV unchanged.

What we are still lacking :  

What is the counterpart of the OPTIMIZATION algorithm in TN, that will 
be the guiding principle to determine the changed (optimized) 
background metric .. 



This takes us to the “COMPLEXITY” part of our story .. 
Recently an interesting question, that people are after : 
How to define complexity of a state in CFT’s ..  
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state  
= Min. no. of tensors in the TN description .



This takes us to the “COMPLEXITY” part of our story .. 
Recently an interesting question, that people are after : 
How to define complexity of a state in CFT’s ..  

Computational complexity of a quantum state  
= Min. no. of quantum gates required to 
prepare it from a given “simple” reference 
state  
= Min. no. of tensors in the TN description .

In the literature holographic formulas for computing 
complexity is already proposed :  

1) Complexity = Max. Volume in AdS (Standford-Susskind .. ) 
2) Complexity = Gravity action in WDW patch of AdS (Brown, 

Roberts, Susskind, Myers …)



“PATH-INTEGRAL COMPLEXITY”  
= We define the CFT analogue of the Complexity 

This motivates us to consider its QFT counterpart
We introduce  ``Path-integral Complexity’’ . 

Our guiding principle 2

・Lattice structure (= arrangement of tensors) in TN
Background metric gab in Euclid path-integral

・Optimization of TN for a state Ψ
Minimizing Path-integral Complexity 

w.r.t  the metric 
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Rearrangement of the lattice-structure for the tensors in TN, can be engineered by 
changing the background  metric in the Euclidean Path Integral, keeping the 
boundary condition for the fields at UV unchanged.
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Our first Key Insight :  

Rearrangement of the lattice-structure for the tensors in TN, can be engineered by 
changing the background  metric in the Euclidean Path Integral, keeping the 
boundary condition for the fields at UV unchanged.
Our second Key Insight (This is our proposal) :  

Optimization of TN for a given state is equivalent to Minimizing the path-integral 
complexity with respect to the back-ground metric. 
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Our first Key Insight :  

Rearrangement of the lattice-structure for the tensors in TN, can be engineered by 
changing the background  metric in the Euclidean Path Integral, keeping the 
boundary condition for the fields at UV unchanged.
Our second Key Insight (This is our proposal) :  

Optimization of TN for a given state is equivalent to Minimizing the path-integral 
complexity with respect to the back-ground metric. 

The final crucial element :  
Do we have a good answer for how to define the path-integral 
complexity given one CFT ..



FOR a 2D Euclidean CFT We have a very good answer !!

In a 2D CFT with coordinates z (Euclidean time), x (space) 
we can always write any metric in the conformally flat form 

② AdS from Optimization of Path-Integrals
(2-1) Formulation

A Basic Rule:  Simplify a path-integral  s.t.
it produces the correct UV wave functional.

Consider 2D CFTs for simplicity.   ( z=- Euclidean time, x=space)

Deformation of discretizations in path-integral 
= Curved metric such that one cell (bit) = unit length.

Note: The original flat metric is given by (ε is UV cutoff):

).( 22),(22 dzdxeds zx += φ

).( 2222 dzdxds +⋅= −ε
Remember, the unoptimized metric is flat space (with UV 
cutoff given by “epsilon”)…
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Note: The original flat metric is given by (ε is UV cutoff):
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).( 2222 dzdxds +⋅= −εOptimization of Path-Integral

Tensor Network Renormalization
(TNR) = Optimization of TN

Optimization of 
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Time (-z)

Space (x)

Hyperbolic Space = Time slice of AdS3
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Constant

[Evenbly-Vidal 14, 15]
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In CFTs, owing to the Weyl invariance, we have 

Our Proposal (Optimization of Path-integral for CFTs):

Minimize                       w.r.t 
with the boundary condition    
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The wave functional for CFT vacuum is given by
gab(x,z): background metric

Original wf.Optimized wf.

