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SYK model

1D stat mech model with Majorana fermions and disorder
Sachdev-Ye, Kitaev∑

τ

∑
i

ψi(τ)ψi(τ + a) +
∑

i<j<k<l

Jijkl ψi(τ)ψj(τ)ψk (τ)ψl(τ)


〈JijklJijkl〉 ∼ J2/N3

At large N, important observable is G(τ, τ ′) =
∑

i〈ψi(τ)ψi(τ
′)〉

Schwinger-Dyson equations:

1
G(iω)

= iω − Σ(iω), Σ(τ, τ ′) = J2G(τ, τ ′)3

SYK literature: Polchinski-Rosenhaus, Maldacena-Stanford, Gross-Rosenhaus,

Stanford, Berkooz-P.Narayan-Rozali-Simon, Verlinde, Polchinski-Shenker-...

Variants (without disorder): Gurau, Witten, Klebanov-Tarnopolsky
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J=0 J=∞, reparametrization 

invariance

IR UV

At strong coupling, the SD equations exhibit reparametrization
invariance under τ → f (τ) (Diff symmetry)

J2
∫

dτ ′G(τ, τ ′)G(τ ′, τ ′′)3 = −δ(τ − τ ′′) (1)

where G(τ, τ ′), behaves as a tensor of weight ∆ = 1/4:

G→ Gf : Gf (f (τ1), f (τ2))
(
f ′(τ1)f ′(τ2)

)∆
= G(τ1, τ2)

∂εG(τ, τ ′) = [ε(τ)∂τ + ε(τ)∂τ ′ + ∆(∂τ ε+ ∂τ ′ε)]G
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Solution of (1):

G(τ, τ ′) = G0(τ − τ ′), G0(τ) ∼ (J|τ |)−1/2sgnτ

spontaneously breaks Diff (except an SL(2) subgroup), leading to
‘Goldstones’ of Diff/SL(2):

"Goldstones"
"Higgs"

δεG0

G = G0 + δSL2G + δG|| + δG⊥

δG|| = δεG0
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Explicit breaking of Diff

•The Goldstone modes have zero action! (contrast with
∫
∂µπ

2

for pion physics).

•The partition function diverges. To get finite physics, we turn
on small 1/J. This explicitly breaks Diff symmetry.

•G0 → G0 + O(1/J)⇒ Goldstones now pick up a finite action
(equivalent to a “pion mass” term) given by the Schwarzian form

S ∼ −N
J

∫
dτ{f , τ}, {f , τ} =

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

At finite temperatures,

S ∼ N
J

∫
dτ

[(
f ′′

f ′

)2

−
(

2π
β

)2

(f ′)2

]
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Chaos in SYK

=

Thermalization, Chaos (Out-of-time-ordered)
maximal λL = 2π/β
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Features of SYK

Universal low energy sector

S ∼ −N
J

∫
dτ{f , τ}

Chaos (Liapunov exponent saturates the gravity bound)

λ =
2π
β

Regge spectrum (different properties from O(N) or N = 4 SYM)
Zero temperature entropy

S0 = N
(

1
2

log 2 + model-dependent (function of q)
)

...
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Towards a bulk dual

A 2D bulk dual that captures the universal low energy sector
(and hopefully more)

• In order to have non-trivial dynamics, need to explicitly break
conformal invariance (= Diff). this is done in the SYK model by
turning on a small 1/J. For a bulk representation of this:

• embed AdS2 as the near-horizon geometry of a higher
dimensional near-extremal black hole. Effective theory= dilaton
gravity in 2D (Jackiw-Teitelboim). Almheiri-Polchinski,

Maldacena-Stanford-Yang
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Our approach

Our approach:
Low energy configurations of SYK are generated by f (τ) ∈ Diff

G0 → Gf
0 : Gf (f (τ1), f (τ2))

(
f ′(τ1)f ′(τ2)

)∆
= G0(τ1, τ2)

This is a space of zero modes (all flat directions). A potential is
created by explicit breaking of Diff (a “pion mass” term):
S = −N

J

∫
dτ{f , τ}

We would like to find a bulk dual of this picture.
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A bit of history: CFT2 ↔ AdS3

The Brown-Henneaux
geometries

Here f (z), f̄ (z̄) comprise 2D conformal transformations.
The metrics (in Euclidean signature) are explicitly given by
Banados 1999, see GM-Sinha-Sorokhoibam for eternal BTZ

ds2 =
dζ2 + dz dz̄

ζ2 + L(z)dz2 + L̄(z̄)dz̄2 + ζ2L(z)L̄(z̄)dzdz̄

where L, L̄ are the hologrphic boundary stress tensors given by
the Schwarzians L(z) = {f , z}, L̄(z̄) = {f̄ , z̄}

Note that the orbit of AdS3(Poincare) includes black holes
(BTZ).
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Brown-Henneaux metrics as Coadjoint orbits

According to Banados, the Vir × Vir transformations correspond to SL2 × SL2

(large) gauge transformations in the Chern Simons formulation of 3D gravity
with negative cosmological constant.

