SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

SYK model, Coadjoint orbits and Liouville bulk dual

Gautam Mandal

YITP, Kyoto University,

"Holography and Quantum Dynamics", 11 November 2017

w/ P. Nayak and S. Wadia (arXiv:1702.04266)
w/ A. Gaikwad, L. Joshi and S. Wadia (1712.....)
w/S. Das, P. Nayak, R. Poojary, N. Suryanarayana and S. Wadia (in progress)

SYK ●00000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
SYK mo	del				

1D stat mech model with Majorana fermions and disorder

Sachdev-Ye, Kitaev

$$\sum_{\tau} \left(\sum_{i} \psi_{i}(\tau) \psi_{i}(\tau + \mathbf{a}) + \sum_{i < j < k < l} J_{ijkl} \psi_{i}(\tau) \psi_{j}(\tau) \psi_{k}(\tau) \psi_{l}(\tau) \right)$$

$$\langle J_{ijkl} J_{ijkl}
angle \sim J^2/N^3$$

At large *N*, important observable is $G(\tau, \tau') = \sum_i \langle \psi_i(\tau) \psi_i(\tau') \rangle$ Schwinger-Dyson equations:

$$rac{1}{G(i\omega)} = i\omega - \Sigma(i\omega), \quad \Sigma(\tau, \tau') = J^2 G(\tau, \tau')^3$$

SYK literature: *Polchinski-Rosenhaus, Maldacena-Stanford, Gross-Rosenhaus, Stanford, Berkooz-P.Narayan-Rozali-Simon, Verlinde, Polchinski-Shenker-...* Variants (without disorder): *Gurau, Witten, Klebanov-Tarnopolsky*

At strong coupling, the SD equations exhibit reparametrization invariance under $\tau \rightarrow f(\tau)$ (Diff symmetry)

$$J^2 \int d\tau' G(\tau,\tau') G(\tau',\tau'')^3 = -\delta(\tau-\tau'') \tag{1}$$

where $G(\tau, \tau')$, behaves as a tensor of weight $\Delta = 1/4$:

$$oldsymbol{G}
ightarrow oldsymbol{G}^{f}: oldsymbol{G}^{f}(f(au_{1}),f(au_{2})) \left(f'(au_{1})f'(au_{2})
ight)^{\Delta} = oldsymbol{G}(au_{1}, au_{2})$$

$$\partial_{\epsilon} \mathbf{G}(\tau, \tau') = [\epsilon(\tau)\partial_{\tau} + \epsilon(\tau)\partial_{\tau'} + \Delta(\partial_{\tau}\epsilon + \partial_{\tau'}\epsilon)]\mathbf{G}$$

SYK ००●०००	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

Solution of (1):

$$G(\tau, \tau') = G_0(\tau - \tau'), \ G_0(\tau) \sim (J|\tau|)^{-1/2} \mathrm{sgn} \tau$$

spontaneously breaks Diff (except an SL(2) subgroup), leading to 'Goldstones' of Diff/SL(2):

$$G = G_0 + \delta_{SL2}G + \delta G_{||} + \delta G_{||}$$

 $\delta G_{||} = \delta_{\epsilon} G_0$

SYK 000●00	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
Explicit	breaking of	f Diff			

• The Goldstone modes have zero action! (contrast with $\int \partial_\mu \pi^2$ for pion physics).

SYK 000●00	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
Explicit	t breaking of	f Diff			

• The Goldstone modes have zero action! (contrast with $\int \partial_\mu \pi^2$ for pion physics).

• The partition function diverges. To get finite physics, we turn on small 1/J. This explicitly breaks Diff symmetry.

• The Goldstone modes have zero action! (contrast with $\int \partial_{\mu} \pi^2$ for pion physics).

• The partition function diverges. To get finite physics, we turn on small 1/J. This explicitly breaks Diff symmetry.

