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“Complexity” of states in QFT?

• “Hidden” information about the QFT wave functional  

• Interacting QFT? Ansatz: MPS, MERA, AdS/CFT? 

• Entanglement: Path Integrals and the replica trick!                                 

• “Complexity” (Define a quantity through PI~Complex.)?

The basic tool to “define/compute” wave functions in QFT is the Euclidean PI

How can we optimize it and/or quantify its complexity?                                              
Which notion of complexity is meaningful for Path Integrals…?
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2D CFTs and Liouville

Based on the above considerations as well as the evidence provided in the follow-

ing section, we are naturally lead to a conjecture that a computational complexity C 
of a state | i is obtained from the functional introduced before by a minimization:

C = Mingab(z,x) [I [gab(z, x)]] . (2.4)

In other words, the functional I [gab(z, x)] for any gab(z, x) estimates the amount of

complexity for that network corresponding to the (partially optimized) path-integral

on the space with the specified metric. Understanding of the properties of this

complexity functional I , which might appropriately be called “Path-integral Com-

plexity”, is the central aim of this work. As we will soon see, this functional will be

closely connected to the mechanism of emergent space in the AdS/CFT.

2.3 Optimization of Vacuum States in 2D CFTs

Let us first see how the optimization procedure works for vacuum states in 2D CFTs.

We will study more general states later in later sections.

In 2D CFTs, we can always make the general metric into the diagonal form via

a coordinate transformation. Thus the optimization is performed in the following

ansatz:

ds2 = e2�(z,x)(dz2 + dx2),

e2�(z=✏,x) = 1/✏2,
(2.5)

where the second condition specifies the boundary condition so that the discretization

is fine-grained when we read o↵ the wave function after the full path-integration. Ob-

viously this is a special example of the ansatz (2.3). Thus the metric is characterized

by the Weyl scaling function �(z, x).

Remarkably, in 2D CFTs, we know how the wave function changes under such

a local Weyl transformation. Keeping the universal UV cut o↵ ✏, the measure of the

path-integrations of quantum fields in the CFT changes under the Weyl rescaling

[47]:

[D']gab=e2��ab
= eSL[�]�SL[0] · [D']gab=�ab

, (2.6)

where SL[�] is the Liouville action6 [48] (see also [47, 49])

SL[�] =
c

24⇡

Z 1

�1
dx

Z 1

✏

dz
⇥
(@x�)

2 + (@z�)
2 + µe2�

⇤
. (2.7)

The constant c is the central charge of the 2D CFT we consider. The kinetic term

in SL represents the conformal anomaly and the potential term arises the UV regu-

larization which manifestly breaks the Weyl invariance. In our treatment, we simply

set µ = 1 below by suitable shift of �.

6Here we take the reference metric is flat ds2 = dz2 + dx2. Later in section (6), we will present
the Liouville action for a more general reference metric.
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Therefore, the wave functional  gab=e2��ab
('̃(x)) obtained from the Euclidean

path-integral for the metric (2.5) is proportional to the one  gab=�ab
('̃(x)) for the

flat metric (2.2) thanks to the conformal invariance. The proportionality coe�cient

is given by the Liouville action as follows7

 gab=e2��ab
('̃(x)) = eSL[�]�SL[0] · gab=�ab

('̃(x)). (2.8)

Let us turn to the optimization procedure. As proposed in [19], we argue that

the optimization is equivalent to minimizing the normalization factor eSL[�] of the

wave functional, or equally the complexity functional I 0 for the vacuum state | 0i

in 2D CFTs, can be identified as follows8

I 0 [�(z, x)] = SL[�(z, x)]. (2.9)

The intuitive reason is that this factor is expected to be proportional to the number

of repetition of the same operation (i.e. the path-integral in one site). In 2D CFTs,

we believe this is only one quantity which we can come up with to measure the size of

path-integration. Indeed it is proportional to the central charge, which characterizes

the degrees of freedom.

Thus the optimization can be completed by requiring the equation of motion of

Liouville action SL and this reads

4@w@w̄� = e2�, (2.10)

where we introduced w = z + ix and w̄ = z � ix.

With the boundary condition e2�(z=✏,x) = ✏�2, we can easily find the suitable

solution to (2.10):

e2� =
4

(w + w̄)2
= z�2, (2.11)

which leads to the hyperbolic plane metric

ds2 =
dz2 + dx2

z2
. (2.12)

This justifies the heuristic argument to derive a hyperbolic plane H2 in Fig.1.

Indeed, this hyperbolic metric is the minimum of SL with the boundary condi-

tion. To see this, we rewrite

SL =
c

24⇡

Z
dxdz

⇥
(@x�)

2 + (@z�+ e�)2
⇤
�

c

12⇡

Z
dx[e�]z=1

z=✏
�

cL

12⇡✏
, (2.13)

7 Here we compare the optimized metric gab = e2��ab with gab = �ab. To be exact we need to
take the latter to be the original one (2.2) i.e. gab = ✏�2�ab. However the di↵erent is just a constant
factor multiplication and does not a↵ect our arguments. So we simply ignore this.

8In two dimensional CFTs, as we will explain in section 6, due to the conformal anomaly we
actually need to define a relative complexity by the di↵erence of the Liouville action between two
di↵erent metrics. However this does not change out argument in this section.
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Once we introduce the background metric

Background metric for path integral
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z = �⌧

With the Liouville action

[PC,N.Kundu,M.Miyaji,T.Takayanagi,K.Watanabe ’17]

[Polyakov’81]

The wave functional is



cTN Optimization  <=>  Minimizing PI complexity
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This network corresponds to the metric

e2� =
n (2k✏)�2 (z � 2k✏).

z�2 (z < 2k✏).
(2.18)

Obviously, the first and third term in (2.17) are approximated by the Liouville po-

tential integral
R
e2� [19]. The second term arises because of the non-zero gradient

of � and is estimated by the kinetic term
R
(@�)2 [51].

3 Optimizing Various States in 2D CFTs

Here we would like to explore optimizations in 2D CFTs for more general quantum

states. First it is useful to remember that the general solutions to the Liouville

equation (2.10) is well-known (see e.g.[47, 52]):

e2� =
4A0(w)B0(w̄)

(1� A(w)B(w̄))2
. (3.1)

Note that functions A(w) and B(w̄) describe the degrees of freedom of conformal

mappings. For example, if we choose

A(w) = w, B(w̄) = �1/w̄, (3.2)

then we reproduce the solution for vacuums states (2.11).

3.1 Finite Temperature States

Consider a 2D CFT state at a finite temperature T = 1/�. In the thermofield double

description [53], the wave functional is expressed by an Euclidean path-integral on

a strip defined by �
�

4 (⌘ z1) < z < �

4 (⌘ z2) in the Euclidean time direction, more

explicitly

 ['̃1(x), '̃2(x)] =

Z 0

@
Y

x

Y

��
4<z<

�
4

D'(z, x)

1

A e�SCFT (')

⇥

Y

�1<x<1
�
�
' (z1, x)�'̃1(x)

�
�
�
' (z2, x)�'̃2(x)

�
.

(3.3)

where '̃1(x) and '̃2(x) are the boundary values for the fields of the CFT (i.e. '̃(x))

at z = ⌥
�

4 respectively.

Minimizing the Liouville action SL leads to the solution in (3.2) given by:

A(w) = e
2⇡iw
� , B(w̄) = �e

2⇡iw̄
� . (3.4)

This leads to

e2� =
16⇡2

�2

e
2⇡i
� (w+w̄)

⇣
1 + e

2⇡i
� (w+w̄)

⌘2 =
4⇡2

�2
sec2

✓
2⇡z

�

◆
. (3.5)
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A general solution:

Solutions: surfaces of constant curvature (Liouville equation)
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Optimized metric satisfies Liouville equation with the appropriate b.c.

Original cut-off

w̄ = z � ix

R
⇥
e2�ĝ

⇤
= e�2�

⇣
R [ĝ]� 2r̂�

⌘
= �µ

2

Optimized metrics agree with time-slice of dual AdS/CFT solutions.
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VolumeCurvature
(~Number of tensors)(~Number of Isometries [Czech’17])

Features (?) :

and note that the last term on the RHS above is a total derivative, and contribute

to the boundary term. Also, it can be further checked that

2

Z

@M
ds
p

h̃ K̃g̃ �̃ =2

Z

@M
ds
p

h Kg �� 2

Z

@M
ds
p

h Kg A

+ 2

Z

@M
ds
p

h(�� A)na@aA
(6.9)

The last term on the RHS of (6.9) and the last term, i.e. the boundary term, on the

RHS of (6.8) will cancel each other. Therefore, we can combine (6.8) and (6.9) to

obtain

SL[�̃, g̃ab] =SL[�, gab]�
c

24⇡

Z

M
d2x

p
g


gab@aA@bA+RgA

�

�
c

12⇡

Z

@M
ds
p

hKgA.

