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Introduction

The entanglement structure of states in quantum field theories has
played a central role in many recent developments.

For example, entanglement structure satisfies powerful inequalities,
like strong subadditivity, monotonicity of relative entropy etc.,
which can be translated into constraints on quantum field theories.
[Casini & Huerta ’04, Casini ’08, Faulkner, Leigh, OP & Wang ’15, Faulkner et al ’16]

In AdS/CFT, the entanglement structure of states with classical
gravity duals is very special, as explained by the Ryu-Takayanagi
formula [Ryu & Takayanagi ’06].

Conversely, constraints satisfied by the entanglement entropy in
such states have been shown to give rise to bulk dynamics. [Van

Ramsdonk ’10, Takayanagi et al ’12, Lashkari et al ’13, Faulkner et al ’13.]
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Introduction

Specifically, [Faulkner, Guica, Hartman, Myers & Van Raamsdonk ’13], following
previous work by [Takayanagi et al ’12, Lashkari et al ’13], considered states in
CFTs which are small deformations around the vacuum:

|ψ〉ε = |0〉+ εδ|ψ〉.

It was shown that if (M, g) is an AAdS spacetime which correctly
computes the entanglement entropies of |ψ〉ε for all
ball-shaped regions in the CFT up to first order in ε via RT, then
(M, g) satisfies the linearized Einstein equation.

(M, g)| i"
This simply follows from the first law of entanglement in the CFT.
(We will review the argument shortly.)
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Objective

The main objective of today’s talk will be to show that the analogous
statement is also true at second order in state deformations: if (M, g)
is an AAdS spacetime which correctly computes the entanglement
entropies of |ψ〉ε for all ball-shaped regions in the CFT up to order ε2

via RT, then (M, g) satisfies the second order Einstein equation.
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Warm-up: Half-space Entanglement in Relativistic QFTs

Let’s take A to be a half-space. The Hilbert space splits as
hΣ = hA ⊗ hAc .

xi

x1

AAc

x0

The reduced density matrix for the vacuum state on A is defined as

ρ0 = TrAc |0〉〈0|
Then the modular Hamiltonian is defined as

K0 = −ln ρ0.

The entanglement entropy is the Von-Neumann entropy of ρ0:

SEE = −TrA ρ0ln ρ0.

Onkar Parrikar (UPenn) YITP workshop 6 / 27



Warm-up: Half-space Entanglement in Relativistic QFTs

Let’s take A to be a half-space. The Hilbert space splits as
hΣ = hA ⊗ hAc .

xi

x1

AAc

x0

The reduced density matrix for the vacuum state on A is defined as

ρ0 = TrAc |0〉〈0|

Then the modular Hamiltonian is defined as

K0 = −ln ρ0.

The entanglement entropy is the Von-Neumann entropy of ρ0:

SEE = −TrA ρ0ln ρ0.

Onkar Parrikar (UPenn) YITP workshop 6 / 27



Warm-up: Half-space Entanglement in Relativistic QFTs

Let’s take A to be a half-space. The Hilbert space splits as
hΣ = hA ⊗ hAc .

xi

x1

AAc

x0

The reduced density matrix for the vacuum state on A is defined as

ρ0 = TrAc |0〉〈0|
Then the modular Hamiltonian is defined as

K0 = −ln ρ0.

The entanglement entropy is the Von-Neumann entropy of ρ0:

SEE = −TrA ρ0ln ρ0.

Onkar Parrikar (UPenn) YITP workshop 6 / 27



Warm-up: Half-space Entanglement in Relativistic QFTs

Let’s take A to be a half-space. The Hilbert space splits as
hΣ = hA ⊗ hAc .

xi

x1

AAc

x0

The reduced density matrix for the vacuum state on A is defined as

ρ0 = TrAc |0〉〈0|
Then the modular Hamiltonian is defined as

K0 = −ln ρ0.

The entanglement entropy is the Von-Neumann entropy of ρ0:

SEE = −TrA ρ0ln ρ0.

Onkar Parrikar (UPenn) YITP workshop 6 / 27



Warm-up: Half-space Entanglement...

