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Introduction

@ The entanglement structure of states in quantum field theories has
played a central role in many recent developments.
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Introduction

e The entanglement structure of states in quantum field theories has
played a central role in many recent developments.

e For example, entanglement structure satisfies powerful inequalities,
like strong subadditivity, monotonicity of relative entropy etc.,
which can be translated into constraints on quantum field theories.
[Casini & Huerta 04, Casini ’08, Faulkner, Leigh, OP & Wang ’15, Faulkner et al ’16]

e In AdS/CFT, the entanglement structure of states with classical
gravity duals is very special, as explained by the Ryu-Takayanagi
formula [Ryu & Takayanagi ’06].

e Conversely, constraints satisfied by the entanglement entropy in
such states have been shown to give rise to bulk dynamics. [van

Ramsdonk 10, Takayanagi et al 12, Lashkari et al '13, Faulkner et al '13.]
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Introduction

(] Speciﬁcally, [Faulkner, Guica, Hartman, Myers & Van Raamsdonk ’13], fOllOWlng
previous work by [Takayanagi et al 12, Lashkari et al 13], considered states in
CFTs which are small deformations around the vacuum:

|[¢)e = |0) +€6]¢)).
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e It was shown that if (M, g) is an AAdS spacetime which correctly
computes the entanglement entropies of [¢). for all
ball-shaped regions in the CF'T up to first order in ¢ via RT, then
(M, g) satisfies the linearized Einstein equation.

Onkar Parrikar (UPenn) YITP workshop 4 /27



Introduction

(] Speciﬁcaﬂy, [Faulkner, Guica, Hartman, Myers & Van Raamsdonk ’13], fOllOWlng
previous work by [Takayanagi et al °12, Lashkari et a1 *13], considered states in
CFTs which are small deformations around the vacuum:

|[¢)e = |0) +€6]¢)).

e It was shown that if (M, g) is an AAdS spacetime which correctly
computes the entanglement entropies of [¢). for all
ball-shaped regions in the CF'T up to first order in ¢ via RT, then
(M, g) satisfies the linearized Einstein equation.

@ This simply follows from the first law of entanglement in the CFT.
(We will review the argument shortly.)
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Objective

The main objective of today’s talk will be to show that the analogous
statement is also true at second order in state deformations: if (M, g)
is an AAdS spacetime which correctly computes the entanglement
entropies of |1)). for all ball-shaped regions in the CFT up to order 2
via RT, then (M, g) satisfies the second order Einstein equation.
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Warm-up: Half-space Entanglement in Relativistic QFTs

o Let’s take A to be a half-space. The Hilbert space splits as
by =bha ® hae.

o)

A A
fos
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Warm-up: Half-space Entanglement in Relativistic QFTs

o Let’s take A to be a half-space. The Hilbert space splits as
by =bha ® hae.
0,
i

A A
fos

@ The reduced density matrix for the vacuum state on A is defined as
po = Trac [0)(0)
@ Then the modular Hamiltonian is defined as
Ky = —Inpg.

@ The entanglement entropy is the Von-Neumann entropy of po:

See = —Tra poln po.
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Warm-up: Half-space Entanglement...

@ Recall that the half-space reduced density matrix can be concretely
obtained by the Euclidean path integral on R¢ with a cut along A.

A° A 4
Tre|0)(0] = LEJ,EJ,[],I,w,I,El,[C()iLQ¢ — 1
0

(lpl) = [ (e Serrt9
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Warm-up: Half-space Entanglement...

@ Recall that the half-space reduced density matrix can be concretely
obtained by the Euclidean path integral on R¢ with a cut along A.

A° A 4
Tre|0)(0] = MJ,LJ,[],I,w,z,\,l,[C()iLé¢ — 1
0

(lpl) = [ (e Serrt9

o Note that there is a U(1) isometry, i.e. rotations in the angular
direction :

£ =0y.
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Warm-up: Half-space Entanglement...

@ The modular Hamiltonian can be obtained from slicing the
path-integral along the angular direction €. [Bisognano Wichmann '76]

(alpao|B) =
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Warm-up: Half-space Entanglement...

@ The modular Hamiltonian can be obtained from slicing the
path-integral along the angular direction €. [Bisognano Wichmann '76]

(alpao|B) =

o
Ky = /dd_zx’/ dz' z' Too(0, 2%, 2%) + ¢
0

@ In this case, modular flow is local. In the Lorentzian description, it
corresponds to boosts around the entanglement cut:

e Koozt o=, #)e K0 = O(ate®, x5, ).
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Zeroth order: Ball-shaped Regions in CFT Vacuum

e Any ball-shaped region can be conformally mapped to a half-space.
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Zeroth order: Ball-shaped Regions in CFT Vacuum

e Any ball-shaped region can be conformally mapped to a half-space.