(6.10)

Note that the extra terms involving A, the second third term, on the RHS of (6.10)

looks similar to Liouville action for the field A except for the missing potential e2A
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the flat metric and the transformation from g1 and g2 is holomorphic, then we have

IL[g2, g1] = 0, in other words the second plus third term in (6.10) is vanishing.

In summary, SL[�, g] does not provide us with an absolute quantity which mea-

sures the complexity of the optimized state because it depends not only on the final
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Deformations [PC, A.Bhattacharyya, S.R.Das, N.Kundu, M.Miyaji,T.Takayanagi,’18]

 Setup (d=2) and a class of deformations 

1 General Formulation

We consider a deformation of a d dimensional CFT by a primary operator O(x) with a
position dependent coupling λ(x, z):

S = SCFT (ϕ) + ϵd−∆

∫
dxd−1dz

√
gλ(x, z)O(x, z), (1.1)

where ϕ(x, z) represent all dynamical fields in the given CFT; ∆ is the conformal dimen-
sion of the primary operator O(x, z). We assume that the metric takes the conformally
flat form

ds2 = e2φ(x,z)(dz2 + dxadxa). (1.2)

We treat the coordinate z as the Euclidean time. The basic idea is that we arrange a
lattice regularization for any given φ(x, z) such that each lattice cell has the unit area in
the metric ds2 given by (1.2). Thus, increasing φ means a fine-graining. In the original
UV theory we take

eφ(x,z) = 1/ϵ ≡ eφ0 , (1.3)

where ϵ is the fine-grained lattice spacing. Note that in the UV theory the perturbation
(1.1) looks like ϵd

∫
dxd−1dz

√
gλ(x, z)O(x, z) =

∫
dxd−1dzλ(x, z)O(x, z).

Our idea is that we can produce the correct UV wave functional by a path-integral even
if we coarse-grain the intermediate path-integration. For this we impose the boundary
condition

eφ(x,z=0) = eφ0(= 1/ϵ), (1.4)

to reproduce the original fine grained wave functional at z = 0. What we want to argue is
that there is a special choice of λ(x, z), written as λφ(x, z), such that the wave functional
does not depend on the Weyl factor φ(x, z) up to a normalization factor:

Ψ
λφ

g=e2φ [ϕ(x)] = eN [φ,λφ]−N [φ0,λ0] ·Ψλ0

g=e2φ0
[ϕ(x)]. (1.5)

We defined λφ(x, z) at φ = 0 to be λ0(x, z). The functional N [φ,λ] does not depend on
the CFT field ϕ(x, z).

Note that the wave functional is defined as usual by the path-integration:

Ψ
λφ

g=e2φ [ϕ(x)]

=

∫ ∏

x,z

[Dϕ(x, z)]e−SCFT (ϕ)−ϵd−∆
∫
dxd−1dz

√
gλφ(x,z)O(x,z) ·

∏

x

δ(ϕ(x, z = 0)− ϕ(x)).

(1.6)

The claim (1.5) seems to be equivalent to the following identity for any correlation
functions at z = 0:

⟨O1(x1, 0)O2(x2, 0) · · ·On(xn, 0)⟩
λφ

g=e2φ = ⟨O1(x1, 0)O2(x2, 0) · · ·On(xn, 0)⟩λ0

g=e2φ0
. (1.7)

1

1. Choose the background metric:
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∫
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gλ(x, z)O(x, z) =
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to reproduce the original fine grained wave functional at z = 0. What we want to argue is
that there is a special choice of λ(x, z), written as λφ(x, z), such that the wave functional
does not depend on the Weyl factor φ(x, z) up to a normalization factor:

Ψ
λφ
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g=e2φ0
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We defined λφ(x, z) at φ = 0 to be λ0(x, z). The functional N [φ,λ] does not depend on
the CFT field ϕ(x, z).

Note that the wave functional is defined as usual by the path-integration:

Ψ
λφ

g=e2φ [ϕ(x)]

=

∫ ∏

x,z

[Dϕ(x, z)]e−SCFT (ϕ)−ϵd−∆
∫
dxd−1dz

√
gλφ(x,z)O(x,z) ·

∏

x

δ(ϕ(x, z = 0)− ϕ(x)).

(1.6)

The claim (1.5) seems to be equivalent to the following identity for any correlation
functions at z = 0:

⟨O1(x1, 0)O2(x2, 0) · · ·On(xn, 0)⟩
λφ

g=e2φ = ⟨O1(x1, 0)O2(x2, 0) · · ·On(xn, 0)⟩λ0

g=e2φ0
. (1.7)

1

2. We choose the coupling   [Osborn’91]

�(x, z) = �(�0,�(x, z))

such that the deformed action is still invariant.

Based on the above considerations as well as the evidence provided in the follow-

ing section, we are naturally lead to a conjecture that a computational complexity C 
of a state | i is obtained from the functional introduced before by a minimization:

C = Mingab(z,x) [I [gab(z, x)]] . (2.4)

In other words, the functional I [gab(z, x)] for any gab(z, x) estimates the amount of

complexity for that network corresponding to the (partially optimized) path-integral

on the space with the specified metric. Understanding of the properties of this

complexity functional I , which might appropriately be called “Path-integral Com-

plexity”, is the central aim of this work. As we will soon see, this functional will be

closely connected to the mechanism of emergent space in the AdS/CFT.

2.3 Optimization of Vacuum States in 2D CFTs

Let us first see how the optimization procedure works for vacuum states in 2D CFTs.

We will study more general states later in later sections.

In 2D CFTs, we can always make the general metric into the diagonal form via

a coordinate transformation. Thus the optimization is performed in the following

ansatz:

ds2 = e2�(z,x)(dz2 + dx2),

e2�(z=✏,x) = 1/✏2,
(2.5)

where the second condition specifies the boundary condition so that the discretization

is fine-grained when we read o↵ the wave function after the full path-integration. Ob-

viously this is a special example of the ansatz (2.3). Thus the metric is characterized

by the Weyl scaling function �(z, x).

Remarkably, in 2D CFTs, we know how the wave function changes under such

a local Weyl transformation. Keeping the universal UV cut o↵ ✏, the measure of the

path-integrations of quantum fields in the CFT changes under the Weyl rescaling

[47]:

[D']gab=e2��ab
= eSL[�]�SL[0] · [D']gab=�ab

, (2.6)

where SL[�] is the Liouville action6 [48] (see also [47, 49])

SL[�] =
c

24⇡

Z 1

�1
dx

Z 1

✏

dz
⇥
(@x�)

2 + (@z�)
2 + µe2�

⇤
. (2.7)

The constant c is the central charge of the 2D CFT we consider. The kinetic term

in SL represents the conformal anomaly and the potential term arises the UV regu-

larization which manifestly breaks the Weyl invariance. In our treatment, we simply

set µ = 1 below by suitable shift of �.

6Here we take the reference metric is flat ds2 = dz2 + dx2. Later in section (6), we will present
the Liouville action for a more general reference metric.
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�(z = ✏) = �0

1 General Formulation

We consider a deformation of a d dimensional CFT by a primary operator O(x) with a
position dependent coupling λ(x, z):

S = SCFT (ϕ) + ϵd−∆

∫
dxd−1dz

√
gλ(x, z)O(x, z), (1.1)

where ϕ(x, z) represent all dynamical fields in the given CFT; ∆ is the conformal dimen-
sion of the primary operator O(x, z). We assume that the metric takes the conformally
flat form

ds2 = e2φ(x,z)(dz2 + dxadxa). (1.2)

We treat the coordinate z as the Euclidean time. The basic idea is that we arrange a
lattice regularization for any given φ(x, z) such that each lattice cell has the unit area in
the metric ds2 given by (1.2). Thus, increasing φ means a fine-graining. In the original
UV theory we take

eφ(x,z) = 1/ϵ ≡ eφ0 , (1.3)

where ϵ is the fine-grained lattice spacing. Note that in the UV theory the perturbation
(1.1) looks like ϵd

∫
dxd−1dz

√
gλ(x, z)O(x, z) =

∫
dxd−1dzλ(x, z)O(x, z).

Our idea is that we can produce the correct UV wave functional by a path-integral even
if we coarse-grain the intermediate path-integration. For this we impose the boundary
condition

eφ(x,z=0) = eφ0(= 1/ϵ), (1.4)

to reproduce the original fine grained wave functional at z = 0. What we want to argue is
that there is a special choice of λ(x, z), written as λφ(x, z), such that the wave functional
does not depend on the Weyl factor φ(x, z) up to a normalization factor:

Ψ
λφ

g=e2φ [ϕ(x)] = eN [φ,λφ]−N [φ0,λ0] ·Ψλ0

g=e2φ0
[ϕ(x)]. (1.5)

We defined λφ(x, z) at φ = 0 to be λ0(x, z). The functional N [φ,λ] does not depend on
the CFT field ϕ(x, z).