• $G_0 \rightarrow G_0 + O(1/J) \Rightarrow$ Goldstones now pick up a finite action (equivalent to a "pion mass" term) given by the Schwarzian form

$$\mathcal{S}\sim -rac{N}{J}\int d au\{f, au\},\;\{f, au\}=rac{f^{\prime\prime\prime\prime}}{f^\prime}-rac{3}{2}\left(rac{f^{\prime\prime}}{f^\prime}
ight)^2$$

At finite temperatures,

$$S \sim \frac{N}{J} \int d\tau \left[\left(\frac{f''}{f'} \right)^2 - \left(\frac{2\pi}{\beta} \right)^2 (f')^2 \right]$$

SYK 0000●0	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
Chaos i	in SYK				

Thermalization, Chaos (Out-of-time-ordered) maximal $\lambda_L = 2\pi/\beta$

SYK 00000●	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
Feature	es of SYK				

Universal low energy sector

$$S \sim -\frac{N}{J}\int d\tau \{f, \tau\}$$

Chaos (Liapunov exponent saturates the gravity bound)

$$\lambda = \frac{2\pi}{\beta}$$

Regge spectrum (different properties from O(N) or N = 4 SYM) Zero temperature entropy

$$S_0 = N\left(rac{1}{2}\log 2 + ext{model-dependent (function of } q)
ight)$$

SYK 000000	Bulk dual ●oooooooooo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
Toward	ls a bulk dua	ni -			

A 2D bulk dual that captures the universal low energy sector (and hopefully more)

• In order to have non-trivial dynamics, need to explicitly break conformal invariance (= Diff). this is done in the SYK model by turning on a small 1/J. For a bulk representation of this:

• embed AdS₂ as the near-horizon geometry of a higher dimensional near-extremal black hole. Effective theory= dilaton gravity in 2D (Jackiw-Teitelboim). *Almheiri-Polchinski*,

Maldacena-Stanford-Yang

Our approach:

Low energy configurations of SYK are generated by $f(\tau) \in \mathsf{Diff}$

$$G_0 \to G_0^f : G^f(f(\tau_1), f(\tau_2)) \left(f'(\tau_1) f'(\tau_2) \right)^{\Delta} = G_0(\tau_1, \tau_2)$$

This is a space of zero modes (all flat directions). A potential is created by explicit breaking of Diff (a "pion mass" term): $S = -\frac{N}{J} \int d\tau \{f, \tau\}$

We would like to find a bulk dual of this picture.

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

A bit of history: $CFT_2 \leftrightarrow AdS_3$

$$ds^{2} = \frac{d\zeta^{2} + dz \ d\bar{z}}{\zeta^{2}} + L(z)dz^{2} + \bar{L}(\bar{z})d\bar{z}^{2} + \zeta^{2}L(z)\bar{L}(\bar{z})dzd\bar{z}$$

where L, \overline{L} are the hologrphic boundary stress tensors given by the Schwarzians $L(z) = \{f, z\}, \ \overline{L}(\overline{z}) = \{\overline{f}, \overline{z}\}$

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

A bit of history: $CFT_2 \leftrightarrow AdS_3$

$$ds^{2} = \frac{d\zeta^{2} + dz \ d\bar{z}}{\zeta^{2}} + L(z)dz^{2} + \bar{L}(\bar{z})d\bar{z}^{2} + \zeta^{2}L(z)\bar{L}(\bar{z})dzd\bar{z}$$

where L, \overline{L} are the hologrphic boundary stress tensors given by the Schwarzians $L(z) = \{f, z\}, \ \overline{L}(\overline{z}) = \{\overline{f}, \overline{z}\}$ Note that the orbit of AdS₃(Poincare) includes black holes (BTZ).

SYK 000000	Bulk dual ooo●oooooo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

According to Banados, the Vir \times Vir transformations correspond to SL₂ \times SL₂ (large) gauge transformations in the Chern Simons formulation of 3D gravity with negative cosmological constant.

