RENYT ENTROPY FOR LOCAL

QUENCHES

FROM NUMERICAL CONFORMAL BLOCK IN
2D CFTS

Yuya Kusuki (YITP)

Based on a paper to appear,
In a collaboration with
Tadashi Takayanagi



My talk

Excited Renyi entropy in holographic CFTs

Expression for General Conformal blocks

Completely understanding excited RE in large ¢ CFTs




Motivation - Renyi entropy

® Renyi entanglement entropy after a local
guench

ASSV(8) = STV (y()) — S (joy)

Where
[Y(t)) = Ne e~ H0(x)|0)

—understanding...

- the properties of QFTs (ex. chaotic or not)

- the mechanism of AdS/CFT
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Motivation - known results

Known RIS

We have a very limited knowledge

Holographic { - of REE in holographic CFTs!!

Orbifold irratiq

Moreover

RE (n = 2)

for light operators

EE(n - 1)
for heavy operators
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Motivation - know

We want to
understand the REE in holographic

Known RIS CFTs.
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Method — how to calculate REE

Roughly, excited Renyi entrory can be given by

1 Ronhon
AS[En) == mlOg(lZ(t)r”%n :h n(OlZ(t))| )

All we need is the

In holographic CFTs
The main tool is

Zamolodchikov recursion relation




Method - recursion formula

The conformal block for (0,(0)0,(2)0g5(1)0g(0))
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Method - recursion formula

The conformal block for (0,(0)04(z)05(1)0g(0))

h h
hBAh;(()lZ)
c—1 c—1
= (16q) 24z24 (1 — Z) 24 5 —ha- heg (q)__8(hA+hB)

The function of can be calculated recursively by

H(ha, hg, hylq) = 1+2h — K H(hg, hg, Ay + mniq)

mmn

where h,, , Is a zero of the Kac determinant.
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Method - recursion formula

¢, can be calculated recursivzly in the same way
as H(q).

In our case hy = h,, h; = h,, we can show that
don’t appear.

For any dynamical configuration, the
corresponding q satisfies , SO this
expansion is a good approximation.



Method - recursion formula

We studied the n dependence of |c,,| by humerical
calculation and found the fact:

There are only of the n
dependence of |c,,| for large n.



Method - numerical results
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Method - numerical 1 shows a linear
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Method - numerical results
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Method - numerical results

Cc
hg,hg > —
A»''B 32

otherwise exp(n®)

It's natural to fit it to the ansatz;

c, =n%exp(AnfP + B
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Method — numerical results
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Method — numerical results

This red surface
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Method - comparing to the HHLL block

Approximationatz=1—€ (e K 1)

z Cp q2n _ Z n eA\/_QZTL'lTLT(Z)

n=0 n=0
—2q-3 A?
~ (loge) °* 2 ¢ 8n?
On the other hand, the HHLL block leads to

24
H(q) 5 (log 6)%1_4(hH+hL)E—hL<1—\/1—ThH)

Comparing these approximation forms leads to



Method - summary

|c,,|~n“ exp(A nﬁ)

L2424
CA CA




M et h Od — suminary Comparing the

o approximation
|c,,|~n" exp (A forms at in

the same way.

148h
;B

C
12

\/7 . 48h
12 c A
\F\/ 24 jT Gl
w|= |[1——hy |1——hp ——hp
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c
hB<hA<3_2 n\/g\/1—?h3\/1—7%h,4—%hfl




M et h O d — Sumimary We explain these

fits from the known

|cn|~n“ exp(A results.

hohn > — 0
A7B 7 39

C

ha < 5= he > o n\/z
12

C
=Sy [j_h D P2,

C
SIS [j_h b2 2

1——nh
c

C C
Wy >— hp < —
4~ 3508 S35 ﬂ/i 1_§h3
12 C




Method — numerical results

c c
hAI hB > E or hA, hB < 5

otherwise

C




Method — numerical results

c c
hy, hg > 22 or hy,hg < 2

otherwise

This sign pattern is consistent with

C, = %E(l — hA) (1 — hB)] +0(c™"™ Y

where n « c. (We don’t give a proof but checked it by
Mathematica.)

And our numerical results confirm that this sign pattern is



Result - Renyi entropy

Eromen 0lz(e) )

AS™ = log (lz(t) 4hon |

1—n

Cation:

If we consider the excited REE on the CFT with central
charge , then the CFT where defined
on has the central charge . In the following, we use
as the later and we describe the former as

, In that
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conformal block provided by using the recursion
formula.
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Result - Renyi entropy

The right figure shows the n dependence along the
blue line on the left.

This plot is derived directly from the numerical
conformal block provided by using the recursion
formula.



Result - Renyi entropy

As well as a heavy op., for a op. the
In holographic CFTs is given by



Result - Renyi entropy




Summary

We conjectured the formula for
conformal blocks in holographic CFTs

By using it, we evaluated the excited
Renyi entropy for

We hope to prove our conjectures

t's interesting to interpret the value
ohysically.




Appendix

The Renyi entropy after a local quench
can be expressed by

| (0"0"0,,0,)

(n) _
A4 =158 10m0m) (0,0,)

g®"(i(e —it) = 1)

0,(0)
[

‘)@"(—i(e +it) — )



Appendix

The Renyi entropy after a local quench
can be expressed by

1 0"0"o,0
AS[gn) _ lOg ( n f>
1—n ~(0"O0™) (0,0,)
By conformal map,

(0™ 0"0,,5y,)

ooy oay = 172" (0" (@)0" (10 ()7 (0))




Appendix

The cross ratio Is given by

21€ —21€
I — :
[ —t+ie [+t —ie

The time dependence of
the holomorphic part z
moves along the blue
Line on the right figure.




Appendix

The cross ratio Is given by

21€ —21€
I — :
[ —t+ie [+t —ie

|
FFick up the singularity of 4-
pt. function

The time dependence of
the holomorphic part z
moves along the blue
Line on the right figure.




Appendix

If we describe the function f(z) picking up the
monodromy atz=1as f (2), the excited Renyi
entropy at late time can be re-expressed as

AS(™ = ——log(|z2on[*(07(0)0" (1) (2)5(0)))

1—n
)

Eronlon(0)2(8))

ﬁ

1—n

log (Iz(t)l“f’n