Note that the wave functional is defined as usual by the path-integration:

Ψ
λφ

g=e2φ [ϕ(x)]

=

∫ ∏

x,z

[Dϕ(x, z)]e−SCFT (ϕ)−ϵd−∆
∫
dxd−1dz

√
gλφ(x,z)O(x,z) ·

∏

x

δ(ϕ(x, z = 0)− ϕ(x)).

(1.6)

The claim (1.5) seems to be equivalent to the following identity for any correlation
functions at z = 0:

⟨O1(x1, 0)O2(x2, 0) · · ·On(xn, 0)⟩
λφ

g=e2φ = ⟨O1(x1, 0)O2(x2, 0) · · ·On(xn, 0)⟩λ0

g=e2φ0
. (1.7)

1

3. We claim that 

Path Integral Complexity for the deformed model



Deformations: Free scalar 

where ∆i = hi + h̄i is the conformal dimension of each operator Oi.
We can think these agreements as a strong consistency check of our claim (1.5) for 2d

CFTs.

3 Free Scalar Example in 2D

We consider the action of the 2D free scalar:

S =
1

2

∫
dxdz

√
g∂aϕ∂aϕ+

1

2

∫
dxdz

√
gλ(x, z)ϕ(x, z)2. (3.1)

We choose λφ as follows
λφ(x, z) = λ0e

−2φ(x,z), (3.2)

where we assume λ0 is a constant.
In this case even when φ is non-trivial we have

S =
1

2

∫
dxdz∂aϕ∂aϕ+

1

2

∫
dxdzλ0ϕ(x, z)

2, (3.3)

which is just the action of massive free scalar in the flat space.
We write

ϕ(x, z) = ϕ̄(x, z) + η(x, z), (3.4)

where ϕ̄ is the classical solution which satisfies the EOM and the boundary condition
ϕ̄(x, z = 0) = ϕ(x). η is the quantum fluctuation around that. Then we get

Ψ
λφ

g=e2φ [ϕ(x)]

= e−S(ϕ) ×
∫ ∏

x,z

[Dη(x, z)]e−
1
2

∫
dxdz[(∂η)2+λ0η2] ·

∏

x

δ(η(x, z = 0)), (3.5)

where S(ϕ̄) gives the classical contribution (we performed the Fourier transformation)

S(ϕ) = 2π

∫
dk
√
k2 + λ0 ϕ̄(−k)ϕ̄(k). (3.6)

This classical part does not depend on the Weyl factor φ(x, z) clearly. The other
factor is the partition function of η with the Dirichlet boundary condition η(x, z = 0) = 0
and does not depend on the field ϕ(x). This gives an overall normalization factor which
depends on φ and λ0:

eN [φ,λφ=λ0e−2φ] =

∫ ∏

x,z

[Dη(x, z)]e−
1
2

∫
dxdz[(∂η)2+λ0η2]

∣∣∣∣∣
η(x,z=0)=0

. (3.7)

By using this normalization function, finally we obtain the relation

Ψ
λφ

g=e2φ [ϕ(x)] = eN [φ,λφ]−N [0,λ0] ·Ψλ0

g=e2φ0
[ϕ(x)]. (3.8)

3
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And derive the proportionality factor
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We can compute the correction to the Liouville action using conformal perturbation 
with the (universal) correlators on UHP (wave function)

Position dependent cut-off
[Polyakov ’81]

hO(x1, z1)O(x2, z2)i =
e
���(x1,z1)���(x2,z2)

�
|x12|2 + |z12|2 + e��(x1,z1)��(x2,z2)

��

Thus the normalization functional is evaluated as follows:
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∼ SL[φ]− SL[φ0] +
1
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∫
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∫
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2,

∼ SL[φ]− SL[φ0] +
1

4(∆− 1)
ϵ2−2∆

∫
dxdz

√
g(λφ)

2 − 1

4(∆− 1)
ϵ2−2∆

∫
dxdz(λ0)

2.

(4.14)

Therefore the normalization factor eN actually includes λ dependence. If we take
functional derivatives of N [φ,λφ] with respect to λφ(x, z = 0) = λ0(x, z = 0), this extra
contributions from N are all delta functional terms δ(x1−x2) · ·· which we can neglect. In
this way, we may show the relation (1.7) and this lead to a derivation of our claim (1.5).

Note that even if we want to confirm (1.7) only for the conformal point i.e. λ = 0, we
still need to consider the perturbation by O(x) as in (4.10). This is because to compute the
correlation function we need to first evaluate the partition function with the perturbation
and then take derivatives w.r.t. λ(x). If the identity (2.3) is true, the relation (1.7) should
be true as we already mentioned.

If we take into account higher order terms of the perturbations, we expect the following
form, keeping only terms which survive the UV limit ϵ → 0:

N [φ,λφ] = SL[φ] +

∫
dxdz

∞∑

n=0

Nn(λ0)
n+2e(2+(∆+2)(n+2))φ. (4.15)

4.5 Boundary Contribution

In the above analysis of the perturbative corrections to N , we used the regularized propa-
gator on a plane (4.12). However in the path-integral description of wave functional, there
is a boundary at z = ϵ and the propagator will be modified. If we assume the relation
(1.5), the functional N should be independent from the boundary condition. Therefore
we can take the simplest one e.g. a conformal boundary condition for the basic field. The
one point function behaves like

⟨O(x, z)⟩ = e−∆φ(x,z) · 1

(z2 + e−φ(x,z))∆/2
. (4.16)

In this case the normalization functional N is shifted by
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dx

∫ ∞

ϵ

dz
λ0(x)

(z2 + e−2φ(x,z))∆/2

≃ −b

∫
dxe(∆−1)φ(x,z=ϵ)λ0(x)

= −bϵ1−∆

∫
dxλ0(x), (4.17)
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Deformations: Perturbative 

From that, for constant coupling (neglecting derivatives) we can evaluate 
the corrections to the optimized metric

where b > 0 is an order one numerical constant, which depends on the detail of the UV
regularization.

Since this contribution does not depend on the metric φ, the one point function does
not contribute to neither our optimization procedure nor the relative complexity, but it
gives a constant negatively divergent term, assuming 1 < ∆ < 2.

4.6 Complexity Functional

As in [1, 2], we would like to argue the normalization function N [φ,λφ] is a good candidate
of complexity of wave functional, called the path-integral complexity. As we already
noted, we assume that the dimension of O is in the range 1 < ∆ < 2. Up to O(λ2

0), our
perturbative results3 lead to the complexity functional (=the normalization functional)
which we need to minimize (we rescaled λ0 as 1

4(∆−1)λ
2
0 → c

24πλ
2
0):

C[λ0]

= N [φ,λφ] +N1pt[φ,λφ]

=
c

24π

∫
dxdz

[
(∂φ)2 + e2φ + λ2

0e
(2∆−2)φ

]
− bϵ1−∆

∫
dxλ0 −

1

2
b2ϵ2−2∆

(∫
dxλ0

)2

,

(4.18)

with the boundary condition φ(z = ϵ, x) = φ0 (note eφ0 ≡ 1/ϵ). Note that since we omit
the derivatives of λ0(x) in our perturbative computations, we are actually setting it to
a constant λ0(x) = λ0. Accordingly we can focus on the solution to the EOM δC = 0
which is invariant under the shift of x i.e. φ = φ(z). We find the perturbative correction
around the λ0 = 0 solution eφ(z) = z−1 as follows:

eφ(z) = z−1

(
1− λ2

0

2(5− 2∆)
z−2∆+4 + · · ·

)
. (4.19)

We can interpret this result intuitively. The presence of relevant perturbation reduces the
degrees of freedom in the IR region and we can coarse-grain the path-integral more in the
IR region. Indeed, the function eφ(z) of (4.19) is reduced in the IR region.

Then we can estimate

(∂φ)2 + e2φ ≃ 2z−2 +
3− 2∆

5− 2∆
λ2
0z

2−2∆ + · · ·,

λ2
0e

(2∆−2)φ ≃ λ2
0z

2−2∆ + · · ·. (4.20)

Therefore the changed of the path-integral complexity is evaluated as follows

C[λ0]− C[0]

=

∫ ∞

−∞
dxλ2

0

∫ ∞

ϵ

dz
4(2−∆)

5− 2∆
z2−2∆ − bϵ1−∆

∫
dxλ0 −

1

2
b2ϵ2−2∆

(∫
dxλ0

)2

.

