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Excited Renyi entropy in holographic CFTs 



Motivation – Renyi entropy 

 Renyi entanglement entropy after a local 

quench 

  ∆𝑆𝐴
𝑛
𝑡 = 𝑆𝐴

𝑛
 |𝜓(𝑡)⟩ − 𝑆𝐴

𝑛
|0⟩  

 

 Where 

  𝜓(𝑡) = 𝑁𝑒−𝑖𝐻𝑡𝑒−𝜖𝐻𝑂(𝑥)|0⟩ 

 
→understanding… 

 

 ・the properties of QFTs (ex. chaotic or not) 

 

 ・the mechanism of AdS/CFT 

 



Motivation – known results 

Known results 

 Time dependence of EE in various CFTs 

RCFT 𝑐𝑜𝑛𝑠𝑡. 

Holographic CFT log 𝑡 

Orbifold irrational CFT loglog 𝑡 
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Moreover 

We have a very limited knowledge 

of REE in holographic CFTs!! 
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Motivation – known results 

Known results 
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? ? 
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We want to completely 
 understand the REE in holographic 

CFTs. 



Method – how to calculate REE 

 Roughly, excited Renyi entropy can be given by 

Δ𝑆𝐴
(𝑛)
=
1

1 − 𝑛
log 𝑧(𝑡) 4 ℎ𝜎𝑛 𝐹ℎ𝑂𝑛  ℎ𝑂𝑛
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All we need is the Vacuum Conformal Block 
     in holographic CFTs  

 The main tool is 

 Zamolodchikov recursion relation 
 

 



Method – recursion formula 

 The conformal block for ⟨𝑂𝐴 0 𝑂𝐴 𝑧 𝑂𝐵 1 𝑂𝐵 ∞ ⟩ 

 

𝐹ℎ𝐵 ℎ𝐵
ℎ𝐴ℎ𝐴 0 𝑧  

= 16𝑞 −
𝑐−1
24 𝑧
𝑐−1
24 1 − 𝑧

𝑐−1
24
−ℎ𝐴−ℎ𝐵𝜃3 𝑞

𝑐−1
2
−8 ℎ𝐴+ℎ𝐵  

× 𝐻ℎ𝐴,ℎ𝐵(𝑞) 
ℎ𝐴 

ℎ𝐴 

ℎ𝑩 

ℎ𝐵 

𝕀 
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 The conformal block for 𝑂𝐴 0 𝑂𝐴 𝑧 𝑂𝐵 1 𝑂𝐵 ∞  
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The function of 𝐻 𝑞  can be calculated recursively by 

 

 

 

where ℎ𝑚,𝑛 is a zero of the Kac determinant.   

𝐻 ℎ𝐴, ℎ𝐵, ℎ𝑝|𝑞 = 1 + 
𝑞𝑚𝑛𝑅𝑚,𝑛
ℎ𝑝 − ℎ𝑚,𝑛

𝐻 ℎ𝐴, ℎ𝐵 , ℎ𝑚,𝑛 +𝑚𝑛|𝑞

∞

𝑛=1
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Series Expansion 
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Method – recursion formula 

 𝑐𝑛 can be calculated recursively in the same way 

as 𝐻(𝑞). 

 In our case ℎ1 = ℎ2, ℎ3 = ℎ4, we can show that odd 

powers of 𝑞 don’t appear. 

 For any dynamical configuration, the 

corresponding 𝑞 satisfies 𝑞 < 1, so this 

expansion is a good approximation. 