• The space of Brown-Henneaux geometries, therefore, can be regarded as
SL2 × SL2 orbits (in fact, they are coadjoint orbits of the corresponding ‘loop
groups’).

• It is an independent fact that coadjoint orbits admit a natural symplectic
form (Kirillov). For coadjoint orbits of loop groups G̃, the action principle that
follows gives the WZW action, based on the group G! Rai and Rogers

• This, therefore, says that WZW action should describe the dynamics in the
space of Brown-Henneau geometries.
This is already anticipated in Witten’s work: Chern-Simons↔WZW (this
predates AdS/CFT by a decade).
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Coajoint orbits of AdS2

We have been able to construct the following coadjoint orbit of
AdS2 under Diff, given by the following exact metrics
GM-Nayak-Wadia 1702.04266

ds2 ≡ ĝf
αβdxαdxβ =

1
4πµ ζ2

(
dζ2 + dτ2

(
1− ζ2 {f (τ), τ}

2

)2
)

→
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Properties:

•All metrics represent ‘normalizable deformations’, are in the
Fefferman-Graham gauge and are obtained by pulling back a
Diff f (τ) from boundary to bulk by the exact map

τ̃ = f (τ)− 2ζ2f ′′(τ)f ′(τ)2

4f ′(τ)2 + ζ2f ′′(τ)2 , ζ̃ =
4ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2

•There are ‘horizons’ in the new geometry, determined by

gττ =

(
1− ζ2 {f (τ), τ}

2

)2

= 0
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The coadjoint orbit (Kirillov) action

What is the action in the space of these metrics?

•Since the Diff orbit is a coadjoint orbit, a natural action is
given by the Kirillov action.

• It is known for some time Polyakov 1987, Rai-Rogers, Alexeev-Shatashvili

that Kirillov action in the space of 2D metrics is the induced
gravity action of Polyakov

S[g] =
1

16πGN

∫
M

√
−g
(

R
1
�

R − 16πµ
)

+
1

4πGN

∫
∂M

√
−γK 1

�
R

where we have added a boundary term similar to the
Gibbons-Hawking term.
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The Liouville action

Choose the conformal gauge gαβ = e2φĝαβ

S = − 1
4π GN

[∫
M

√
−ĝ(ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ) +

1
16π GN

∫
M

√
−ĝR̂

1
�̂

R̂

+ 2
∫
∂M

√
−γ̂K̂φ+

∫
∂M

√
−γ̂n̂µφ∂µφ

]

The codjoint orbit metrics ĝαβ = ĝf
αβ, with φ = 0, are classical

solutions of the above action.

•To compute the potential in the space of these coadjoint orbits
(Goldstones), we must compute the on-shell action. To do this,
we need a regulator ζ = δ. The on-shell action, up to O(δ)

terms, coincides with that of AdS2. This reproduces the SYK
result that the Goldstones have zero action.
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αβ, with φ = 0, are classical

solutions of the above action.

•To compute the potential in the space of these coadjoint orbits
(Goldstones), we must compute the on-shell action. To do this,
we need a regulator ζ = δ. The on-shell action, up to O(δ)

terms, coincides with that of AdS2. This reproduces the SYK
result that the Goldstones have zero action.



SYK Bulk dual Thermodynamics Charged SYK Quantum Chaos Conclusion

Liouville solution and Explicit symmetry breaking

• Around the AdS2 background, the Liouville field φ satisfies the well-known
equation of motion:

2�̂φ = R̂ + 8πµe2φ

together with the Virasoro constraints

∂2
zφ− (∂zφ)2 + 2

∂zφ

z + z̄
= 0, {z ↔ z̄}

• It turns out that the solution set gets fixed by just three real constants

(which parameterize a hyperboloid) φ = a+bτ+cτ2

ζ
+ ...

The terms ... are small near the boundary and are not important for our
purpose here.

•Out of the parameters a, b, c, only a corresponds to the physics of the SYK
model. We will identify a ∼ 1/J. For consistency, note that (i) a has
dimension of length, and J has dimension of mass; (ii) a represents a
non-normalizable mode (as it deforms the asymptotically AdS2 geometry)
and 1/J represents an irrelevant deformation from the IR CFT.
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With the above solution for the Liouville field, we get

Son-shell =
a

2GN

∫
dτ{f , τ}

We thus recover the Schwarzian Goldstone action (“pion mass”
term) of SYK from the Liouville bulk dual, modulo the
identification

a ∼ 1/J, GN ∼ N

up to an overall numerical factor.
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Thermodynamics

•To compute the thermodynamics from the Liouville model, let
us go to Euclidean AdS2 and apply to it the coadjoint orbit
transformation f (τ) which compactifies real line into a circle

f (τ) = tan
πτ

β

This gives dŝ2
f = 1

4πζ2

[
dζ2 + dτ2

(
1− π2 ζ2

β2

)]
.