(4.21)

3To see this, note that N = N0 − ⟨
∫
λO⟩+ 1

2 ⟨(
∫
λO)(

∫
λO)⟩ − 1

2 ⟨
∫
λO⟩⟨

∫
λO⟩+ · · ·.
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After a careful treatment of on-point functions we derive a “universal” form of the 
Deformed Complexity Action
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with the boundary condition φ(z = ϵ, x) = φ0 (note eφ0 ≡ 1/ϵ). Note that since we omit
the derivatives of λ0(x) in our perturbative computations, we are actually setting it to
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where b > 0 is an order one numerical constant, which depends on the detail of the UV
regularization.

Since this contribution does not depend on the metric φ, the one point function does
not contribute to neither our optimization procedure nor the relative complexity, but it
gives a constant negatively divergent term, assuming 1 < ∆ < 2.

4.6 Complexity Functional

As in [1, 2], we would like to argue the normalization function N [φ,λφ] is a good candidate
of complexity of wave functional, called the path-integral complexity. As we already
noted, we assume that the dimension of O is in the range 1 < ∆ < 2. Up to O(λ2
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with the boundary condition φ(z = ϵ, x) = φ0 (note eφ0 ≡ 1/ϵ). Note that since we omit
the derivatives of λ0(x) in our perturbative computations, we are actually setting it to
a constant λ0(x) = λ0. Accordingly we can focus on the solution to the EOM δC = 0
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where b > 0 is an order one numerical constant, which depends on the detail of the UV
regularization.

Since this contribution does not depend on the metric φ, the one point function does
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…

What about geometry? Time slice of AdS/CFT geom?



Deformations: Perturbative gravity

Consider the holographic setup

S =
1

2

Z
d3x

p
�g


R� ⇤� 1

2
(@�)2 � 1

2
m2�2

�

� = 1 +
p

1 +m2With mass related to 

To the leading order, we identify the scalar with our coupling 

�(z, x) ' �0(x)e
(��2)�(z,x) +O(�2

0)

and look for perturbative solutions

means that (2.3) does not hold near the divergent points in the x, z integrals. Indeed this
is the reason why we have non-tirivial β function and RG flow in QFTs. In this way, we
find that (4.26) is only true in classical theory and should be modified in quantum theory,
which is given by (4.8) with λφ defined by (4.5) with the boundary condition λφ=φ0 = λ0.
Moreover, the functional G[φ] should depend also on λ due to quantum effects.

Then let us ask what will happen if we calculate the correlation functions by taking
derivatives of the actual (regularized) partition function. For this, note that the identity
(2.3) is only violated (due to the position dependent UV cut off (4.12)) when two points get
very close (xi, zi) → (xj, zj). This suggests that the concerned modifications of correlation
functions are all local terms i.e. the delta functional terms (contact terms). If so, we can
ignore this problem.

5 Comparison with AdS/CFT

Now we would like to compare our optimization result for the relevant perturbation with
the AdS/CFT. We consider the setup of Einstein gravity coupled to a single massive scalar
Φ:

Igravity =
1

16πGN

∫
dd+1x

√
−G

[
R− 1

2
(∂Φ)2 +

d(d− 1)

L2
− 1

2
m2Φ2

]
. (5.1)

We will set L = 1 below. The conformal dimension of the operator O dual to Φ is given

by ∆ = d
2 +

√
d2

4 +m2L2. When we add the external perturbations given by (4.10),

accordingly to the standard bulk to boundary relation, the solution of the scalar field Φ
looks like

Φ(z, x) = zd−∆λ0(x) + z∆⟨O(x)⟩+ · · ·. (5.2)

This motivates us to identify the bulk scalar in AdS as our running coupling constant(4.9):

Φ(z, x) ≡ ϵd−∆λφ(z, x) = λ0(x)e
(∆−d)φ +O(λ2

0). (5.3)

Now let us focus on the AdS3/CFT2. We can refer to [7] for the perturbative solution
to the Einstein equation. We assume λ(x) is a constant λ0. It takes the form4

ds2 =
1

y2
(
dy2 + f(z)(−dt2 + dx2)

)
,

f(z) = 1− λ2
0

4
z4−2∆ +

∞∑

k=1

ak
(
λ0z

2−∆
)k+2

, (5.4)

4Here we neglect the expansions from the normalizable mode f(z) = · · ·+ z2(b1 + ...).
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and
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very close (xi, zi) → (xj, zj). This suggests that the concerned modifications of correlation
functions are all local terms i.e. the delta functional terms (contact terms). If so, we can
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(∆−d)φ +O(λ2

0). (5.3)

Now let us focus on the AdS3/CFT2. We can refer to [7] for the perturbative solution
to the Einstein equation. We assume λ(x) is a constant λ0. It takes the form4

ds2 =
1

y2
(
dy2 + f(z)(−dt2 + dx2)

)
,

f(z) = 1− λ2
0

4
z4−2∆ +

∞∑

k=1

ak
(
λ0z

2−∆
)k+2

, (5.4)

4Here we neglect the expansions from the normalizable mode f(z) = · · ·+ z2(b1 + ...).
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Deformations: Gravity

Taking the time-slice of the perturbative solution and an ansatz:
If we take the time slice t = 0 and redefine the coordinate y into z = z(y) so that the

metric takes the conformal gauge form, then we find

ds2 = e2φ(z)(dz2 + dx2),

eφ(z) ≃ z−1

(
1− 2−∆

5− 2∆
λ2
0z

4−2∆

)
,

z ≃ y

(
1 +

λ2
0

2(5− 2∆)
y4−2∆

)
. (5.5)

This metric agrees with (4.19) up to a numerical O(1) factor, which depends on the details
of UV regularization and normalization of the operator O.

It is also intriguing to note that the form of f(z) (5.4) w.r.t λ0 perturbation agrees
with the general form (4.15).

6 Conclusions
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A Analysis of Massive Free Scalar

A.1 Conventions

First we summarize the conventions in the paper [3]. Consider a free scalar in the 2d
space with the metric

ds2 = e2σ(x)(dx2
1 + dx2

2), (A.1)

which is also written as gab = e2σδab. We set the reference metric g0 to be the flat metric
σ = 0.

The standard free massive scalar action is given by

Iscalar =

∫
dx2√g

[
gab∂aϕ∂bϕ+m2ϕ2

]
. (A.2)

We define the Laplacian as
∆g = −e−2σ∂a∂a. (A.3)

Note also that the flat space Laplacian is expressed as ∆0 = −∂a∂a. The Green function
G(x, y; g) is defined by

∆gG(x, y; g) = δ(x− y)/
√
g. (A.4)
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Extended Symmetries
How to generalise our prescription to CFTs with extended symmetries        
(Potts model, W algebras, etc.) ?

the expansion of the lattice parafermion operators that we elucidate below proved key to the en-
tire analysis. The present manuscript thus puts these earlier results on firmer footing and greatly
expands them. We expect the methodology pursued here to enable similar progress in other lattice
systems, possibly paving the way to constructions of still more exotic two-dimensional phases of
matter from critical chains.

2 The three-state Potts model and its symmetries

An obvious way to generalize the two-dimensional classical Ising model is to replace the variable
on each site by a q-state “spin”. When the interactions are nearest neighbor and only depend on
whether the adjacent spins are the same or di↵erent, this is known as the q-state Potts model. In
an isotropic system, there is then just one coupling, which can be taken to be the temperature.
With ferromagnetic interactions, the model orders at low temperatures and remains disordered at
high temperatures, as with Ising. Also as with Ising, there is a duality symmetry exchanging high
and low temperatures, and the phase transition occurs at the self-dual point. As opposed to Ising,
however, this phase transition is first order for q > 4 [25]. There does occur a self-dual critical
point in a q-state model when the Sq symmetry permuting the spins is broken down to Zq. This
“parafermion” [15] critical point is integrable [26]; conserved charges have been computed explicitly
[27]. Much of what we say in the following has an analogue for general q, but there the fine tuning
necessary to extract the physics of interest is considerable. We therefore will confine our analysis
to the three-state Potts model.

