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Intro(1)

* To understand the structure of a given space of density matrices, we
sometimes need a proper measure of distance between two matrices.

For example, consider a reduced density matrix PAB on disjoint
subsystems A and B and suppose that we want to know how much

two subsystems A and B are entangled. One way to evaluate this is
measuring the distances between pPAB and separable states.

OAB = Zpa P @ ph
a



Intro(2)

* There are several distance measures known in the literature, like

Fidelity,
Fpllo) = try/ Vopy/a
_trlp—of’
or trace distance, Tlollo) == oy

* The one we would like to focus on this talk is relative entropy

S(pllo) = tr(plogp) — tr (plog o)



Relative entropy

Relative entropy satisfies several nice properties.

(1) Positive definite. S(p||o) > 0, S(pllo) =0 mmm) p=o0
(2)Monotonically decreasing under time evolutions, ie, for any CPTP map N,

S(pllo) > S(Nepl|N;0)
(3) For RDMs of two regions Aand B, A D B
S(palloa) > S(psllos)



Modular Hamiltonian (1)

* In some sense relative entropy is a generalization of free energy.

S(pllo) = [(pKs) — (0Ko)| — [S(p) — S(0)]
= A(K,) — AS

K, = —logo iscalled modular Hamiltonian of o .
When g — ¢ PH the relative entropy indeed reduced to
free energy.



Modular Hamiltonian(2)

* If we are interested in the relative entropy of nearby states S(p + 6p||p)
, We can expand it with respectto Jp. The first order term must

vanish because of the positivity => the first law like relation,

05 = (Kpop)

The quadratic term is sometimes called Fisher information,
2

d
F(p+dpllp) = @S(P + tdp||p) L



Modular Hamiltonian (3) :

* In this talk we are focusing on the relative entropy between two

reduced density matrices S(pv|/pw) on aregion Ain CFT.

When the subsystem is a round sphere, the modular Hamiltonian of

vacuum has a local expression,
Kpoe = ZW/drde_g

And this generates the boost symmetry of the causal diamond of A.
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A holographic interpretation of vacuum MH

* There is a nice holographic interpretation of the vacuum modular

flow.

The bulk RT surface 7y 4 can be regarded as the bifurcation surface of the
topological black hole. The timelike killing vector of the black hole

\

generates the vacuum modular flow at the boundary . casini Huerta myers)

First law of entanglement <-> First law of the black hole

->linearized Einstein equations.
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Modular Hamiltonians of excited states

* On the contrary to the nice story of vacuum modular Hamiltonian,
the mH of an excite state in general non local, and hard to derive
the exact answer.

Nevertheless there are nice holographic results for them. One is the
JLMS conjecture,

A
Ky =—+ Kb ...
T

Where A is the area operator, whose expectation value computes the area of the bulk
RT surface, isthe mH of the bulk QFT.



Modular Hamiltonians of excited states

A related statement is Fisher information = Bulk canonical energy.

Suppose that we are interested in the entanglement entropy of
a slightly excited state |V> , whose RDM can be splitinto pv = po + 0p

If we expand the entropy with respect to dp then the quadratic
term |S g|Ven by the bUIk CanOnlca| energy [van Raamsdonk, Lashkari]

[Nozaki Numasawa
Prudenziatti Takayanagi] (2)

VA
[Lin marcori Ooguri Stoica] SV — 27T / dzangab ( <V | ¢| v> ) fb §
b3




Fisher information= Canonical energy
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= A(Ko) + S (pv)
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“ Back reaction
HKLL

{VIO[V),---} > AVIo[V), -}

The excitation turns on non trivial CFT 1pt functions Bulk profile

This formula captures the first non trivial back reaction effect in the bulk spacetime.



Summary so far

* Two nice holographic results

A
: _ bulk o
(1) JLMS Kv 10 —+ KV —+

(2) Fisher information =Canonical energy S = —27r/ AT, (V]| V)
by

Both of them involve excited state modular Hamiltonians.
Can we derive these nice results from CFT side ?
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Our work!



Outline of this talk(1):

* In this work we present a novelway of calculating the entanglement
entropy and the modular Hamiltonian (mH)of excited states in CFT.

* We first develop a general prescription to perturbatively calculate the mH

Kp=—logr when ,=,,+sp andmH Ky,=—1logp, of the reference state
is known,

o0
Kp — KO _I_ Z(_l)TLé‘K(TL)
n=1
The result is general, and applicable to any theory. This formula also gives
a formal series expansion of von Neumann entropy

S(p) = (oK) = 36550



Outline of the talk(2) ;CFT part

* We then formally apply this formula to CFT, by taking p, po to be the
RDMs of an excited state and vacuum on a ball shaped region A
respectively.

Ina CFT, dp of interest is given by a sum of OPE blocks of primary
operators. From this, it follows that 65 (dp) is given by an integral

2n+2 point function along vacuum modular flow.



Outline of the talk (3)

We can rewrite each in the expansion holographically , as they are
fixed just by conformal symmetry.

At quadratic order n=2, the holographic expression is of the JLMS
form for the modular Hamiltonian, and the canonical energy for the

entanglement entropy.



Expanding the log

* We can the modular Hamiltonian by using the formula,

< 1 1
e w(———)
B+p [B+1
The result is "
K, =Ko+ 31" [ s, o o) [T (559" gpel 27205
n=1 - k=1

This tells us n-th order term of the mH is given by evolving the

Perturbation (59 by the unperturbed mH KO, and integrating it along the
flow.



