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Introduction
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For pure state Entanglement S4 For mixed state EE is not
entropy (EE) is good measure of good measure of correlation anymore.
correlation between subsystem We need other measure.

One suchis:  Entanglement of Purification (EOP) (Terhal Horodecki Leung DiVincenzo '02)
Given a mixed state: PAB extend the Hilbert space Ha® Hp - HAa® Hp @ H; ® Hp
paipg = [Waips ><Vaissl ispureand ITipPaipi = PAB

Then EoPis givenby :  Ep(pap) = min Sai

all possible Y, 155>



Various properties:

(Koji's talk )
Ep(pap) >0
Ep(pap) =0 when pap=pa® pp
I(A: B)

< FEp(A:B)< min{SA,SB}

For tripartite states: I(A: Bi) ;I(A ' Bs) < Fp(A: B1Bs)

Holograph
g y (Takayanagi Umemoto 1708.09393,
To appear in Nature Physics,
ZZB Nguyen et al 1709.07424)
Area(X*
Ew(A:B) = Mas) _ (A: B)



Free Scalar Field Theory
—=—  \\e want to compute the EoP for the ground states
of 1+1 dimensional scalar field theory
- \\e will discretize the theory on lattice

1
The Hamiltonian: ~ Ho = > / dx [WQ + (0,0)* + mzcﬂ

The Discretization gives: « = an, ¢, = ¢(na), ¢, = am(na)

‘a’ Is the lattice spacing and “n” denotes the site.

n=1,2---N

Cannonical quantization: [¢m 7Tn/] — 25n,n'

We also impose periodic boundary conditions: @n+N = @n, PntN = Tp



™= The rescaled Hamiltonian:

H = Z +Z L bV G

nn—l

After doing an Fourier Transform:

N
Z a’m? + 2(1 — cos(2m k/N))]e2 ik (n=n")/N

e ——
(Bombelli et al '86)
Ground state wavefunction for this model:
_ 1NN
Do[g] = Noe ™ Tt 91 Wons b
1] |
. where, Wy, = ~ Z Va2m?2 4+ 2(1 — cos(2m k/N))e2m tkn=n)/N

k=1

Weset g = 1 by rescaling mass



In all our subsequent analysis we set total number of lattice site

N =60

And consider five different mass m = 0.0001, 0.001,0.01,0.1, 1

To compute the entanglement entropy:

Higt = HpQ Hp

We define: _ A B -1 bk
W = ( BT O ), W= = ( ET F ) (Bombelli et al '86)

| Al

Sa=Sp=>» f(\)
1=1

where, f(:ri)—log\fntx/ﬂr—x-log(\%Jr \/1/17)

and, )\, areeigenvalues of A= —-FE.B" =D.A-1




Computation of EoP: Gaussian Ansatz

Al
o2 1 16 \q\ . .
$a ° Next we prepare our system. We identify two subsystem A and B
B2¢ s ? and then trace out the rest.
B1ie6 ¢
.\_7 o
"Q.._‘___O

wlonnsocl =Ao-ew [gt0amec) (o § ) (% )]

1 1 —1 T _1 —10T
paB®AB, Pap] X exp [_§(¢AB’¢/AB) ( P—%E)QR}iQCTB PfggR_?QT ) ( zig >]

Now to compute Ep (,OAB) we first purify the system by adding ancilla system

(AB, Takayanagi, Umemoto, arXiv:
such that: . 1802.09545)
Hiwn=Has® Hp® H; ® Hg Ispure

Assumption: ‘wAABB ~ optimal purified state is Gaussian
1 J K
\IJAABE[QbABa AB] — €Xp [_§(¢AB7 Aé) ( KT T ) ( szg >

We should recover original density matrix after tracing out ancilla

J=P, KL 'K'=QR 'Q'




Now we have to compute SAA and Ep (,OAB) = min SAA

To compute S, ; 1 Pai
. — - - - AA
AAd U, ipg =N -exp —§(¢AA Op5)Wains < D )] :
Jaa Kuiz Jap Kup
W — Kfl L[l[l Kfl LAB — ( A B
Jpa Kni Jss Kpp BT C
Kpa Lpi Bpp Lpg
We observe the following transformations: (AB, Takayanagi, Umemoto, arXiv:1802.09545)
p_ I|A| 0 Q_ I|B| 0 .
Lo p) 9= 0 o two non degenerate matrices

J — J, K—>K(POT ch)’ L—><Jg g)L<POT C§)T>
Keep J =P, KL_lKT:QR_lQT invariant

Then:
A— PAPT, B— PBQT, C—-QCcQT, D— (P"Yy'DP!, E— (PH'EQ!, F— Q") 'FQ

Consequently: A=—-E-B" A— (P")7'AP" S4i  remains same:

We can use these transformations to simplify the matrices J,K and L



Minimal Gaussian Ansatz

(AB, Takayanagi, Umemoto, arXiv:1802.09545)

Still the problem of minimization is difficult as the dimensions | A|, | B|

in principle can be arbitrary. We still need to optimize over |42 4+ |B|2 numer of
parameters

Assumption: |A| = VI‘, B| = ‘B‘ “Minimal Gaussian Ansatz”

I 4 K,z
For this case: K N— | A AB )