Recall that the half-space reduced density matrix can be concretely
obtained by the Euclidean path integral on Rd with a cut along A.

x0
E

x1=|0ih0|Tr
Ac

AAc � = �

� = ↵

✓

〈α|ρ0|β〉 =

∫ α

β
[Dφ]e−SCFT [φ]

Note that there is a U(1) isometry, i.e. rotations in the angular
direction θ:

ξ = ∂θ.
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Warm-up: Half-space Entanglement...

The modular Hamiltonian can be obtained from slicing the
path-integral along the angular direction θ. [Bisognano-Wichmann ’76]

x0
E

x1

|�i
h↵|h↵|⇢A0 |�i =

K0 =

∫
dd−2xi

∫ ∞

0
dx1 x1 T00(0, x1, xi) + c

In this case, modular flow is local. In the Lorentzian description, it
corresponds to boosts around the entanglement cut:

eisK0O(x+, x−, ~xi)e−isK0 = O(x+es, x−e−s, ~xi).
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Zeroth order: Ball-shaped Regions in CFT Vacuum

Any ball-shaped region can be conformally mapped to a half-space.

So in the vacuum of a conformal field theory, modular flow for any
ball-shaped region is also local and generated by a conformal
isometry ξ [Casini-Huerta-Myers ’11].

In AdS/CFT, this means that there is an AdS isometry ξB which
preserves the RT surface, and generates bulk modular flow.
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Deforming away from the vacuum

Now we wish to consider small deformations of the state away
from the CFT vacuum:

|ψ〉ε = |0〉+ ε|δ1ψ〉+
1

2
ε2|δ2ψ〉 · · · .

We can parametrize this by one-point functions if we like.

Correspondingly, consider a general one-parameter family of
geometries gε, with g0 being AdSd+1.

It is convenient to pick a gauge where the extremal surface in gε is
fixed to be the original AdS extremal-surface. This is often called
the Hollands-Wald gauge [Lashkari & Van Raamsdonk ’15].
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A gravitational identity

Our starting point now is the following gravitational identity
[Hollands & Wald, ’12]:

ω(
dgε
dε

,LXgε) = dχ(
dgε
dε

,X)− G(gε,
dgε
dε

,X),

where the d-form

ω
(
γ1, γ2

)
=

1

16π
vol(d)

a P abcdef
(
γ2
bc∇dγ1

ef − γ1
bc∇dγ2

ef

)

is the gravitational sympletic flux density, χ is a (d− 1)-form and
G is proportional to the equations of motion.

This equation is valid for general vector fields X, but we will use it
for X = ξB.

Also, the equation is true for general ε, so we can study its
consequences order by order in ε.
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First order argument

At first order (i.e. setting ε = 0), integrating this equation along
the region ΣA (the original entanglement wedge), we get

1

4GN
δ(1)Aext − δ(1)〈K0〉 =

∫

ΣA

naξbBEOM
(1)
ab .

Using the input that this geometry computes entropies using the
RT formula, we can rewrite this as

δ(1)SEE − δ(1)〈K0〉 =

∫

ΣA

naξbBEOM
(1)
ab .
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First order argument...

However, by the first law of entanglement in the CFT, we have

δ(1)SEE − δ(1)〈K0〉 = 0,

and so we conclude that
∫

ΣA

naξbBEOM
(1)
ab = 0

for all ball shaped regions in the CFT. It can be shown that this
necessarily implies the linearized Einstein equation

EOM
(1)
ab = 0.
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Second order

At second order, the gravitational identity reads:

∫

ΣA

ω(δ(1)g,LξBδ(1)g) =
1

4GN
δ(2)Aext−δ(2)〈K0〉−

∫

ΣA

naξbBEOM
(2)
ab ,

where note that the LHS is non-trivial, but depends only on δ(1)g
(which satisfies linearized EE).