Expanding the log

* The explicit expression of the kernel is

2 2 ‘n—1
]Cn(Sl, ---aSn) — i 7T2+1 s1 snl n - Sk—Sk—1
(47)" ! cosh L cosh 2 | [, _, sinh 2=
* Some special cases: o 1
1(s1) = (2cosh )2’
1 7
]CZ(Slv 52) —

167 cosh 871 cosh 572 sinh %



The CFT set up(1)

SN

-A CFT on a Cylinder

R x s¢-1

. A subsystem [0,600] x S42

.Excited states |V>

-Reduced density matrices

at ' = +00

py =tra |V)(V]



The CFT setup(2)

* One can map the cylinder with cut to St H91 with the metric,
ds%n — dr? + du® + sinh® UdQ?z—z T ~T+ 27

* There the RDM has a nice form in terms of the local operator
Corresponding to the excited state,

e V(r —mV(F —m)e ™

) T=mwm—0y T =mw+6
V(T)VA(T)) 15 a1

pv —

K is the generator of the translation along and coincide with vacuum mH.



CFT setup(3)

* In the small subsystem size limit g, — 0 one can expand the product
by OPE blocks of primaries,

V(r=m)V(# —m) = (V(N)V(F))sixmar »  CoyBu(t — 7,7 — )

where the index k runs for all primaries. We are then able to write the
density matrixas =y + §p.

op=e ™ Z CtoBL(t — 7,7 —m)e ™
k#vac



CFT set up (4)

* Using the general formula, we derive the (formal)perturbative
expression of the excited state mH,

< d
Ky = K + ZC{?{}/ ° Bo, (T—m+is, 7T —m+1s)+---

2 S
k#vac oo COsh 2

and for entanglement entropy, ¢ _ i 550
m=2

d
5P = =S (O P [ o R AT — m = )

25
k 8 cosh >

Where F is the 4pt conformal block of the primary (O,



Comparison with the replica trick

* We can derive the same formula for §5? from the conventional
replica trick,

?’L—l A
1 n < k=0 V(Tk)v('fk»%

1 n Trp — — -
Salpy) = lim 3= Troy VT I V() V (),

by picking up the leading contribution to the correlation function by
OPE.

We can also check that in the small subsystem size limit 6o — 0
, this formula reproduces the known results in the limit .



Rewriting the EE holographically

* We can rewrite each term in (SS‘?) holographically . The formula
was

> d
55‘(/2) :_<C‘(;)V)2/ 82 —.‘FO(Tv’f_vT_TSa%_TS)v 7_5277__7;5-
—0 8cosh® 2
> d
— _0(57_7 8@)0(57, ab) / ” 9 g <O(7_<1, .s Ts, KI)O(T[)? YE))>Z31
_oo 8cosh” 2

(e Yo =l M) =(0.0)
In the second line we write the 4pt block F in terms of the 2 pt function <O0O>

And the the C(d7,d,) diffrerential operator summing up the descendants,

V(r)V(7) = (V(T)V(7))s, C(07,0,)O(74, Ya) + eevrnenn.



Rewriting the EE holographically

* We can rewrite each term in (SS‘?) holographically . The formula
was

> ds
55\(/2) - _(C\?v)zf

2 s
—0 8cosh® 2

FolT, TsT— T T—T); Tp=T7—18

> ds

2 .8
0 8cosh® 2

= —C(CST, &,,)C(&F, ab) / <O(Ta + Ts, KL)CI)(Tba }/E))>Zl

(7'(1 ?}/(I ):(Tb)/b):(()())

In the second line we write the 4pt block F in terms of the 2 pt function <O0O>

And the C(07,9.) differential operator summing up the descendants,

V(r)V(7) = (V(T)V(7))s, C(07,0,)O(74, Ya) + eevrnenn.



Rewriting EE (1)

Faulkner proved following identity, which is converting the integral of CFT 2 pt
function <OO>along the vacuum modular flow to the integral of bulk to boundary
propagator on the horizon of bulk topological black hole,

/OO = (O(14 + 75)O(13)) :/dleYB%w(lBﬂYB)O(TQ»%M(ZB’YB)O(%»

2
~ cosh %




Rewriting EE(2)

* If we act the differential operator to the bulk to bdy propagator,

< (ZBJ B) () (A)>E
C(67,0.) (015, Yi)O(ra, Ya)s, = UBIRVAIVT s,y

We get the expectation value of the bulk scalar field. Using this we
derive a bulk expression of the quadratic term,

55\ = —QW/dlBlB/dYB(azB<¢>V)2



rewriting modular Hamiltonian

We can also rewrite the CFT expression of the modular Hamiltonian,

Ky = 21K — C\?v/ dSB@(T—W+iS,%—7T+iS)

~ (cosh 5)?

Then, we get

Ky =27 (K —~ / dzangab(gb)) +2m / AN T (0 — (d)y) + 657 + - -
)Y b3

The first term canbe identified with area operator, and the second term is the mH of the bulk excited state
dual to the CFT state |V>



Cubic order term of EE

* Similarly we can evaluate the cubic order term of the EE

581(/3) — —(CS’I)S/ dSldSQICQ(Sl, 82)
i(SQ — 81) <

9 BO(T — T.Sla’?_ — 7_.5’1)BO(7— — Tsq, T — TSQ)BO(Ta f_)>21

X

In the small subsystem size limit we can evaluate the integral,

D52

127 (3132

2

58\(?) = (260)**(C)*Cooo

This again agree with the holographic calculationicsi, casnewers, in the presence of

Lour = (00)? — ke®

the bulk cubic interaction.



Conclusions

* Holographic expression of excited state modular Hamiltonian and
Entanglement entropy from CFT from vacuum modular flow.

*Can we drive a holographic expression of cubic term?

*Can we perform a similar analysis for mutual information?