SYK 000000	Bulk dual ooo●oooooo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

According to Banados, the Vir \times Vir transformations correspond to SL₂ \times SL₂ (large) gauge transformations in the Chern Simons formulation of 3D gravity with negative cosmological constant.

 \bullet The space of Brown-Henneaux geometries, therefore, can be regarded as $SL_2 \times SL_2$ orbits (in fact, they are coadjoint orbits of the corresponding 'loop groups').

SYK 000000	Bulk dual ooo●oooooo	Thermodynamics o	Charged SYK 00000	Quantum Chaos	Conclusion

According to Banados, the Vir \times Vir transformations correspond to SL₂ \times SL₂ (large) gauge transformations in the Chern Simons formulation of 3D gravity with negative cosmological constant.

• The space of Brown-Henneaux geometries, therefore, can be regarded as $SL_2 \times SL_2$ orbits (in fact, they are coadjoint orbits of the corresponding 'loop groups').

• It is an independent fact that coadjoint orbits admit a natural symplectic form (Kirillov). For coadjoint orbits of loop groups \tilde{G} , the action principle that follows gives the WZW action, based on the group *G*! *Rai and Rogers*

SYK 000000	Bulk dual ooo●oooooo	Thermodynamics o	Charged SYK 00000	Quantum Chaos	Conclusion

According to Banados, the Vir \times Vir transformations correspond to SL₂ \times SL₂ (large) gauge transformations in the Chern Simons formulation of 3D gravity with negative cosmological constant.

• The space of Brown-Henneaux geometries, therefore, can be regarded as $SL_2 \times SL_2$ orbits (in fact, they are coadjoint orbits of the corresponding 'loop groups').

• It is an independent fact that coadjoint orbits admit a natural symplectic form (Kirillov). For coadjoint orbits of loop groups \tilde{G} , the action principle that follows gives the WZW action, based on the group *G*! *Rai and Rogers*

• This, therefore, says that WZW action should describe the dynamics in the space of Brown-Henneau geometries.

This is already anticipated in Witten's work: Chern-Simons \leftrightarrow WZW (this predates AdS/CFT by a decade).

We have been able to construct the following coadjoint orbit of AdS₂ under Diff, given by the following exact metrics *GM-Nayak-Wadia* 1702.04266

$$ds^{2} \equiv \hat{g}_{\alpha\beta}^{f} dx^{\alpha} dx^{\beta} = \frac{1}{4\pi\mu\zeta^{2}} \left(d\zeta^{2} + d\tau^{2} \left(1 - \zeta^{2} \frac{\{f(\tau), \tau\}}{2} \right)^{2} \right)$$

$$ds^{2} \equiv \hat{g}_{\alpha\beta}^{f} dx^{\alpha} dx^{\beta} = \frac{1}{4\pi\mu\zeta^{2}} \left(d\zeta^{2} + d\tau^{2} \left(1 - \zeta^{2} \frac{\{f(\tau), \tau\}}{2} \right)^{2} \right)$$

$$ds^{2} \equiv \hat{g}_{\alpha\beta}^{f} dx^{\alpha} dx^{\beta} = \frac{1}{4\pi\mu\zeta^{2}} \left(d\zeta^{2} + d\tau^{2} \left(1 - \zeta^{2} \frac{\{f(\tau), \tau\}}{2} \right)^{2} \right)$$

$$ds^{2} \equiv \hat{g}_{\alpha\beta}^{f} dx^{\alpha} dx^{\beta} = \frac{1}{4\pi\mu\zeta^{2}} \left(d\zeta^{2} + d\tau^{2} \left(1 - \zeta^{2} \frac{\{f(\tau), \tau\}}{2} \right)^{2} \right)$$

$$ds^{2} \equiv \hat{g}_{\alpha\beta}^{f} dx^{\alpha} dx^{\beta} = \frac{1}{4\pi\mu\zeta^{2}} \left(d\zeta^{2} + d\tau^{2} \left(1 - \zeta^{2} \frac{\{f(\tau), \tau\}}{2} \right)^{2} \right)$$