@ So in the vacuum of a conformal field theory, modular flow for any
ball-shaped region is also local and generated by a conformal
iSOmetry § [Casini-Huerta-Myers ’11].

e In AdS/CFT, this means that there is an AdS isometry {p which
preserves the RT surface, and generates bulk modular flow.
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Deforming away from the vacuum

e Now we wish to consider small deformations of the state away
from the CFT vacuum:

|w>a = |0> + €|(51w> + %52|521/;> el
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o Correspondingly, consider a general one-parameter family of
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Deforming away from the vacuum

e Now we wish to consider small deformations of the state away
from the CFT vacuum:

) = |0) + g6t + %52|52¢> e

@ We can parametrize this by one-point functions if we like.

o Correspondingly, consider a general one-parameter family of
geometries gg, with go being AdSg11.

e It is convenient to pick a gauge where the extremal surface in g. is

fixed to be the original AdS extremal-surface. This is often called
the HOHandS—Wald gauge [Lashkari & Van Raamsdonk ’15].
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A gravitational identity

e Our starting point now is the following gravitational identity

[Hollands & Wald, ’12]:

d d d
W Lxgs) = dx (. X) = Glae. 7 X),

where the d-form

1
w(v!7?) = {pvoll ! Pl (%chd%lf — Vgcvd73f>

is the gravitational sympletic flux density, x is a (d — 1)-form and
G is proportional to the equations of motion.

Onkar Parrikar (UPenn) YITP workshop 11 / 27



A gravitational identity

@ Our starting point now is the following gravitational identity

[Hollands & Wald, ’12]:

d d d
W Lxgs) = dx (. X) = Glae. 7 X),

where the d-form

1
w(v!7?) = {pvoll ! Pl (%chd%lf — vz}cvdﬁf)

is the gravitational sympletic flux density, x is a (d — 1)-form and
G is proportional to the equations of motion.

e This equation is valid for general vector fields X, but we will use it
for X = f B-

Onkar Parrikar (UPenn) YITP workshop 11 / 27



A gravitational identity

@ Our starting point now is the following gravitational identity

[Hollands & Wald, ’12]:

d d d
W Lxgs) = dx (. X) = Glae. 7 X),

where the d-form

1
w(v!7?) = {pvoll ! Pl (%chd%lf — Vgcvd73f>

is the gravitational sympletic flux density, x is a (d — 1)-form and
G is proportional to the equations of motion.

e This equation is valid for general vector fields X, but we will use it
for X = f B-

@ Also, the equation is true for general e, so we can study its
consequences order by order in €.
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First order argument

e At first order (i.e. setting € = 0), integrating this equation along
the region ¥ 4 (the original entanglement wedge), we get

—6(1)Aext—6()<K0 / n*¢G EOM'}.

4G N
\: )
\
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First order argument
e At first order (i.e. setting € = 0), integrating this equation along

the region ¥ 4 (the original entanglement wedge), we get

m(s(l)Aext—(s(NKo / n“¢b EOM).

o Using the input that this geometry computes entropies using the
RT formula, we can rewrite this as

sV Spr — sW(Ko) = / n¢y EOM.).
YA
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First order argument...

However, by the first law of entanglement in the CFT, we have
W SeE — 6W(Ky) =0,
and so we conclude that
/ n%€y EOM) = 0
XA

for all ball shaped regions in the CFT. It can be shown that this
necessarily implies the linearized Einstein equation

EOMY) =0,
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Second order

o At second order, the gravitational identity reads:

1
/ w(é(l)g,ﬁgB(S(l)g) = K5(2)Aext_5(2) <K0>_/ nagbBEOMcgl%)’
DI N 3a

where note that the LHS is non-trivial, but depends only on §()g
(which satisfies linearized EE).
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Second order

o At second order, the gravitational identity reads:

[ w6y, £6,509) = 250 A~ 50 [ ey mOMS,
EA 4GN EA @

where note that the LHS is non-trivial, but depends only on 61 g
(which satisfies linearized EE).