The OPTIMIZATION should 
maintain the boundary condition
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Minimize the Liouville action “= path-integral complexity”
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Lattice scale changes exponentially

Entanglement Renormalization

[Vidal 05, 06]

MERA Network

- Isometry 

MERA  (Multi-scale Entanglement Renormalization Ansatz) network

- 2 kinds of Tensors :

For CFT ground states, a good TN is ….

- (Dis-) Entangler

Coarse-graining

IR (Less Entangled)

UV (More Entangled)

Add (Remove) Entanglement

- Layer by layer RG transformation 

Lattice scale changes exponentially

Entanglement Renormalization

[Vidal 05, 06]

Multiscale Entanglement Renormalization Ansatz (MERA)

MERA Network

- Isometry 

MERA  (Multi-scale Entanglement Renormalization Ansatz) network

- 2 kinds of Tensors :

For CFT ground states, a good TN is ….

- (Dis-) Entangler

Coarse-graining

IR (Less Entangled)

UV (More Entangled)

Add (Remove) Entanglement

- Layer by layer RG transformation 

Lattice scale changes exponentially

Entanglement Renormalization

[Vidal 05, 06]

MERA Network

- Isometry 

MERA  (Multi-scale Entanglement Renormalization Ansatz) network

- 2 kinds of Tensors :

For CFT ground states, a good TN is ….

- (Dis-) Entangler

Coarse-graining

IR (Less Entangled)

UV (More Entangled)

Add (Remove) Entanglement

- Layer by layer RG transformation 

Lattice scale changes exponentially

Entanglement Renormalization

[Vidal 05, 06]

Multiscale Entanglement Renormalization Ansatz (MERA)

MERA Network

- Isometry 

MERA  (Multi-scale Entanglement Renormalization Ansatz) network

- 2 kinds of Tensors :

For CFT ground states, a good TN is ….

- (Dis-) Entangler

Coarse-graining

IR (Less Entangled)

UV (More Entangled)

Add (Remove) Entanglement

- Layer by layer RG transformation 

Lattice scale changes exponentially

Entanglement Renormalization

[Vidal 05, 06]

Czech ‘17



The TFD state at T=1/β is described as the path-integral 
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finite temperature BTZ case
The TFD state at T=1/β is described as the path-integral 

[ ]

  )
4

,()()
4

,()( ),(

)(),(

21
)(

4/4/

21

¸
¹
·

¨
©
§ −=Φ−Φ¸

¹
·

¨
©
§ =Φ−Φ⋅Φ=

ΦΦΨ

Φ−

∞<<∞−
<<−

∫ ∏ βδβδ
ββ

zxxzxxezxD

xx

CFTS

x
z

g

( ) ./2cos
14

    

 )],([ ofon Minimizati

22

2
)(2

βπβ
π

φ

φ

z
e

zxS

z

L

⋅=⇒

　　

-β/4 +β/4

CFT1 CFT2

)(1 xΦ )(2 xΦ

z
= Time slice of BTZ black hole.
(i.e. Einstein-Rosen Bridge）.

(2-3) Thermofield Double of 2D CFT

Optimization

.][φLSe∝

The TFD state at T=1/β is described as the path-integral 

[ ]

  )
4

,()()
4

,()( ),(

)(),(

21
)(

4/4/

21

¸
¹
·

¨
©
§ −=Φ−Φ¸

¹
·

¨
©
§ =Φ−Φ⋅Φ=

ΦΦΨ

Φ−

∞<<∞−
<<−

∫ ∏ βδβδ
ββ

zxxzxxezxD

xx

CFTS

x
z

g

( ) ./2cos
14

    

 )],([ ofon Minimizati

22

2
)(2

βπβ
π

φ

φ

z
e

zxS

z

L

⋅=⇒

　　

-β/4 +β/4

CFT1 CFT2

)(1 xΦ )(2 xΦ

z
= Time slice of BTZ black hole.
(i.e. Einstein-Rosen Bridge）.