SYK 000000	Bulk dual ooooo●oooo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

Properties:

• All metrics represent 'normalizable deformations', are in the Fefferman-Graham gauge and are obtained by pulling back a Diff $f(\tau)$ from boundary to bulk by the exact map

$$ilde{ au} = f(au) - rac{2\zeta^2 f''(au) f'(au)^2}{4f'(au)^2 + \zeta^2 f''(au)^2}, \quad ilde{\zeta} = rac{4\zeta f'(au)^3}{4f'(au)^2 + \zeta^2 f''(au)^2}$$

• There are 'horizons' in the new geometry, determined by

$$g_{\tau\tau} = \left(1 - \zeta^2 \frac{\{f(\tau), \tau\}}{2}\right)^2 = 0$$

SYK 000000	Bulk dual oooooo●ooo	Thermodynamics o	Charged SYK	Quantum Chaos	Conclusion
The coa	djoint orbit	(Kirillov) actio	on		

What is the action in the space of these metrics?

SYK 000000	Bulk dual ooooooooooo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
The coa	adjoint orbit	(Kirillov) action	on		

What is the action in the space of these metrics?

• Since the Diff orbit is a coadjoint orbit, a natural action is given by the Kirillov action.

SYK 000000	Bulk dual oooooo●ooo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
The co	adjoint orbit	(Kirillov) action	on		

What is the action in the space of these metrics?

• Since the Diff orbit is a coadjoint orbit, a natural action is given by the Kirillov action.

• It is known for some time *Polyakov 1987, Rai-Rogers, Alexeev-Shatashvili* that Kirillov action in the space of 2D metrics is the induced gravity action of Polyakov

$$S[g] = \frac{1}{16\pi G_N} \int_M \sqrt{-g} \left(R \frac{1}{\Box} R - 16\pi \mu \right) + \frac{1}{4\pi G_N} \int_{\partial M} \sqrt{-\gamma} \mathcal{K} \frac{1}{\Box} R$$

where we have added a boundary term similar to the Gibbons-Hawking term.

SYK 000000	Bulk dual ooooooo●oo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

The Liouville action

Choose the conformal gauge $g_{lphaeta}=e^{2\phi}\hat{g}_{lphaeta}$

$$egin{aligned} S &= -rac{1}{4\pi\;G_N} \Bigg[\int_M \sqrt{-\hat{g}} (\hat{g}^{lphaeta} \partial_lpha \phi \partial_eta \phi + \hat{R} \phi + 4\pi \mu e^{2\phi}) + rac{1}{16\pi\;G_N} \int_M \sqrt{-\hat{g}} \hat{R} \;rac{1}{\hat{\Box}} \hat{R} \ &+ 2 \int_{\partial M} \sqrt{-\hat{\gamma}} \hat{\mathcal{K}} \phi + \int_{\partial M} \sqrt{-\hat{\gamma}} \hat{n}^\mu \phi \partial_\mu \phi \Bigg] \end{aligned}$$

The codjoint orbit metrics $\hat{g}_{\alpha\beta} = \hat{g}_{\alpha\beta}^{f}$, with $\phi = 0$, are classical solutions of the above action.

SYK 000000	Bulk dual ooooooo●oo	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion

The Liouville action

Choose the conformal gauge $g_{lphaeta}=e^{2\phi}\hat{g}_{lphaeta}$

$$egin{aligned} S &= -rac{1}{4\pi\;G_N} \Bigg[\int_M \sqrt{-\hat{g}} (\hat{g}^{lphaeta} \partial_lpha \phi \partial_eta \phi + \hat{R} \phi + 4\pi \mu e^{2\phi}) + rac{1}{16\pi\;G_N} \int_M \sqrt{-\hat{g}} \hat{R} \;rac{1}{\hat{\Box}} \hat{R} \ &+ 2 \int_{\partial M} \sqrt{-\hat{\gamma}} \hat{\mathcal{K}} \phi + \int_{\partial M} \sqrt{-\hat{\gamma}} \hat{n}^\mu \phi \partial_\mu \phi \Bigg] \end{aligned}$$

The codjoint orbit metrics $\hat{g}_{\alpha\beta} = \hat{g}_{\alpha\beta}^{f}$, with $\phi = 0$, are classical solutions of the above action.