𝐻ℎ𝐴,ℎ𝐵 𝑞 = 1 + 𝑐𝑛

∞

𝑛=1

𝑞2𝑛 



Method – recursion formula 

𝐻ℎ𝐴,ℎ𝐵 𝑞 = 1 + 𝑐𝑛

∞

𝑛=1

𝑞2𝑛 

We studied the 𝑛 dependence of |𝑐𝑛| by numerical 

calculation and found the fact: 

 There are only two patterns of the 𝑛 
dependence of |𝑐𝑛| for large 𝑛. 
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It’s natural to fit it to the ansatz; 

 

𝑐𝑛 = 𝑛
𝛼 exp 𝐴 𝑛𝛽 + 𝐵  
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𝑐

32
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if ℎ𝐴, ℎ𝐵 >
𝑐

32
, 

𝐴 = 0  
 ⇒ 𝑐𝑛 ~𝑛

𝛼 



Method – numerical results 

These blue 

surfaces come 

from the Heavy-

Light block. 
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This blue surface 

shows 

4 ℎ𝐴 + ℎ𝐵 −
𝑐 + 9
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Method – numerical results 

This red surface 

comes from the 

Heavy-Light block. 



Method – comparing to the HHLL block 

 Approximation at 𝑧 = 1 − 𝜖  (𝜖 ≪ 1) 

 𝑐𝑛

∞

𝑛=0

𝑞2𝑛 =  𝑛𝛼𝑒𝐴 𝑛𝑒2𝜋𝑖𝑛𝜏(𝑧)
∞

𝑛=0

 

≃ (log 𝜖)−2𝛼−
3
2 𝜖
−
𝐴2

8𝜋2 

On the other hand, the HHLL block leads to 

𝐻 𝑞 ≃ log 𝜖
𝑐−1
4
−4 ℎ𝐻+ℎ𝐿 𝜖

−ℎ𝐿 1− 1−
24
𝑐
ℎ𝐻  

 

 

Comparing these approximation forms leads to 



Method – summary 
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8
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3
1 −
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𝑐
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2 ℎ𝐴 + ℎ𝐵 −
𝑐 + 5
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1

2
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Comparing the 

approximation 

forms at  𝑞 = 𝑖 in 

the same way. 
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|𝑐𝑛|~𝑛
𝛼 exp 𝐴 𝑛𝛽  

We can’t explain these 

fits from the known 

results. 



Method – numerical results 

ℎ𝐴, ℎ𝐵 𝐬𝐢𝐠𝐧(𝒄𝒏) 

ℎ𝐴, ℎ𝐵 >
𝑐

32
     or     ℎ𝐴, ℎ𝐵 <

𝑐

32
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𝑐
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7

10
<
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<
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ℎ𝐴, ℎ𝐵 𝐬𝐢𝐠𝐧(𝒄𝒏) 

ℎ𝐴, ℎ𝐵 >
𝑐
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𝑐
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 + 

otherwise −1 𝑛 

This sign pattern is consistent with  

 

𝑐𝑛 = 
1

𝑛!

𝑐

2
1 −
32

𝑐
ℎ𝐴 1 −

32

𝑐
ℎ𝐵

𝑛

+ 𝑂 𝑐𝑛−1  

 

where 𝑛 ≪ 𝑐. (We don’t give a proof but checked it by 

Mathematica.) 

 

And our numerical results confirm that this sign pattern is 

saved for 𝑛 ≫ 𝑐. 



Result – Renyi entropy 

Δ𝑆𝐴
(𝑛)
=
1

1 − 𝑛
log 𝑧(𝑡) 4 ℎ𝜎𝑛 𝐹

ℎ𝑂𝑛  ℎ𝑂𝑛

ℎ𝜎𝑛ℎ𝜎𝑛 0 𝑧(𝑡)
2

 

Cation: 
 

If we consider the excited REE on the CFT with central 

charge 𝑐, then the CFT where the above block defined 

on has the central charge 𝑛𝑐. In the following, we use 𝑐 
as the later and we describe the former as 𝑐𝑜 (original 

central charge), in that 

𝑐 = 𝑛𝑐𝑜 
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The right figure shows the ℎ𝑂 dependence  along the 

blue line on the left. 