@ On the other hand, from the CFT side all we can say is
8@ Spp — 6 (Ko) = 62 S(pl|po)

where the RHS is the relative entropy between the excited state
and the vacuum at O(e?), and in fact only depends on §()p.
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Second order

So if we could prove somehow, from purely CFT arguments and the
first order Einstein equation for () g, that

SOS(pllon) = [ w0y, £e,60), |

Y4

then we would deduce that the bulk geometry satisfies the Einstein
equation to second order. This will be our goal in the rest of the talk.
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Relative Entropy: CFT calculation

o Recall that the relative entropy is given by

S(pllpo) = Tr (pInp) — Tr (plnpo) .
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Relative Entropy: CFT calculation

o Recall that the relative entropy is given by

S(pllpo) = Tr (pInp) — Tr (p1npo) .

o Writing p = po + €6 p, and expanding this expression out, we
obtain the first non-trivial term at O(g2) (rauikner 14

5@ S(pllpo) = /OO SR (poe“KOp‘l5(1)p6‘“K°p‘15(1)p>
— oo 4sinh? (255) 0 0
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Relative Entropy: CFT calculation

o Recall that the relative entropy is given by

S(pllpo) = Tr (pInp) — Tr (p1npo) .

o Writing p = po + €6 p, and expanding this expression out, we
obtain the first non-trivial term at O(g2) (rauikner 14

& ds , .
s@g _ / Ty isKo ,~15(1) jo—isKo —15(1)
(pllpo) . 4 sinh2 (s_gle) (Poe Lo pe Po p)

e As mentioned before, the relative entropy at this order only
depends on 6 p.
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Relative Entropy: CFT calculation

Recall that the relative entropy is given by

S(pllpo) = Tr (pInp) — Tr (p1npo) .

Writing p = po + €6 p, and expanding this expression out, we
obtain the first non-trivial term at O(g2) (rauikner 14

> ds : .
5(2)5 — / B 15Ky —15(1) —isKp —15(1)
(pllpo) o4 sinh2 (s—;le) (Poe Lo pe Po p)

As mentioned before, the relative entropy at this order only
depends on 6 p.

In order to proceed, we will focus on excited states in the CFT
which can be constructed using the Euclidean path integral.
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Return of the Path Integral

o The states of interest are prepared by performing the Euclidean
path-integral on the lower half space with the action deformed by
an O(e) source for the Stress tensor:

¥[¢ )]

Onkar Parrikar

(UPenn)

S = SCFT + /)\HVTW/

YITP workshop

— / [D¢]G*SCFT*LON oy [ d47 % A (2)TH ()
#(0,x)=¢( (x)
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Return of the Path Integral...

o As usual, the reduced density matrix is obtained by performing
the path-integral on R? with a cut along A.

S = Scrr + /)\WTW

Toae ) (0] = — .
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Return of the Path Integral...

o As usual, the reduced density matrix is obtained by performing
the path-integral on R? with a cut along A.

S = Scrr + /)\WTW

Tr el (0] = — 1

e Expanding the path-integral in A,,, we obtain

p=pt [ AT @) + O
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Back to Relative Entropy

e Coming back to the relative entropy, we obtain

OO ds v S [
S8 (llon) = | (g Mo e () (T )T (1))
- 2

where

Ty () = eisKo Tw,(xa)e*"SKO

is the modular-flowed stress tensor. This is a local operator
because modular flow for ball-shaped regions is local in the CFT

vacuum.
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S8 (llon) = | (g Mo e () (T )T (1))
- 2

where

Ty () = eisKo Tw,(xa)e*"SKO

is the modular-flowed stress tensor. This is a local operator
because modular flow for ball-shaped regions is local in the CFT
vacuum.

e We wish to rewrite this formula in “gravitational terms”.
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Back to Relative Entropy

e Coming back to the relative entropy, we obtain

5@ S(pllpo) = /oo Llsillhgﬁ)\w(ma)km(:vb)<Tﬂ”(:E2)TP"(asb)>
e L

where

Ty () = eisKo Tw,(xa)e*"SKO

is the modular-flowed stress tensor. This is a local operator
because modular flow for ball-shaped regions is local in the CFT
vacuum.

e We wish to rewrite this formula in “gravitational terms”.

e This is not too hard, because only the CF'T stress-tensor 2-point
function appears in this calculation, which is universal in CFTs.
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Rewriting in Gravitational terms

o Imagine a fiducial AdS spacetime with a, = ¢4 G =Cp . We
claim that the stress tensor two-point function for any CFT with
this Cp can be written as

(Pr@arre) = [ e

sTB=T0
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Rewriting in Gravitational terms

e Imagine a fiducial AdS spacetime with a, = ¢q4 @Nl =Cp . We
claim that the stress tensor two-point function for any CFT with
this Cp can be written as

<THV(xa)Tp”(ajb)> = /D(A) w(KW KP)

sTB=T0

rg ="To

o Here K and Kp are the Euclidean & Retarded bulk-to-boundary
propagators sourced at x, and x; respectively.
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Rewriting in Gravitational terms...

e Next, we note that the symplectic flux density is a conserved
quantity, so we can push it into the bulk.
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Rewriting in Gravitational terms...

e Next, we note that the symplectic flux density is a conserved
quantity, so we can push it into the bulk.