• To compute the potential in the space of these coadjoint orbits (Goldstones), we must compute the on-shell action. To do this, we need a regulator $\zeta = \delta$. The on-shell action, up to $O(\delta)$ terms, coincides with that of AdS₂. This reproduces the SYK result that the Goldstones have zero action.

SYK	Bulk dual	Thermodynamics	Charged SYK	Quantum Chaos	Conclusion
	0000000000				

Liouville solution and Explicit symmetry breaking

 \bullet Around the AdS2 background, the Liouville field ϕ satisfies the well-known equation of motion:

$$\mathbf{2}\widehat{\Box}\phi=\widehat{\mathbf{R}}+\mathbf{8}\pi\mu\mathbf{e}^{\mathbf{2}\phi}$$

together with the Virasoro constraints

$$\partial_z^2 \phi - (\partial_z \phi)^2 + 2 rac{\partial_z \phi}{z + \overline{z}} = 0, \quad \{z \leftrightarrow \overline{z}\}$$

• It turns out that the solution set gets fixed by just three real constants

(which parameterize a hyperboloid) $\phi = \frac{a+b\tau+c\tau^2}{\zeta} + \dots$ The terms ... are small near the boundary and are not important for our purpose here.

• Out of the parameters *a*, *b*, *c*, only *a* corresponds to the physics of the SYK model. We will identify $a \sim 1/J$. For consistency, note that (i) *a* has dimension of length, and *J* has dimension of mass; (ii) *a* represents a non-normalizable mode (as it deforms the asymptotically AdS₂ geometry) and 1/J represents an irrelevant deformation from the IR CFT.

With the above solution for the Liouville field, we get

$$S_{\text{on-shell}} = \frac{a}{2G_N} \int d\tau \{f, \tau\}$$

We thus recover the Schwarzian Goldstone action ("pion mass" term) of SYK from the Liouville bulk dual, modulo the identification

$$a\sim 1/J,~G_N\sim N$$

up to an overall numerical factor.

• To compute the thermodynamics from the Liouville model, let us go to Euclidean AdS₂ and apply to it the coadjoint orbit transformation $f(\tau)$ which compactifies real line into a circle

$$f(\tau) = \tan \frac{\pi \tau}{\beta}$$

This gives $d\hat{s}_{f}^{2} = \frac{1}{4\pi\zeta^{2}} \left[d\zeta^{2} + d\tau^{2} \left(1 - \pi^{2} \frac{\zeta^{2}}{\beta^{2}} \right) \right]$. The geometries are capped: $g_{\tau\tau}$ vanishes at $\zeta = \beta/\pi$.

• To compute the thermodynamics from the Liouville model, let us go to Euclidean AdS₂ and apply to it the coadjoint orbit transformation $f(\tau)$ which compactifies real line into a circle

$$f(\tau) = \tan \frac{\pi \tau}{\beta}$$

This gives $d\hat{s}_{f}^{2} = \frac{1}{4\pi\zeta^{2}} \left[d\zeta^{2} + d\tau^{2} \left(1 - \pi^{2} \frac{\zeta^{2}}{\beta^{2}} \right) \right]$. The geometries are capped: $g_{\tau\tau}$ vanishes at $\zeta = \beta/\pi$.

• The on-shell action for this geometry is (modulo some important subtleties of counterterms which we have not completely understood)

$$S_{\text{on-shell}} = \log Z = \beta F = \frac{1}{G_N} \left[\log(4\pi) - 3/2 + \frac{a}{2G_N\beta} + O(a^2) \right]$$
which shows the same features as SYK.