(2-3) Thermofield Double of 2D CFT

Optimization

.][φLSe∝

The TFD state at T=1/β is described as the path-integral 

[ ]

  )
4

,()()
4

,()( ),(

)(),(

21
)(

4/4/

21

¸
¹
·

¨
©
§ −=Φ−Φ¸

¹
·

¨
©
§ =Φ−Φ⋅Φ=

ΦΦΨ

Φ−

∞<<∞−
<<−

∫ ∏ βδβδ
ββ

zxxzxxezxD

xx

CFTS

x
z

g

( ) ./2cos
14

    

 )],([ ofon Minimizati

22

2
)(2

βπβ
π

φ

φ

z
e

zxS

z

L

⋅=⇒

　　

-β/4 +β/4

CFT1 CFT2

)(1 xΦ )(2 xΦ

z
= Time slice of BTZ black hole.
(i.e. Einstein-Rosen Bridge）.

(2-3) Thermofield Double of 2D CFT

Optimization

.][φLSe∝

Time slice of BTZ blackhole == Einstein-Rosen bridge



• The optimization is done by 
introducing the back-ground metric  A-

Σ
Σ
+

-
Identify

Optimizationz
x
A+

A-
A+

Σ-

=

Deficit angle 
deformation π/2π/2-δA-

A+

ds2 = e2�(dx2 + dz2) e�
��
A±

= 1/✏

• Optimization squeezes the 
infinite background to finite size.

• Finally one identifies ⌃± along the boundaries @⌃±

• The shape of the boundary is 
given by extremizing the 
boundary Liouville action 

• Impose Neumann boundary condition => The extrinsic curvature K = 0   

e�K = na@a�+K0 = 0

• The solution is :=> The half circle. => The Entanglement Wedge 
for gravity dual of density matrix

x2 + z2 = l2

Optimization of density matrices ?
③ Entanglement Wedge and Entropy

(3-1) Entanglement Wedge from Optimization

Consider an optimization of  reduced density matrix         .
We decompose the geometry into two halves.
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Figure 6: The optimization of path-integral for a reduced density matrix. The

upper left picture is the definition of ⇢A in terms of the path-integral in flat space.

This is conformally mapped into a sphere with a open cut depicted in the lower left

picture. The upper right one is the one after the optimization and is equivalent to a

geometry which is obtained by pasting two identical entanglement wedges along the

geodesic (=the half circle) as shown in the lower right picture.

The optimization of each of ⌃± is done by minimizing the Liouville action with

boundary contributions. The boundary action in the Liouville theory [64] reads

SLb =
c

12⇡

Z

@⌃±

ds[K0�+ µBe
�], (4.2)

where K0 is the (trace of) extrinsic curvature of the boundary @⌃± in the flat space.

If we describe the boundary by x = f(z), then the extrinsic curvature in the flat

metric ds2 = dz2 + dx2, is given by K0 = �
f
00

(1+(f 0)2)3/2
. On the other hand, the final

term is the boundary Liouville potential. Since ⌃+ and ⌃� are pasted along the

boundary smoothly, we set µB = 0 for our ⇢A optimization.10

Now, to satisfy the equation of motion at the boundary �A, we impose the

Neumann boundary condition11 of �. This condition (when µB = 0) is explicitly

written as

(nx@x + nz@z)�+K0 = 0. (4.3)

where nx,z is the unit vector normal to the boundary in the flat space. Actually this

is simply expressed as K = 0, where K is the extrinsic curvature in the curved metric

(2.5). This fact can be shown as follows. Consider a boundary x = f(z) in the two

dimensional space defined by the metric ds2 = e2�(z,x)(dz2 + dx2). The out-going

normal unit vector Na is given by

N z = e��(z,x)nz =
�f 0(z)e��(z,x)

p
1 + f 0(z)2

, Nx = e��(z,x)nx =
e��(z,x)

p
1 + f 0(z)2

, (4.4)

10Non-zero µB leads to a jump of the extrinsic curvature which will be used later.
11On the cuts A± we imposed the Dirichlet boundary condition. The reason why we imposed the