On the other hand, from the CFT side all we can say is

δ(2)SEE − δ(2)〈K0〉 = δ(2)S(ρ||ρ0)

where the RHS is the relative entropy between the excited state
and the vacuum at O(ε2), and in fact only depends on δ(1)ρ.
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Second order

So if we could prove somehow, from purely CFT arguments and the
first order Einstein equation for δ(1)g, that

δ(2)S(ρ||ρ0) =

∫

ΣA

ω(δ(1)g,LξBδ(1)g),

then we would deduce that the bulk geometry satisfies the Einstein
equation to second order. This will be our goal in the rest of the talk.
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Relative Entropy: CFT calculation

Recall that the relative entropy is given by

S(ρ||ρ0) = Tr (ρ ln ρ)− Tr (ρ ln ρ0) .

Writing ρ = ρ0 + εδ(1)ρ, and expanding this expression out, we
obtain the first non-trivial term at O(ε2) [Faulkner ’14]

δ(2)S(ρ||ρ0) =

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)Tr
(
ρ0e

isK0ρ−1
0 δ(1)ρe−isK0ρ−1

0 δ(1)ρ
)

As mentioned before, the relative entropy at this order only
depends on δ(1)ρ.

In order to proceed, we will focus on excited states in the CFT
which can be constructed using the Euclidean path integral.

Onkar Parrikar (UPenn) YITP workshop 16 / 27



Relative Entropy: CFT calculation

Recall that the relative entropy is given by

S(ρ||ρ0) = Tr (ρ ln ρ)− Tr (ρ ln ρ0) .

Writing ρ = ρ0 + εδ(1)ρ, and expanding this expression out, we
obtain the first non-trivial term at O(ε2) [Faulkner ’14]

δ(2)S(ρ||ρ0) =

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)Tr
(
ρ0e

isK0ρ−1
0 δ(1)ρe−isK0ρ−1

0 δ(1)ρ
)

As mentioned before, the relative entropy at this order only
depends on δ(1)ρ.

In order to proceed, we will focus on excited states in the CFT
which can be constructed using the Euclidean path integral.

Onkar Parrikar (UPenn) YITP workshop 16 / 27



Relative Entropy: CFT calculation

Recall that the relative entropy is given by

S(ρ||ρ0) = Tr (ρ ln ρ)− Tr (ρ ln ρ0) .

Writing ρ = ρ0 + εδ(1)ρ, and expanding this expression out, we
obtain the first non-trivial term at O(ε2) [Faulkner ’14]

δ(2)S(ρ||ρ0) =

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)Tr
(
ρ0e

isK0ρ−1
0 δ(1)ρe−isK0ρ−1

0 δ(1)ρ
)

As mentioned before, the relative entropy at this order only
depends on δ(1)ρ.

In order to proceed, we will focus on excited states in the CFT
which can be constructed using the Euclidean path integral.

Onkar Parrikar (UPenn) YITP workshop 16 / 27



Relative Entropy: CFT calculation

Recall that the relative entropy is given by

S(ρ||ρ0) = Tr (ρ ln ρ)− Tr (ρ ln ρ0) .

Writing ρ = ρ0 + εδ(1)ρ, and expanding this expression out, we
obtain the first non-trivial term at O(ε2) [Faulkner ’14]

δ(2)S(ρ||ρ0) =

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)Tr
(
ρ0e

isK0ρ−1
0 δ(1)ρe−isK0ρ−1

0 δ(1)ρ
)

As mentioned before, the relative entropy at this order only
depends on δ(1)ρ.

In order to proceed, we will focus on excited states in the CFT
which can be constructed using the Euclidean path integral.

Onkar Parrikar (UPenn) YITP workshop 16 / 27



Return of the Path Integral

The states of interest are prepared by performing the Euclidean
path-integral on the lower half space with the action deformed by
an O(ε) source for the Stress tensor:

ψε[φ
(0)] =

∫

φ(0,x)=φ(0)(x)
[Dφ]e−SCFT−

∫ 0
−∞ dx0E

∫
dd−1xλµν(x)Tµν(x).

x1

x0
E

S = SCFT +

Z
�µ⌫T

µ⌫
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Return of the Path Integral...