This plot is derived directly from the numerical 

conformal block provided by using the recursion 

formula.  
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For a heavy operator, the Renyi entropy in holographic CFTs is given 

by 
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𝑇ℎ𝑖𝑠 𝑑𝑎𝑠ℎ𝑒𝑑 𝑙𝑖𝑛𝑒 𝑖𝑠 
𝑐𝑜

6
 

As well as a heavy op., for a light op. the entanglement entropy 
in holographic CFTs is given by 

 

 
𝑐𝑜

6
log
𝑡

𝜖
 



Result – Renyi entropy 

  

ℎ𝜎𝑛 

𝑛ℎ𝑂 

𝑐

32
 

𝑐

32
 

𝑛𝑐𝑜
24(𝑛 − 1)

log
𝑡

𝜖
 

𝑐𝑜
12

𝑛 + 1

𝑛
log
𝑡

𝜖
 

2𝑛ℎ𝑂
𝑛 − 1
log
𝑡

𝜖
 

mixed 
mixed 

mixed 



Summary 

 We conjectured the formula for general 

conformal blocks in holographic CFTs 

 By using it, we evaluated the excited 

Renyi entropy for any operators. 

 We hope to prove our conjectures 

analytically.  

 It’s interesting to interpret the value 
𝑐

32
 

physically. 



Appendix 

The Renyi entropy after a local quench 

can be expressed by 

 

Δ𝑆𝐴
𝑛 =

1

1 − 𝑛
log
 ⟨𝑂𝑛𝑂𝑛𝜎𝑛𝜎 𝑛⟩

⟨𝑂𝑛𝑂𝑛⟩ ⟨𝜎𝑛𝜎 𝑛⟩
 

𝑶⊗𝒏(𝒊 𝝐 − 𝒊𝒕 − 𝒍) 

𝑶⊗𝒏(−𝒊 𝝐 + 𝒊𝒕 − 𝒍) 

𝝈𝒏(𝟎) 𝝈𝒏 (∞) 



Appendix 

The Renyi entropy after a local quench 

can be expressed by 

 

Δ𝑆𝐴
𝑛 =

1

1 − 𝑛
log
 ⟨𝑂𝑛𝑂𝑛𝜎𝑛𝜎 𝑛⟩

⟨𝑂𝑛𝑂𝑛⟩ ⟨𝜎𝑛𝜎 𝑛⟩
 

By conformal map, 

 
 ⟨𝑂𝑛𝑂𝑛𝜎𝑛𝜎 𝑛⟩

⟨𝑂𝑛𝑂𝑛⟩ ⟨𝜎𝑛𝜎 𝑛⟩
= 𝑧2ℎ𝜎𝑛

2
⟨𝑂𝑛(∞)𝑂𝑛(1)𝜎𝑛(𝑧)𝜎 𝑛(0)⟩ 



Appendix 

The cross ratio is given by 

 

𝑧 =
2𝑖𝜖

𝑙 − 𝑡 + 𝑖𝜖
, 𝑧 =

−2𝑖𝜖

𝑙 + 𝑡 − 𝑖𝜖
 

 

The time dependence of  

the holomorphic part 𝑧 

moves along the blue  

Line on the right figure.  



Appendix 

The cross ratio is given by 

 

𝑧 =
2𝑖𝜖

𝑙 − 𝑡 + 𝑖𝜖
, 𝑧 =

−2𝑖𝜖

𝑙 + 𝑡 − 𝑖𝜖
 

 

The time dependence of  

the holomorphic part 𝑧 

moves along the blue  

Line on the right figure.  

Pick up the singularity of 4-

pt. function  



Appendix 

If we describe the function 𝑓(𝑧) picking up the 

monodromy at 𝑧 = 1 as 𝑓𝑚𝑜𝑛𝑜(z), the excited Renyi 

entropy at late time can be re-expressed as 

 

Δ𝑆𝐴
(𝑛)
=
1

1 − 𝑛
log 𝑧2ℎ𝜎𝑛

2
𝑂𝑛 ∞ 𝑂𝑛 1 𝜎𝑛 𝑧 𝜎 𝑛 0  

→
1

1 − 𝑛
log 𝑧(𝑡) 4 ℎ𝜎𝑛 𝐹ℎ𝑂𝑛  ℎ𝑂𝑛

ℎ𝜎𝑛ℎ𝜎𝑛

𝑚𝑜𝑛𝑜
0 𝑧(𝑡)

2

 

 