@ So the relative entropy essentially has two contributions:

S8l = [ e |
—oo Asinh? (55€) Jyprip-

where h = [ AK is the bulk-to-boundary propagator integrated
against the boundary source A.
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The s integral

o Now we wish to perform the s-integral:

& ds /
- ic w(h'Ea h )
/_oo 4 sinh? (SE ) H+UH- R

Onkar Parrikar (UPenn) YITP workshop



The s integral

o Now we wish to perform the s-integral:

> ds
S — w(hg, h;
/_oo 4 sinh? (SE“) /’;.[+U7.[— (hi, 1)

e Quick and dirty way: The integral vanishes on H~ because Kg is
the retarded propagator. On H™T, we pick up the double pole from
sinh™2(s/2), which gives

/ w(hE,ashE).
H+
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The s integral

o Now we wish to perform the s-integral:

> ds
S — w(hg, h;
/_oo 4 sinh? (SE“) /’;.[+U7.[— (hi, 1)

e Quick and dirty way: The integral vanishes on H~ because Kg is
the retarded propagator. On H™T, we pick up the double pole from
sinh™2(s/2), which gives

/ w(hE,ashE).
H+

o Now pushing the symplectic flux to 4, we get the required result.
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The s integral

@ But this is too quick, and misses some essential terms.
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The s integral

@ But this is too quick, and misses some essential terms.
@ The analytic structure of the integrand in the complex s-plane is

as follows:
ls

(where we have used hg ~ (hy — h_) and the KMS condition.)

YITP workshop 23 /27
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The s integral...

o Actually, an important point to note here is that this analytic
structure is true in a particular gauge, called the generalized

de-Donder gauge:
VIRt = ht, = 0.

24 / 27
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The s integral...

o Actually, an important point to note here is that this analytic
structure is true in a particular gauge, called the generalized
de-Donder gauge:

VIR = by = 0.

e This gauge is most convenient for our calculations because of the
simple analytic structure. To match on to the result in the
Hollands-Wald gauge, we will have to perform a suitable gauge
transformation at the end.
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The s integral...

e Coming back to the s-integral, it is easiest to evaluate by
completing the contours in the following way:
s ls

_,__
=
IS
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The s integral...

e Coming back to the s-integral, it is easiest to evaluate by
completing the contours in the following way:
s ls

H H
o In the end, the final result looks like

528 = w(h,ﬁgBh)—i-/

w(h, Lvg®) + / w(h, Lvg®).
I HT

where V is a vector field which can be determined in terms of h.
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Relative Entropy

@ Actually, V turns out to be precisely the gauge transformation
between the de-Donder gauge and the Hollands-Wald gauge:

Yab = hab + 2V8) Vi))
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Relative Entropy

o Actually, V' turns out to be precisely the gauge transformation
between the de-Donder gauge and the Hollands-Wald gauge:

Yab = hab + 2v8) VI-))

e So finally, we can transform our result to the Hollands-Wald gauge.

e Happily, our result rewritten in this gauge becomes

52 5(pl|0) = / W, Ley)

Za

which is precisely what we set out to show.
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Conclusion

o If (M, g) is an AAdS spacetime which computes the entanglement
entropies of all ball-shaped regions in a CFT correctly via the
Ryu-Takayanagi formula up to second order in state deformations,
and if a, = Cp, then (M, g) must satisfy the Einstein equation to
second-order in the bulk metric deformation.
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Conclusion

o If (M, g) is an AAdS spacetime which computes the entanglement
entropies of all ball-shaped regions in a CFT correctly via the
Ryu-Takayanagi formula up to second order in state deformations,
and if a, = Cp, then (M, g) must satisfy the Einstein equation to
second-order in the bulk metric deformation.

@ The analogous statement for higher-derivative theories can also be

prOVen [Faulkner, Haehl, Hijano, OP, Rabideau, Van Raamsdonk — to appear].
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