Neumann one on �A is simply because the manifold is smoothly connected to the other side on �A.
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Σ-

=

Deficit angle 
deformation π/2π/2-δA-

A+

• We should consider the standard n-
sheeted geometry with the two end 
points of the slit having conical deficit 
angle : 2⇡(n � 1)

• After the optimization this 
is equivalent to changing 
the boundary condition 

K + µB = e��(na@a�+K0) + µB = 0
K = ⇡(n � 1), µB = ⇡(1 � n)

• The Entanglement Entropy is evaluated as 

SA = �@n

"
cµB

12⇡

Z

@⌃+

ds e� +
cµB

12⇡

Z

@⌃�

ds e�
#

n=1

=
c

6

Z

@⌃+

ds e� =
c

3
log

l

✏

Entanglement Entropy from the optimization? 

[ ] [ ].
3

)()(
6

][ 222)( ∫∫ Σ∂Σ
+++∂+∂= φφ µφ

π
φφ

π
φ eKds

c
edxdz

c
S Bzx
n
L

Replica
Method

=nAρ
)1( n−= πδ

. 
61

)( φeds
c

S
n

S
n

n
LA ∫ Σ∂
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=
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−= Reproduce 
the correct HEE！

)1( nB −= πµ

∂Σ

(3-2) Hol. Ent. Entropy from Optimization



• Another interesting application is the one dimensional case with the metric

 g⌧⌧=e2�('̃(x)) = eS1[�] · g⌧⌧=1('̃(x)), S1[�] = N

Z
d⌧

⇥
(@⌧�)

2 + µe�
⇤

ds2 = e2�d⌧2

• To stabilize the optimization procedure for AdS-2/CFT-1, one 
needs to add the conformal symmetry breaking Schwarzian 
derivative term, which is explicitly realized in the SYK model.

• The end result is again time slice of 2-dim AdS

ds2 = e2�d⌧2 =
d⌧2

⌧2

One-dimensional system …



• We are considering a 2-D CFT defined on the disk, and the EOM looks like 

Excited state in 2D - CFT’s
• a primary operator O, with conformal dimension = h, is inserted at the 

origin of a disk ..  
O(w, w̄) / e

�2h�
.  gab=e2��ab

('̃) ' eSL · e�2h�(0) · gab=�ab('̃).

|!| < 1 @w@w̄� � µ

4
e2� +

⇡

2
(1 � a)�2(w) = 0 a = 1 � 12h

c

• The solution is => e2� =
4

µ
· a2

|w|2(1�a)(1 � |w|2a)2

• Compare with time slice of 3D - AdS 
and matches when the back-reaction 
is small 

a =

r
1 � 24h

c

h ⌧ c

|w|=1

O H2
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O(w, w̄) / e

�2h�
.  gab=e2��ab

('̃) ' eSL · e�2h�(0) · gab=�ab('̃).

|!| < 1 @w@w̄� � µ

4
e2� +

⇡

2
(1 � a)�2(w) = 0 a = 1 � 12h

c

• The solution is => e2� =
4

µ
· a2

|w|2(1�a)(1 � |w|2a)2

• Compare with time slice of 3D - AdS 
and matches when the back-reaction 
is small 

a =

r
1 � 24h

c

h ⌧ c

|w|=1

O H2
Heuristic Summary

Time
Optimize

A fine graining is needed
⇒ The metric gets larger ! 

Local excitation
(energy source）

This provides the back-reaction 
mechanism as in general relativity !

Map
[Goto-TT 17]

Local Excitation Fine grained metric



Higher dimensional CFT’s ? We don’t have a “very” good answer !!

We can not  write the metric with just a Weyl mode !