2.1 The Hamiltonian and the spin operators

It is both intuitively and technically convenient to study the physics of the three-state Potts model
by taking an anisotropic limit where the system can be described by a quantum Hamiltonian.
Taking this approach also has the advantage of making direct contact with the physics discussed in
Ref. [18]. The Hilbert space for an L-site chain is (C3)⌦L, i.e., a three-state system at each lattice
site. The S3 symmetry permutes the three orthogonal basis states on each site. The Hamiltonian
for the three-state Potts quantum chain is

H = �J
X

a

�
�̂†
a+1�̂a + �̂†

a�̂a+1

�
� f

X

a

�
⌧̂ †a + ⌧̂a

�
. (1)

Throughout we assume J, f > 0. The operator ⌧̂a shifts the spin on site a 2 Z, while �̂a measures
its value. Precisely, denoting the three states by A, B and C, the operators on a particular site can
be written as

�̂ = |AihA|+ !|BihB|+ !2
|CihC| =

0

@
1

!
!2

1

A , (2)

⌧̂ = |BihA|+ |CihB|+ |AihC| =

0

@
1

1
1

1

A . (3)

where ! = e2⇡i/3. These operators obey the algebra

�̂3
a = 1 , ⌧̂3a = 1 , �̂a⌧̂a = !⌧̂a�̂a , �a⌧b = ⌧b�a for a 6= b. (4)
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For J > f the ground state forms a ferromagnet that spontaneously breaks the S3 symmetry, while
for f > J a disordered paramagnetic phase arises. At the phase transition point J = f the system
is critical; we defer discussion of its critical properties to the next section.

Equation (1) exhibits a number of symmetries that play an important role throughout this
paper. On an infinite chain (or a chain with periodic boundary conditions), the Hamiltonian
preserves simple translations that shift the �̂a, ⌧̂a operators by one site. The Hamiltonian’s full S3

permutation symmetry can be usefully decomposed into a Z3 symmetry—which cyclically permutes
|Ai, |Bi and |Ci—and a unitary ‘charge conjugation’ operation C that swaps |Bi $ |Ci. The Z3

symmetry is generated by

Q =
Y

a

⌧̂ †a (5)

and transforms operators according to Ô ! QÔQ
†. In particular, we have

�̂a ! !�̂a, ⌧̂a ! ⌧̂a. (6)

One can therefore say that �̂a carries ‘charge’ Q3 = 1 under Z3 whereas ⌧̂a is neutral. Here we take
!Q3 to be the eigenvalue under Q, so thus Q3 is defined modulo 3. Charge conjugation C acts on
operators Ô via

C[Ô] =

 
Y

a

Ĉa

!
Ô

 
Y

a

Ĉa

!
. (7)

where Ĉa�̂aĈa = �̂†
a, Ĉa⌧̂aĈa = ⌧̂ †a and Ĉ2

a = 1. Note that C swaps the sign of the Z3 charge carried
by �̂—hence the term ‘charge conjugation’. The Hamiltonian is also invariant under both parity
(spatial inversion) and time-reversal symmetry. Parity takes site a to site �a; that is, P[�̂a] = �̂�a

and P[⌧̂a] = ⌧̂�a. The time-reversal generator T is anti-unitary and conjugates �̂a (T [�̂a] = �̂†
a)

but leaves ⌧̂a invariant (T [⌧̂a] = ⌧̂a).

2.2 Dual variables

While the preceding section enumerated the complete set of symmetries manifest in the three-state
Potts Hamiltonian expressed in terms of the spin operators �̂a and �̂†

a, additional symmetries are
revealed upon recasting the model in dual variables. Namely, disorder operators [6] can be defined
here using a generalization of the Kramers-Wannier duality of the Ising model. In the quantum
Hamiltonian limit they are defined as

µ̂b ⌘
Y

a<b

⌧̂a, b 2 Z+ 1
2 , (8)

which live on bonds between sites of the original lattice. We use conventions where these bonds
are labeled by half-integers—e.g., the bond between sites a and a + 1 is denoted by b = a + 1

2 .
The disorder operator µ̂b in e↵ect adds a domain wall between sites b� 1

2 and b+ 1
2 by cycling all

spins to the left of bond b. Conjugating the Hamiltonian by the disorder operator, µ̂bHµ̂†
b, leaves

all terms invariant except for the ferromagnetic J term that couples sites b± 1
2 . This suggests that

the operator conjugate to µ̂b ought to be

⌫̂b ⌘ �̂†
b� 1

2

�̂
b+ 1

2

. (9)

5

we can cyclically permute A->B->C at each site

Critical point (J=f) described by the simplest CFT with spin 3 currents W, W 
_
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1) MERA with symmetries
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FIG. 8. In order to preserve a (global) symmetry specified by symmetry group G, the tensors
u and w comprising the MERA are chosen to be invariant under the action of a unitary
representation Vg of symmetry group G, see also Eq. 16.

the MERA, we choose the disentanglers u and isometries w such that,

(Vg ⊗ Vg) u (Vg ⊗ Vg)
† = u,

(Vg ⊗ Vg ⊗ Vg) w (Vg)
† = w, (16)

where Vg acting on different indices may actually denote different (in general, reducible)
representations of G, see also Fig. 8. The use of symmetry preserving tensors implies
that the tensors are block diagonal when viewed in a certain basis and thus contain
less free parameters than generic tensors. This reduction in the number of parameters
can be exploited to significantly decrease computational costs. Symmetries, and in
particular a truncated version of the operator Γg, also play an important role in the
description of non-local scaling operators, as discussed in Sect. IVD.

IV. SCALE-INVARIANT MERA

We have already introduced the scale-invariant MERA: in a lattice L with an infinite
number of sites, N → ∞, it consists of infinitely many layers of tensors, where all the
disentanglers and isometries are copies of a unique pair u and w. In this section we
enumerate two significant structural properties of the scale-invariantMERA and review
how one can compute a local reduced density matrix, from which the expectation value
of a local operator can be evaluated. Then we discuss the three types of scale-invariant
(or covariant) objects one can extract from it.

A. Basic Properties

Two basic features of the scale-invariant MERA in D = 1 dimensions match well-
known properties of the ground state of a critical system. Firstly, the entanglement
entropy SL of a block of L contiguous sites can be seen to scale as the logarithm of L
[9], which is compatible with the critical scaling [40, 41],

SL ≈
c

3
log(L), (17)
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FIG. 7. We investigate translation invariance in the scale-invariant MERA by comparing the
bond energy E(r) over 30 contiguous lattice sites with the average bond energy Ē from all
sites, as measured with the critical Ising Hamiltonian, HIsing, of Eq. 36. For a randomly
initialized χ = 4 scale-invariant MERA, the large fluctuations of bond energies indicate the
state is highly non-translationally invariant. Once the MERA has been optimized for the
ground state of HIsing, it more closely approximates translation invariance; bond energies now
differ from the average by less than 0.1%. As the bond dimension χ of the MERA is increased,
the optimized wavefunction better approximates translation invariance; for χ = 16 the bond
energies differ from the average energy by less than 0.001%.

B. Global Internal Symmetries

A second important class of symmetries are those involving internal degrees of free-
dom, such as Z2 spin flips and U(1) or SU(2) spin rotations simultaneously applied
on all the sites of a spin model. Such symmetries can be enforced and exploited in all
tensor networks.

Let us assume that the Hamiltonian H of our lattice model is invariant under a
symmetry group G,

Γg H Γ†
g = H, ∀g ∈ G, (15)

where Γg ≡ · · ·Vg ⊗ Vg ⊗ Vg · · · is an infinite string of copies of a matrix Vg, with Vg a
unitary representation of G, and let |ψ⟩ be the ground state of H , which we will assume
to have the same symmetry, i.e. Γg|ψ⟩ = |ψ⟩ (or, more generally, Γg|ψ⟩ = eiφ|ψ⟩).
We can then ensure that the symmetry is also exactly preserved in a tensor network
approximation to |ψ⟩ by using symmetry preserving tensors [38, 39]. For instance, for
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States are invariant:

Tensors satisfy extra constraints (block diagonal in a certain basis)

More constraints=Lower computational cost!

[Vidal, Singh, Pfeifer.’11]

Important question: States with non-trivial properties under the symmetry action? 
Primary operators with W-charge and TN?
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Step back: Liouville optimization

For our excited states-solutions it reads

T (w) = �
a2 � 1

2�2w2
, A(w) = wa

T (w) =
a2 + 1

2�2w2
, A(w) = wia, (4.18)

If we also choose ”F-G” like solution as above we get

T (w) = �
a2

2
, A(w) = ewa (4.19)

and for the TFD

T (w) =
2⇡2

�2
, A(w) = e

2⇡i
� w. (4.20)

Our action has also slightly di↵erent normalisation so we get a constant proportional to c.

There is in fact known identification between the Liouville stress-tensor and the second order

expansion of the metric in Fe↵erman-Graham coordinates so our match to Liouville is maybe

not surprising.

5 Banados geometries

The most general 3d solutions in Fe↵erman-Graham coordinates are

ds2 = R2dr
2

r2
�

✓
rdx+

�R2L�dx�

r

◆✓
rdx�

�R2L+dx+

r

◆
(5.1)

where x± = (t± �) 2 [0, 2⇡] and L± = L±(x±) are two smooth and periodic functions. The

coordinate patch covers the range r4 > R4L+L� and boundary is at r = 1.