The matrix L(AB),(AB) completely determined by K

J(AB),(AB) also fixed by the constraints discussed previously

So we have to minimize S 4z over 2|A||B| number of parameters

We do the numerical analysis now for (| A|, |B|) = (1,1), (1, 2)and(2, 2)

and total lattice site N=60



Ep(paB)
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EOP ReSU ItS (AB, Takayanagi, Umemoto, arXiv:1802.09545)
when  (|Al,|B]) = (1,1)

Monotonically decreasing, as the mass is lowered it changes from power law to

Ep(pa) >

exponential decay
I(A: B)
2

1 1
For this case: K(AB),(AB) — To 1

we optimize over this two parameter and find 42 — L1
This can be understood because of a Zo which exchanges A and B

(A, A) — (B, B)



Results: Continued

We also plot this parameter against the distance between A and B
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Interestingly there is peak at d=2

at d=2 there is vacant site between “A” and “B”

A C B
(A/B)

The correlation between A and A and B and E) gets enhanced



Results: Continued

We increase the size of “A” and “B”

(14}, 1B]) = (1,2) (1Al |B]) = (2,2)

From this it is easy to confirm EoP is extensive




(14}, 1Bl) = (2,2)

ﬂ
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We observe that unlike Mutual information EoP remains almost same for d=1 and d=2
This looks qualitatively very similar to what happens in holography

= EOP
e MI/2

A e B

v J g1+ 2], d< (V2-1),

For our case dc — 1 very close (consistent) to the holographic result.



Various Inequalities

Desirable Features of Measures of Quantum entanglement for mixed states:

(Koashi winter ‘03, Cornelio, de-Oliveira ‘09)

Monogamy (tripartite state):  Ex(A: B1By) > Ex(A: By) + Ex(A: Bs)
Strong superadditivity: Ey(A1Ay : B1By) > E4 (A1 : B1) + Ex(As @ Bo)
It Monogamy is satisfied then Strong superadditivity automatically satisfies

Holographic mutual information always satisfies monogamy

thus strong Supperaddivity (Hayden, Headrick, Maloney ‘11 )

Holographic EoP always satisfies strong supperaddivity
but for generic quantum states it violates

For pure tripartite: EOP  satsfies “"Polygamy’ relation

EP(A . BlBQ) S EP(A . Bl) -+ Ep(A . Bg)



EoP: Monogamy/Polygamy

5 B Ep ( A: B Bg) (AB, Takayanagi, Umemoto, arXiv:1802.09545)
mon
EP(A : Bl) + EP(A : Bg)
ng?. A Rmon(EOP, A=A, A;)
18
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Bounded from below gp > % (our result is consistent with this )
It violates strictly monogamy rather it satisfies polygamy Rmon <1

except for m=1 it satisfies “monogamy”



EoP: Strong Superadditivity

RSSA _ EP(A1A2 . BlBg)
Ep(Al : Bl) + EP(AQ : BQ)

(AB, Takayanagi, Umemoto, arXiv:1802.09545)

R
s o

X 18
20

X 18

X 14

15+
12

—e— 0.0001
- 0.001
- 0.01
== 0.1

—— ]

10

1.0.- 1'- ———————————————————————————————————————

BeP R ccsccancccncncnnan,

5 10 15 20 25

Bounded from below Rssa = = (our result is again consistent with this )

It strictly violates SSA rather it satisfies polygamy Rega < 1

except for m=1 it satisfies this shows self consistency of our numerics



Numerical Evidence for Minimal Ansatz

Consider first  |A| =|B| =1
Consider a bigger anstaz  |A| = |B| =
( Jaa  Kui, Kuz, Jap Kup, Kyp,
Kia Lii Lii, EKip Lis Lis,
W _ ~ — KAQA LA2A1 LAQAQ KAQB LA231 LAQBQ
AABB Jea  Kpi Kgi, Jee Kz, Kpp,
Kpa Lp i, Lp i, Kss Lps Lss,
Kpg,a Lp,ia, Lp,i, Bs,s Lp,s Lsb,s,
Minimal ansatz is contained in this |}i| _ |B| —1
[ Jaa Kuzoo 0 Jap  Kyp, LU WV
Kioa Laaz 0 Kip Lzg 0 As, By
Wmin _ O O Lflgflg O 0 LAQBQ
AABB — [ Jpy Kpj, 0 Jee  Kpp, 0
KélA LélAl O KBlB Lélél O
\ 0 0 Lpi O 0 Lgp )
We expand W, ;x5

)

decouples from A, B, A;, B,

around the minimal ansatz value always found the

answer is greater than the minimal ansatz value

YAl
305




Conclusion and Outlook

We have initiated a study of EoP in quantum field theory and
checked its various property

Extend it for fermion theory : Probably for that we can go beyond
Gaussian approximation

We have been restricted by small system size. Need to use more
efficient techniques to overcome this. Use tensor network?

How to define it for CFT? (Tamaoka’s talk )

Use path integral approach ?

Many more



Mutual Information

We compute various types of Mutual information

1 - .

1 . 1 A 1
Spi= Fl(AA:BB)= ZI(A:BB)+ I(A:BB)> ZI(A:B)+ jI(A:B)

~ ~

I(A: B)po =0

It seems for holography the minimization procedure is realized maximally

~ ~
I(A: B
[ ]
1(3:) 1(A:8)
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shows peak at d=2, this is consistent with the earlier observation that
at d=2 there is vacant site between “A” and "B’

~

The correlation between Aand A and B and B gets enhanced



Mutual Information: Continued

[(A : B) : shows the same behaviour

Holography

because of the small system size we donot observe this phase transitions