In stead of Majorana, consider Dirac fermions

$$\sum_{\tau} \left(\sum_{i} \psi_{i}^{\dagger}(\tau) \psi_{i}(\tau + \mathbf{a}) + \sum_{i < j < k < l} J_{ijkl} \psi_{i}^{\dagger}(\tau) \psi_{j}^{\dagger}(\tau) \psi_{k}(\tau) \psi_{l}(\tau) \right)$$

Dyson-Schwinger equations

$$\frac{1}{G(i\omega)} = i\omega + \mu - \Sigma(i\omega), \quad \Sigma(\tau) = J^2 G(\tau)^2 G(-\tau)$$

Davison-Fu-Georges-Gu-Jensen-Sachdev 2016

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK o●ooo	Quantum Chaos	Conclusion
Charged SYK					
Diff-U(1)) symmetry				

At strong coupling, there is now an emergent (Diff,U(1)) symmetry. $G \to G^{f,\Lambda}$:

 $G^{f,\Lambda}(f(\tau_1),f(\tau_2))\left(f'(\tau_1)f'(\tau_2)\right)^{\Delta} = G(\tau_1,\tau_2)\exp[i\Lambda(\tau_2)-i\Lambda(\tau_1)]$

 $\partial_{\epsilon} \mathbf{G}(\tau, \tau') = [\epsilon(\tau)\partial_{\tau} + \epsilon(\tau)\partial_{\tau'} + \Delta(\partial_{\tau}\epsilon + \partial_{\tau'}\epsilon)]\mathbf{G}, \quad \delta f = \epsilon$

$$\partial_{\Lambda} G(\tau, \tau') = i[\Lambda(\tau') - \Lambda(\tau)]G(\tau, \tau')$$

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion
Charged SYK					
pseudo	-Goldstones	S			

Vacuum solution breaks the Diff-U(1) symmetry.

Action for the pseudo-Goldstones (generalized Schawrzian)

$$\frac{S}{N} = -\frac{\gamma}{4\pi^2} \int d\tau \{\tau + \epsilon(\tau), \tau\} + \frac{K}{2} \int d\tau \left[\partial_\tau \Lambda + \mu \partial_\tau \epsilon\right]^2$$

The bulk configurations should be described by Diff-U(1) orbits of AdS(2) with $A_{\tau} = \mu$:

Diff,U(1)-orbit of AdS₂

where, as before, the Diff and U(1) transformations should be 'large gauge transformations' which are nontrivial at the boundary.

Gaikwad-Joshi-GM-Wadia

A natural choice of the dynamics which gives rise to such orbits is a U(1) gauge theory coupled to Polyakov (Liouville) gravity

$$S_{ ext{gravity}, ext{gauge}} = S_{ ext{Polyakov}}[g_{\mu
u}] + S_2$$

where

$$S_{2} = \frac{k}{G_{N}} \left[\int_{M} [2 \chi F_{\tau\zeta}] d\tau d\zeta + \int_{\partial M} A_{\tau\chi} d\tau - \frac{1}{2} \int_{\partial M} \sqrt{\gamma} (\gamma^{\tau\tau} A_{\tau} A_{\tau} - \chi^{2}) d\tau \right]$$

which can be obtained from a KK reduction of 3D Chern-Simons theory. The boundary term in S_2 can be obtained either from the 3D boundary term or independently by demanding a consistent variational principle.

A natural choice of the dynamics which gives rise to such orbits is a U(1) gauge theory coupled to Polyakov (Liouville) gravity

$$S_{ ext{gravity}, ext{gauge}} = S_{ ext{Polyakov}}[g_{\mu
u}] + S_2$$

where

$$S_{2} = \frac{k}{G_{N}} \left[\int_{M} [2 \chi F_{\tau\zeta}] d\tau d\zeta + \int_{\partial M} A_{\tau\chi} d\tau - \frac{1}{2} \int_{\partial M} \sqrt{\gamma} (\gamma^{\tau\tau} A_{\tau} A_{\tau} - \chi^{2}) d\tau \right]$$

which can be obtained from a KK reduction of 3D Chern-Simons theory. The boundary term in S_2 can be obtained either from the 3D boundary term or independently by demanding a consistent variational principle.