As usual, the reduced density matrix is obtained by performing
the path-integral on Rd with a cut along A.

x0
E

x1=TrAc | ih |

S = SCFT +

Z
�µ⌫T

µ⌫

Expanding the path-integral in λµν , we obtain

ρ = ρ0 +

∫
ddxλµν(x)ρ0T

µν(x) +O(λ2).
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Back to Relative Entropy

Coming back to the relative entropy, we obtain

δ(2)S(ρ||ρ0) =

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)λµν(xa)λρσ(xb)
〈
Tµν(xsa)T

ρσ(xb)
〉

where
Tµν(xsa) = eisK0Tµν(xa)e

−isK0

is the modular-flowed stress tensor. This is a local operator
because modular flow for ball-shaped regions is local in the CFT
vacuum.

We wish to rewrite this formula in “gravitational terms”.

This is not too hard, because only the CFT stress-tensor 2-point
function appears in this calculation, which is universal in CFTs.
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Rewriting in Gravitational terms

Imagine a fiducial AdS spacetime with a∗ ≡ cd `
d−1

GN
= CT . We

claim that the stress tensor two-point function for any CFT with
this CT can be written as

〈
Tµν(xa)T

ρσ(xb)
〉

=

∫

D(A),rB=r0

ω(Kµν
E ,Kρσ

R )

rB = r0

D(A)

Here KE and KR are the Euclidean & Retarded bulk-to-boundary
propagators sourced at xa and xb respectively.
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Rewriting in Gravitational terms...

Next, we note that the symplectic flux density is a conserved
quantity, so we can push it into the bulk.

H+

H�

eAA
⌃A

So the relative entropy essentially has two contributions:

δ(2)S(ρ||ρ0) =

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)
∫

H+∪H−
ω(hE , h

s
R)

where h =
∫
λK is the bulk-to-boundary propagator integrated

against the boundary source λ.
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The s integral

Now we wish to perform the s-integral:

∫ ∞

−∞

ds

4 sinh2
(
s+iε

2

)
∫

H+∪H−
ω(hE , h

s
R)

Quick and dirty way: The integral vanishes on H− because KR is
the retarded propagator. On H+, we pick up the double pole from
sinh−2(s/2), which gives

∫

H+

ω(hE , ∂shE).

Now pushing the symplectic flux to ΣA, we get the required result.
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The s integral

But this is too quick, and misses some essential terms.

The analytic structure of the integrand in the complex s-plane is
as follows:

S

(where we have used hR ∼ (h+ − h−) and the KMS condition.)
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The s integral...

Actually, an important point to note here is that this analytic
structure is true in a particular gauge, called the generalized
de-Donder gauge:

∇(0)
a hab = haa = 0.

This gauge is most convenient for our calculations because of the
simple analytic structure. To match on to the result in the
Hollands-Wald gauge, we will have to perform a suitable gauge
transformation at the end.
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The s integral...

Coming back to the s-integral, it is easiest to evaluate by
completing the contours in the following way:

S S

C+

H� H�

In the end, the final result looks like

δ(2)S =

∫

ΣA

ω(h,LξBh) +

∫

H+

ω(h,LV g(0)) +

∫

H−
ω(h,LV g(0)).

where V is a vector field which can be determined in terms of h.
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Relative Entropy

Actually, V turns out to be precisely the gauge transformation
between the de-Donder gauge and the Hollands-Wald gauge:

γab = hab + 2∇(0)
(a Vb).

So finally, we can transform our result to the Hollands-Wald gauge.

Happily, our result rewritten in this gauge becomes

δ(2)S(ρ||ρ0) =

∫

ΣA

ω(γ,LξBγ)

which is precisely what we set out to show.
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Conclusion

If (M, g) is an AAdS spacetime which computes the entanglement
entropies of all ball-shaped regions in a CFT correctly via the
Ryu-Takayanagi formula up to second order in state deformations,
and if a∗ = CT , then (M, g) must satisfy the Einstein equation to
second-order in the bulk metric deformation.

The analogous statement for higher-derivative theories can also be
proven [Faulkner, Haehl, Hijano, OP, Rabideau, Van Raamsdonk – to appear].
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