The constant L± correspond to: L+ = L� = �1/4 global AdS3; �1/4 < L± < 0 to conical

defects; L� = L+ = 0 to massless BTZ, and generic constant L± to generic BTZ black hole

with mass equal to (L+ + L�)/4G and angular momentum R(L+ � L�)/4G.

The map to a 2d CFT is given by

c

6
L+ = hT (x+)i,

c

6
L� = hT̄ (x�)i (5.2)

In fact there is a natural way to link these geometries with solutions of the Liouville equations

(not sure how with our story yet though). As we can see below, two: holomorphic and anti-

holomorphic, functions specify a Liouville field.

6 Classical Liouville and integrability

Up to now, everything that we considered was the classical Liouville theory. In general, our

solutions �(w, w̄) satisfy

4@w@w̄�(w, w̄) = e2�(w,w̄) (6.1)
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Based on the above considerations as well as the evidence provided in the follow-

ing section, we are naturally lead to a conjecture that a computational complexity C 
of a state | i is obtained from the functional introduced before by a minimization:

C = Mingab(z,x) [I [gab(z, x)]] . (2.4)

In other words, the functional I [gab(z, x)] for any gab(z, x) estimates the amount of

complexity for that network corresponding to the (partially optimized) path-integral

on the space with the specified metric. Understanding of the properties of this

complexity functional I , which might appropriately be called “Path-integral Com-

plexity”, is the central aim of this work. As we will soon see, this functional will be

closely connected to the mechanism of emergent space in the AdS/CFT.

2.3 Optimization of Vacuum States in 2D CFTs

Let us first see how the optimization procedure works for vacuum states in 2D CFTs.

We will study more general states later in later sections.

In 2D CFTs, we can always make the general metric into the diagonal form via

a coordinate transformation. Thus the optimization is performed in the following

ansatz:

ds2 = e2�(z,x)(dz2 + dx2),

e2�(z=✏,x) = 1/✏2,
(2.5)

where the second condition specifies the boundary condition so that the discretization

is fine-grained when we read o↵ the wave function after the full path-integration. Ob-

viously this is a special example of the ansatz (2.3). Thus the metric is characterized

by the Weyl scaling function �(z, x).

Remarkably, in 2D CFTs, we know how the wave function changes under such

a local Weyl transformation. Keeping the universal UV cut o↵ ✏, the measure of the

path-integrations of quantum fields in the CFT changes under the Weyl rescaling

[47]:

[D']gab=e2��ab
= eSL[�]�SL[0] · [D']gab=�ab

, (2.6)

where SL[�] is the Liouville action6 [48] (see also [47, 49])

SL[�] =
c

24⇡

Z 1

�1
dx

Z 1

✏

dz
⇥
(@x�)

2 + (@z�)
2 + µe2�

⇤
. (2.7)

The constant c is the central charge of the 2D CFT we consider. The kinetic term

in SL represents the conformal anomaly and the potential term arises the UV regu-

larization which manifestly breaks the Weyl invariance. In our treatment, we simply

set µ = 1 below by suitable shift of �.

6Here we take the reference metric is flat ds2 = dz2 + dx2. Later in section (6), we will present
the Liouville action for a more general reference metric.
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Equivalently we can write this equation as

This network corresponds to the metric

e2� =
n (2k✏)�2 (z � 2k✏).

z�2 (z < 2k✏).
(2.18)

Obviously, the first and third term in (2.17) are approximated by the Liouville po-

tential integral
R
e2� [19]. The second term arises because of the non-zero gradient

of � and is estimated by the kinetic term
R
(@�)2 [51].

3 Optimizing Various States in 2D CFTs

Here we would like to explore optimizations in 2D CFTs for more general quantum

states. First it is useful to remember that the general solutions to the Liouville

equation (2.10) is well-known (see e.g.[47, 52]):

e2� =
4A0(w)B0(w̄)

(1� A(w)B(w̄))2
. (3.1)

Note that functions A(w) and B(w̄) describe the degrees of freedom of conformal

mappings. For example, if we choose

A(w) = w, B(w̄) = �1/w̄, (3.2)

then we reproduce the solution for vacuums states (2.11).

3.1 Finite Temperature States

Consider a 2D CFT state at a finite temperature T = 1/�. In the thermofield double

description [53], the wave functional is expressed by an Euclidean path-integral on

a strip defined by �
�

4 (⌘ z1) < z < �

4 (⌘ z2) in the Euclidean time direction, more

explicitly

 ['̃1(x), '̃2(x)] =

Z 0

@
Y

x

Y

��
4<z<

�
4

D'(z, x)

1

A e�SCFT (')

⇥

Y

�1<x<1
�
�
' (z1, x)�'̃1(x)

�
�
�
' (z2, x)�'̃2(x)

�
.

(3.3)

where '̃1(x) and '̃2(x) are the boundary values for the fields of the CFT (i.e. '̃(x))

at z = ⌥
�

4 respectively.

Minimizing the Liouville action SL leads to the solution in (3.2) given by:

A(w) = e
2⇡iw
� , B(w̄) = �e

2⇡iw̄
� . (3.4)

This leads to

e2� =
16⇡2

�2

e
2⇡i
� (w+w̄)

⇣
1 + e

2⇡i
� (w+w̄)

⌘2 =
4⇡2

�2
sec2

✓
2⇡z

�

◆
. (3.5)
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One can show that if �(w, w̄) satisfy the Liouville equation, it also satisfies

@2
w
e��(w,w̄) =

⇥
(@w�)

2
� @2

w
�
⇤
e��(w,w̄)

@2
w̄
e��(w,w̄) =

⇥
(@w̄�)

2
� @2

w̄
�
⇤
e��(w,w̄) (6.2)

@2
w
e��(w,w̄) = T (w)e��(w,w̄)

@2
w̄
e��(w,w̄) = T̄ (w̄)e��(w,w̄) (6.3)

The above equation is just a simple identity but if we define

T (w) =
1

2

⇥
@2
w
�� (@w�)

2⇤ = {A(w), w}

T̄ (w̄) =
1

2

⇥
@2
w̄
�� (@w̄�)

2⇤ = {B(w̄), w̄}, (6.4)

and insist that they are holomorphic and anti-holomorphic stress tensors

@wT̄ (w̄) = 0, @w̄T (w) = 0, (6.5)

then we need to impose the Liouville equation.

The proof in the other direction is actually constructive gives a direct link to the monodromy.

We can write a general solution to the above system as

e��(w,w̄) = f1(w)f̄1(w̄) + f2(w)f̄2(w̄) (6.6)

where fi(w) and f̄i(w̄) are two linearly independent solutions of

@2
w
fi(w) + 2T (w)fi(w) = 0, @2

w̄
f̄i(w̄) + 2T̄ (w̄)f̄i(w̄) = 0 (6.7)

and normalization is such that Wronskians are one

f2f
0

1 � f1f
0

2 = 1, f̄2f̄
0

1 � f̄1f̄
0

2 = 1. (6.8)

We can then show that

�(w, w̄) = � log


i

2

�
f1f̄1 + f2f̄2

��
(6.9)

is a solution of the Liouville equation (imposing the normalization).

7 Time dependent solutions

Let us consider two time-dependent solutions that are locally AdS3.

The spinning BTZ black hole

ds2 = �
(r2 � r2+)(r

2
� r2

�
)

r2
dt2 +

r2

(r2 � r2+)(r2 � r2�)
dr2 + r2

⇣
d��

r+r�
r2

dt
⌘2

(7.1)
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Two-holomorphic functions
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Given by

Mathematically: Specifying them + bdr. cond.=Our optimized background



A natural candidate: Toda action
In is useful to write TFT action explicitly in reference metric ĝab on a surface

ATFT =

∫ (
1

8π
ĝab(∂aϕ, ∂bϕ) +

(Q,ϕ)

4π
R̂ + µ

n−1∑

k=1

eb(ek ,ϕ)

)
√

ĝ d2x, (1.6)

here R̂ is the scalar curvature of the background metric.1 If the background charge Q is

related with the parameter b as

Q =

(
b +

1

b

)
ρ (1.7)

with ρ being a Weyl vector (half of the sum of all positive roots), then the theory (1.6)

is conformaly invariant.2 Moreover it ensures higher-spin symmetry: there are n − 1

holomorphic currents Wk(z) with the spins k = 2, 3, . . . , n, which are expressed through

the field ϕ via the Miura transformation [23]

n−1∏

i=0

(q∂ + (hn−i, ∂ϕ)) =
n∑

k=0

Wn−k(z)(q∂)k , (1.8)

where

q = b + 1/b (1.9)

and vectors hk are the weights of the first fundamental representation π1 of the Lie algebra

sl(n) with the highest weight ω1 (first fundamental weight)

hk = ω1 − e1 − · · ·− ek−1. (1.10)

In particular, it follows from Eq (1.8), that the currents W0(z) = 1, W1(z) = 0 and the

current

W2(z) = T (z) = −
1

2
(∂ϕ)2 + (Q, ∂2ϕ)

is the stress-energy tensor of the theory, which ensures local conformal invariance of TFT.