For convenience we just focus on the Weyl form 

⑤ Higher Dimensional CFTs
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For simplicity, we focus on the optimization 
of Weyl rescaling mode: 
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We argue that the path-integral complexity should be given by
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We then show that  
1) time slice of AdS_(d+1) == vacua of CFT 
2) For a spherical round ball ==> HEE is reproduced ..  
3) AdS BH deformation is also produced



Higher dimensional CFT’s ?  
Evaluation of path-integral complexity Evaluations of Path-integral Complexity in various dim.

2d CFT    (1) Poincare AdS3:

(2) global AdS3:

(3)  BTZ(TFD):

3d CFT   global AdS4:

4d CFT   global AdS5:
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a purely field theoretic argument as is clear in two dimensional CFT case, where it

is related to the normalization of wave functional.

8.7 Relation to “Complexity = Action” Proposal

We have discussed in the previous subsection that, in [28, 29], it has been conjectured

that the holographic complexity is measured by the bulk action being integrated over

the WDW patch defined above including suitable boundary terms. Here we would

like to compare this quantity with our complexity functional. For simplicity, we set

RAdS = 1 and thus ⇤ = �
d(d�1)

2 below.

Consider the following class of d+ 1 dimensional space-time:

ds2 = �dt2 + cos2 t · e2�(x)hijdx
idxj, (8.50)

where t takes the range �⇡/2  t  ⇡/2 and i, j = 1, 2, · · ·, d. The pure AdSd+1

which is a solution to the Einstein equation from IWDW , is obtained when the metric

e2�(x)hijdxidxj coincides with a hyperbolic space Hd. For example, when d = 2, the

Einstein equation just leads to (@2
1 + @2

2)� = e2� i.e. the Liouville equation. Note

that in this pure AdSd+1 solution, the coordinate covered by (8.50) indeed represents

the WDW patch.15 Motivated by this we identify this space (8.50) with MWDW .

However, note that for generic choices of � and hij (8.50) does not represent the

WDW patch in the original definition in [28, 29]. They coincide only on-shell.

Now we would like to evaluate the gravity action (8.49) within the WDW patch,

integrating out the time t coordinate. Here we can ignore the contribution from the

boundary as the Gibbons-Hawking term of this boundary turns out to be vanishing.

We finally find that the final action is proportional to our complexity functional

I tot
d
[�, g] (8.2) with the normalization (8.3) up to surface terms at the AdS boundary

z = 0 due to partial integrations:

IWDW

d
= (d� 2) · nd · I

tot

d
[�, g] + (IR Surface Term), (8.51)

where the numerical constant nd is defined by

nd =

Z
⇡/2

�⇡/2

dt(cos t)d�2 =

p
⇡�

�
d�1
2

�

�
�
d

2

� . (8.52)

In the above computation, by introducing the Gibbons-Hawking term for the d di-

mensional boundary time like surface given by z = ✏, the surface terms on this surface

which are produced by the partial integrations of bulk action are all cancelled with

the Gibbons-Hawking term. Therefore in the surface terms in (8.51) is localized at

the IR boundary, which is at z = 1 and gives the vanishing contribution for the

Poincare AdS coordinate.
15In Euclidean signature obtained by t ! i⌧ , this leads to the hyperbolic slice of Hd+1 which is

precisely given by (3.19).
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A connection to “Complexity = Action” Proposal

Consider the following patch of pure AdS_(d+1) : 
A Connection to ``Complexity = Action’’ proposal

Consider a Pure AdSd+1 and Pick up the following patch:

This agrees with Wheeler-DeWitt patch 
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if                               is given by Hd.
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Our complexity
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Our complexity
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Our complexity

is the hyperbolic plane 
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Our complexity

We obtain .. 



Summary

1) We introduce the optimization of path integral in CFTs and 
obtain the time slice of AdS 

2) Provide a proposal for computational complexity for CFTs : 
path-integral complexity 

3) The minimization  of path-integral complexity : time slice of 
AdS 

4) We provided generalizations to higher dim cases .. 

In future : 1) Time - component of metric ..  
2) Time dependent cases ..  
3) Non-conformal CFTs ..  
4) More concrete higher-dim analysis .. 
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