The geometries are capped: gττ vanishes at ζ = β/π.

•The on-shell action for this geometry is (modulo some
important subtleties of counterterms which we have not
completely understood)

Son−shell = log Z = βF =
1

GN

[
log(4π)− 3/2 +

a
2GNβ

+ O(a2)

]
which shows the same features as SYK.
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Charged SYK

Charged model

In stead of Majorana, consider Dirac fermions

∑
τ

∑
i

ψ†i (τ)ψi(τ + a) +
∑

i<j<k<l

Jijkl ψ
†
i (τ)ψ†j (τ)ψk (τ)ψl(τ)


Dyson-Schwinger equations

1
G(iω)

= iω + µ− Σ(iω), Σ(τ) = J2G(τ)2G(−τ)

Davison-Fu-Georges-Gu-Jensen-Sachdev 2016
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Charged SYK

Diff-U(1) symmetry

At strong coupling, there is now an emergent (Diff,U(1))
symmetry. G→ Gf ,Λ :

Gf ,Λ(f (τ1), f (τ2))
(
f ′(τ1)f ′(τ2)

)∆
= G(τ1, τ2) exp[iΛ(τ2)− iΛ(τ1)

∂εG(τ, τ ′) = [ε(τ)∂τ + ε(τ)∂τ ′ + ∆(∂τ ε+ ∂τ ′ε)]G, δf = ε

∂ΛG(τ, τ ′) = i[Λ(τ ′)− Λ(τ)]G(τ, τ ′
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Charged SYK

pseudo-Goldstones

Vacuum solution breaks the Diff-U(1) symmetry.

"Goldstones"
"Higgs"

δε , δΛG0

Action for the pseudo-Goldstones (generalized Schawrzian)
S
N

= − γ

4π2

∫
dτ{τ + ε(τ), τ}+

K
2

∫
dτ [∂τΛ + µ∂τ ε]

2
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Charged bulk dual

Symmetries

The bulk configurations should be described by Diff-U(1) orbits
of AdS(2) with Aτ = µ:

where, as before, the Diff and U(1) transformations should be
’large gauge transformations’ which are nontrivial at the
boundary.
Gaikwad-Joshi-GM-Wadia
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Charged bulk dual

Bulk action

A natural choice of the dynamics which gives rise to such orbits is a U(1)
gauge theory coupled to Polyakov (Liouville) gravity

Sgravity,gauge = SPolyakov [gµν ] + S2

where

S2 =
k

GN

[∫
M

[2 χ Fτζ ] dτdζ +

∫
∂M

Aτχ dτ − 1
2

∫
∂M

√
γ (γττAτAτ − χ2) dτ

]
which can be obtained from a KK reduction of 3D Chern-Simons theory. The
boundary term in S2 can be obtained either from the 3D boundary term or
independently by demanding a consistent variational principle.

The on-shell value of S2 precisely gives the charge contribution to the
pseudo-Goldstone action

N
K
2

∫
dτ [∂τΛ + µ∂τ ε]

2
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Quantum Chaos

Chaos in charged SYK

=

δε

δΛ
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Quantum Chaos

Chaos in charged bulk

Boundary graviton

Action ∼
∫

dτ ε
(
∂4
τ − (2π/β)2∂2

τ

)
ε,⇒ e2πt/β, λL = 2π/β

Boundary photon

Action ∼
∫

dτ Λ(∂2
τ )Λ,⇒ λL = 0

Pure photon sector does not have any quantum chaos.
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Conclusion

• Identified coadjoint orbits of AdS2 under Diff as the space of
Goldstones of SYK.

• Identified 2D Liouville action as a coadjoint orbit action which
governs these Goldstones.

•The on-shell action of AdS2+ (Diff transformations) is the
same as that of AdS2 (they differ by a regulator term which
vanishes in the continuum limit).

•AdS2+ Diff + Non-normalizable Liouville mode generate a
non-zero on-shell gravity action. This coincides with the
Schwarzian of SYK.

•This technique reproduces the features of the low temperature
thermodynamics of SYK from the Liouville bulk dual.
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•We have been able to generalize the bulk dual to the case of
charged SYK models.

Follow-up:

•How does one understand the hard modes in the dual
geometry?

•Simple model: Need to couple matter to Liouville to obtain
non-trivial excitations. See also Gross-Rosenhaus

•More comprehensive: hard modes have an approximately
linear spectrum. Could come from a dimensional reduction See

Das-Jevicki-Suzuki arXiv:1704.07208, Das-Nayak-Poojary-Suryanarayana-GM-Wadia
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