The currents Wk(z) form closed Wn algebra, which contains as subalgebra the Virasoro

algebra with the central charge

c = n − 1 + 12Q2 = (n − 1)(1 + n(n + 1)(b + b−1)2). (1.11)

This Wn algebra represents only the chiral part of the algebra of generators of the symmetry,

which governs the theory. Total algebra is a tensor product of the both holomorphic and

antiholomorphic algebras Wn ⊗ Wn.

Basic objects of conformal Toda field theory are the exponential fields parameterized

by a (n − 1) component vector parameter α

Vα = e(α,ϕ), (1.12)

1Bellow we consider mainly the case of sphere, in order to avoid the problem with moduli. It is useful

to choose the metric ĝab = δab everywhere except the north pole (z = ∞), where the curvature is located.

Such a choice prescribes the asymptotic ϕ = −Q log |z| + . . . at z → ∞.
2More strictly, it becomes to be invariant under the combined Weyl transformation: ĝab → Ω(x)ĝab and

ϕ → ϕ − Q log Ω(x).
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functions, which can be expressed in terms of known functions. In section 2 we present

the derivation of the proposed three-point correlation function (1.39) by using the special

properties of the operator algebra of degenerate fields. In sections 3 and 4 the semiclassical

analysis of the theory is developed. In the section 3 we study the case, when all exponential

fields in correlation function are ”heavy” (i. e. have parameters proportional to the opposite

coupling constant) and in the section 4 we study the case, when all exponential fields are

”light” (i. e. have parameters proportional to the coupling constant). In section 5 we

study the minisuperspace approach to the sl(n) TFT. We show, that in the case of light

exponential fields, as well as in the minisuperspace limit, three-point correlation function

can be expressed in terms of finite dimensional integrals. In both cases, semiclassical and

minisuperspace asymptotic is in complete agreement with the proposed quantum results.

The calculation details and useful formulae are given in the appendices.

In the second part of this paper [22] we will give more detailed description of the cor-

relation functions in conformal TFT, which can be expressed in terms of finite dimensional

Coulomb integrals.

1. Toda Field Theory

We start by recalling some basic facts and notions. The Lagrangian of the sl(n) conformal

TFT has the form

L =
1

8π
(∂aϕ)2 + µ

n−1∑

k=1

eb(ek ,ϕ), (1.1)

here ϕ is the two-dimensional (n − 1) component scalar field ϕ = (ϕ1 . . .ϕn−1), b is the

dimensionless coupling constant, µ is the scale parameter called the cosmological constant

and (ek,ϕ) denotes the scalar product, where vectors ek are the simple roots of the Lie

algebra sl(n) with the matrix of the scalar products Kij = (ei, ej) (Cartan matrix)

Kij =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 . . . . . . 0

−1 2 −1 . . . . . . 0

0 −1 . . . . . . . . . . . . . .

. . . . . . . . . . . . . . −1 0

0 . . . . . . −1 2 −1

0 . . . . . . 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.2)

In the following we will use standart for the two-dimensional physics complex notations:

z = x1 + ix2, z̄ = x1 − ix2, ∂ =
∂

∂z
, ∂̄ =

∂

∂z̄
(1.3)

and introduce the notation for the measure

d2z = dx1dx2. (1.4)

Total normalization of the Lagrangian (1.1) is chosen in such a way, that

ϕi(z, z̄)ϕj(0, 0) = −δij log |z|2 + . . . at z → 0. (1.5)
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ei simple roots of sl(n)

For sl(3) we can write the equations in a form

The constant of integration in Eq (3.7) can be fixed by the condition15

Sreg
class

∣∣∣
P

i(ηi,ωk)=2
=

N∑

i<j

(ηi, ηj) log |zi − zj |2. (3.8)

In the case of sl(3) TFT it is convenient to introduce the projection of the field φ on the

fundamental weights ωk, k = 1, 2:

Φk = (φ,ωk). (3.9)

In terms of fields Φk equation (3.5a) has a form

∂∂̄Φ1 = πµb2e2Φ1−Φ2, (3.10a)

∂∂̄Φ2 = πµb2e2Φ2−Φ1. (3.10b)

General solution to the system of equations (3.10) can be obtained by introducing the

holomorphic currents

T = (∂Φ1)
2 + (∂Φ2)

2 − ∂Φ1∂Φ2 − ∂2Φ1 − ∂2Φ2 (3.11)

and

W =

(
∂Φ1(∂Φ2)

2 + ∂Φ1∂
2Φ1 −

1

2
∂Φ1∂

2Φ2 −
1

2
∂3Φ1

)
−

−
(
∂Φ2(∂Φ1)

2 + ∂Φ2∂
2Φ2 −

1

2
∂Φ2∂

2Φ1 −
1

2
∂3Φ2

)
. (3.12)

Using Eq (3.10), one can easily verify that ∂̄T = ∂̄W = 0. In a similar way, if we change

∂ → ∂̄ in (3.11) and (3.12), we obtain anti-holomorphic currents T̄ and W̄. It follows from

the explicit form of the currents T and W, that field e−Φ1 satisfies both holomorphic and

anti-holomorphic linear differential equations of the third order
(
−∂3 +

1

2
∂T + T∂ + W

)
e−Φ1 = 0, (3.13a)

(
−∂̄3 +

1

2
∂̄T̄ + T̄∂̄ + W̄

)
e−Φ1 = 0 . (3.13b)

Similar equations for e−Φ2 with changed sign before W and W̄ are also valid16. Differential

equations (3.13) will play an important role in the following.

From the other hand, equations (3.13a) and (3.13b), being viewed as a system of

linear holomorphic and anti-holomorphic differential equations with arbitrary functions

T(z), T̄(z̄), W(z) and W̄(z̄) can be used to solve the system (3.10). Namely, let Ψk = Ψk(z)

are three linearly independent solutions to Eq (3.13a) and Ψ̄k = Ψ̄k(z̄) are three linearly

15In quantum case this condition means, that correlation function ⟨Vα1
(z1, z̄1) . . . VαN

(zN , z̄N) is trivial

in the case, then
P

αk = 2Q. Namely, correlation function has a multiple pole under this condition with

residue expressed in terms of free field correlation function without screening fields (see Eq (1.21)).
16It is evident because current T(z) is symmetric and current W(z) is antisymmetric under the substitution

1 ↔ 2.
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Similar for the second field.

Our setup? B.C.?                                                                    
Classical W-geom: Embedding into to CP^n

T,W
determine the opt. 

geometry

[Gervais & Matsuo….]



TN and RT

Time slice of AdS?

RT formula in tensor networks!?

[Swingle ’12]

Driving force behind AdS/TN developments
[Harlow-Pastawski-Preskill-Yoshida,Hayden-Nezami-Qi-Thomas-Walter-
Yang, Pastawski-Preskill, Evenbly, Czech….]



Entanglement Entropy and cTN

SA =
c

6

Z

@⌃+

e�ds ds2 = e2�(w,w̄)dwdw̄

Integral is a “Radon transform” and for a general solution yields (single interval)

and for a general geodesic parametrized by (z(t), x(t)), we have

ds =
p
x02 + z02dt. (D.3)

Moreover, it is important to note that all our ”optimized” vacuum solutions not only

satisfy the Liouville equation but also

@x�(z) = @z�(z) + e�(z) = 0. (D.4)

Notice also, that because we are interested in the regularized curve, we can just

compute the entanglement entropy by (twice) the integral from the boundary to

some distance in the bulk (turning point of the geodesic). That implies, using (D.4)

Sl '
c

3

Z
L̃

✏

e�(z)dz = �
c

3

Z
L̃

✏

@z�(z)dz = �
c

3
[�(z)]L̃

✏
(D.5)

This is clear for the vacuum solution

�0(z) = � log (z) (D.6)

and for L̃ = l we obtain the usual result for the entropy.

In general we can consider an arbitrary conformal transformation of the Liouville

field of the ”vacuum” by chiral and anti chiral functions (w, w̄) ! (f(w), g(w̄)).

Under such transformation, Liouville field itself transforms as

�(f, g) = �(w, w̄)�
1

2
log (f 0(w)g0(w̄)) . (D.7)

This is still a solution of the Liouville equation with negative curvature (hyperbolic)

and, in our approach, leads to a particular CFT state. Interestingly, we can then

compute the entanglement entropy for such solution and after the line integral (D.2),

we obtain

Sl =
c

12
log

✓
(f(w1)� f(w2))2

f 0(w1)f 0(w2)✏2

◆
+

c̄

12
log

✓
(g(w̄1)� g(w̄2))2

g0(w̄1)g0(w̄2)✏2

◆
. (D.8)

Curiously, from the general solution of the Liouville equation, we can now see that

that this result itself can also be written as a Liouville field and satisfies the Liouville

equation but with positive curvature [71] and the space described by the end-points

of the interval. It appears that these two Liouville fields can obtained form each

other by simple analytic continuation (see also [51]) but the physical significance of

this fact is far from obvious and remains to be elucidated.