The on-shell value of S_2 precisely gives the charge contribution to the pseudo-Goldstone action

$$N\frac{K}{2}\int d\tau \left[\partial_{\tau}\Lambda + \mu\partial_{\tau}\epsilon\right]^{2}$$

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos ●○	Conclusion
Quantum Chac	s				
Chaos i	n charged S	VK			

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos ⊙●	Conclusion
Quantum Chaos	;				

Chaos in charged bulk

Action $\sim \int d\tau \ \Lambda(\partial_{\tau}^2)\Lambda$, $\Rightarrow \lambda_L = 0$ Pure photon sector does not have any quantum chaos.

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion ●○
Conclu	sion				

 \bullet Identified coadjoint orbits of AdS_2 under Diff as the space of Goldstones of SYK.

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion ●○
Conclu	sion				

 \bullet Identified coadjoint orbits of AdS_2 under Diff as the space of Goldstones of SYK.

• Identified 2D Liouville action as a coadjoint orbit action which governs these Goldstones.

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion ●○
Conclu	sion				

• Identified coadjoint orbits of AdS₂ under Diff as the space of Goldstones of SYK.

• Identified 2D Liouville action as a coadjoint orbit action which governs these Goldstones.

• The on-shell action of AdS_{2+} (Diff transformations) is the same as that of AdS_{2} (they differ by a regulator term which vanishes in the continuum limit).

SYK 000000	Bulk dual	Thermodynamics o	Charged SYK	Quantum Chaos	Conclusion ●○
Conclu	sion				

• Identified coadjoint orbits of AdS₂ under Diff as the space of Goldstones of SYK.

• Identified 2D Liouville action as a coadjoint orbit action which governs these Goldstones.

• The on-shell action of AdS_{2+} (Diff transformations) is the same as that of AdS_{2} (they differ by a regulator term which vanishes in the continuum limit).

• AdS₂+ Diff + Non-normalizable Liouville mode generate a non-zero on-shell gravity action. This coincides with the Schwarzian of SYK.

SYK 000000	Bulk dual	Thermodynamics O	Charged SYK	Quantum Chaos	Conclusion ●○
Conclu	sion				

• Identified coadjoint orbits of AdS₂ under Diff as the space of Goldstones of SYK.

• Identified 2D Liouville action as a coadjoint orbit action which governs these Goldstones.

• The on-shell action of AdS_{2+} (Diff transformations) is the same as that of AdS_{2} (they differ by a regulator term which vanishes in the continuum limit).

• AdS₂+ Diff + Non-normalizable Liouville mode generate a non-zero on-shell gravity action. This coincides with the Schwarzian of SYK.

• This technique reproduces the features of the low temperature thermodynamics of SYK from the Liouville bulk dual.

• We have been able to generalize the bulk dual to the case of charged SYK models.

- We have been able to generalize the bulk dual to the case of charged SYK models. Follow-up:
- How does one understand the hard modes in the dual geometry?

- We have been able to generalize the bulk dual to the case of charged SYK models. Follow-up:
- How does one understand the hard modes in the dual geometry?
- Simple model: Need to couple matter to Liouville to obtain non-trivial excitations. *See also Gross-Rosenhaus*

- We have been able to generalize the bulk dual to the case of charged SYK models.
- Follow-up:
- How does one understand the hard modes in the dual geometry?
- Simple model: Need to couple matter to Liouville to obtain non-trivial excitations. *See also Gross-Rosenhaus*
- More comprehensive: hard modes have an approximately linear spectrum. Could come from a dimensional reduction *See Das-Jevicki-Suzuki arXiv:1704.07208, Das-Nayak-Poojary-Suryanarayana-GM-Wadia*