Nevertheless, given (D.8), we can still apply the first law and compute the stress-

tensor. Namely, if we set w2 = w1 + l and w̄2 = w̄1 + l, we can expand for small

interval l

Sl =
c+ c̄

6
log

l

✏
�

l2

6

⇣ c

12
{f(w1), w1}+

c̄

12
{g(w̄1), w̄1}

⌘
+O(l3) (D.9)
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After setting w=iu, w=iv, A=B and EE satisfies (continued) Liouville equation 

@u@v

✓
�6

c
SA

◆
= � 1

✏2
e2(�

6
cSA) [de Boer,Heller,Hael,Myers’16]

Entanglement entropy is reproduced from the following formula (~RT on cTN)

[Czech’17]



Higher spin entanglement entropies

From the generalization of RT to Chern-Simons with higher SL(n,R)xSL(n,R)

3, we introduced the idea that in more general states where new operators (other than the

stress tensor) acquire an expectation value, one would have to expand the discussion to

consider new fields on the moduli space to account for these operators. In this section, we

wish to provide an explicit example of this generalization in the context of d = 2 CFTs

with higher spin symmetries. In particular, we will consider a theory with a conserved spin-

three current. At the linearized level, we have seen that there are new nonlocal observables

(3.35) associated with the right- and left-moving components of this current and that these

satisfy linearized wave equations (3.38) on the moduli space. In the following, we will

demonstrate that the latter extend to nonlinear equations where the fields corresponding

to the spin-three current and to the entanglement entropy develop local interactions with

each other on dS2⇥dS2.

More specifically, we will consider a theory with only spin-two and spin-three fields,

which can be described by a SL(3,R)⇥ SL(3,R) Chern-Simons theory (for a review with

an emphasis on black hole solutions see e.g., [61]). The most general solution of the field

equations is described by a flat gauge field subject to suitable boundary conditions, the

latter encoding the expectation values of the stress-tensor and spin-three currents in the

dual CFT. In keeping with the general philosophy of this paper, we would like to probe

such backgrounds both with ordinary entanglement entropy as well as with a spin-three

generalization thereof. The existence and definition of such a generalization of entanglement

entropy was proposed in [62] and some additional features were discussed in [63]. The spin-

three entanglement entropy of [62] can be viewed as a generalization of the expressions for

ordinary entanglement entropy in higher spin theories in terms of Wilson lines originally

proposed in [64, 65]. These two proposals were shown to be equivalent in [66] and were

tested against CFT computations in [67, 68], for more recent work see [69] and references

therein. In this section we will consider theories holographically dual to classical Chern-

Simons theory, i.e., we assume a large central charge (equivalently, a large Chern-Simons

level k).

We will be interested in computing the entanglement entropy in nontrivial states in

Lorentzian signature and in particular we will not be turning on any chemical potentials

or any sources for the higher spin currents. In the presence of such sources there are

di↵erent types of boundary conditions depending on whether one takes a Lagrangian or

Hamiltonian point of view [70] but we will not have to worry about this issue. Thanks to

this the proposals of [64, 65] and [62] can be phrased as follows. In Chern-Simons theory

one has two gauge fields A and Ā, one for each copy of the gauge group. Entanglement

entropy for the interval with endpoints P,Q is computed by constructing the open Wilson

loop W(P,Q) from P to Q for A, the open Wilson loop W̄(Q,P ) from Q to P for Ā, and

then to evaluate

SR(P,Q) = cR log TrR(W̄(Q,P )W(P,Q)) (5.1)

with a suitable normalization and in a suitable representation R. Depending on the choice

of representation R, di↵erent types of entanglement can be computed, as we will see below.

Standard entanglement entropy is for example obtained by taking R to be the fundamental

representation for pure gravity constructed with SL(2,R) ⇥ SL(2,R), and the adjoint
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n=3, principal embedding

where the highest and lowest weight states above correspond to R being the fundamental

representation. To compute Sfun(P,Q) in this case we therefore only need the 12-matrix

element of g�1(Q)g(P ) and we get

Sfun(P,Q) = cfun log

⇥
g�1(Q) g(P )

⇤
12

✏fun
= cfun log

"
f(P+)� f(Q+)

✏fun
p
@f(P+) @f(Q+)

#
(5.13)

which is indeed in precise agreement with the results (4.10) obtained in the previous section,

when we identify cfun = c/6, as well as ✏fun = �.

5.3 Spin-three entanglement entropy

We would now like to consider the spin-three case with the principal embedding, in which

case the right-moving two-dimensional gauge field takes the form

A =

0

B@
0 1 0

T (x+) 0 1

W (x+) T (x+) 0

1

CA dx+ , (5.14)

where T (x+) and W (x+) are the right-moving components of the stress tensor and the

spin-three current, respectively. Once again, we need to find a g which obeys g�1dg = A.

Such a g can be parametrized in terms of two functions �1 and �2, but the equations are

quite a bit more cumbersome compared to the pure gravity case. To write g, it is convenient

to first define

�1 =
1

(�01�
00
2 � �02�

00
1 )

1/3
, �2 = �1�1, �3 = �2�1 (5.15)

and to parametrize g as

g =

0

B@
@2�1 � ✓�1 @�1 �1

@2�2 � ✓�2 @�2 �2

@2�3 � ✓�3 @�3 �3

1

CA . (5.16)

One can explicitly show that with this choice of g

g�1dg =

0

B@
0 1 0

T1 0 1

W T2 0 ,

1

CA (5.17)

where T1, T2 and W are lengthy expressions in terms of �1, �2 and ✓, which can be viewed

as generalizations of the Schwarzian derivative to the spin-three case. For a suitable choice

of ✓ in terms of �1 and �2, which one can algebraically determine, one gets T1 = T2. We

will however not need the explicit form of ✓ in what follows.

As an aside, we notice that there is an interesting action of SL(3,R) on �1 and �2,

which follows from g ! ✏g, and which leaves T and W invariant. It takes the form

�01 =
a+ b�1 + c�2
g + h�1 + i�2

, �02 =
d+ e�1 + f�2
g + h�1 + i�2

, (5.18)

which is a direct generalization of the standard SL(2,R) action in the pure gravity case

and which presumable plays some sort of role in ‘W-geometry’.
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A =

[de Boer Jottar; Ammon,Castro,Iqbal’13]

Define spin 2 and spin 3 EE

With the explicit form of g at hand we can now evaluate SR(P,Q) for various choices of

representations R. From [64, 65] we know that ordinary entanglement entropy is obtained

by taking R to be the adjoint representation. It is, however, a priori less clear which

representation one should take in order to get the spin-three generalization of entanglement

entropy. We claim that the right quantity (up to an overall normalization) is obtained by

taking a linear combination of the fundamental and adjoint representations

S(3)
EE ⇠ Sfun �

1

2
Sadj , (5.19)

where we put the normalization constants cfun = cadj.

To see that Eq. (5.19) is the right quantity one can either consider its expansion around

the vacuum to first order in hT (x+)i and hW (x+)i, and verify that it produces an observable

of precisely the form in Eq. (3.35) with h = 3 — see also below. Alternatively, one can

translate the original proposal of [62] (see also appendix B of [63]) in the present language

and also arrive at Eq. (5.19). The relation of these papers to Eq. (5.19) can be summarized

as follows: the highest weight of the fundamental representation minus one half the highest

weight of the adjoint representation is proportional to the sl(3,R) generator

U0 =
1

3

0

B@
1 0 0

0 �2 0

0 0 1

1

CA . (5.20)

which is precisely the generators used in the construction of [62].

We notice that if we decompose the adjoint representation of SL(3,R) with respect

to the SL(2,R) subgroup, we obtain a three- and a five-dimensional representation which

contain T (x+) and W (x+) as lowest weight respectively. The Cartan generator of the

five-dimensional representation is precisely U0. This suggests that to obtain a higher spin

entropy in more general cases we should take linear combination of SR with various rep-

resentations R in such a way the the corresponding highest weight is proportional to a

Cartan generator which is part of the same SL(2,R) representation as a particular higher-

spin generator.

We are thus led to consider the following two quantities

S(2)
EE = Sadj , (5.21)

S(3)
EE = Sfun �

1

2
Sadj ,

which we refer to as the spin-two and spin-three ‘entanglement entropies’, respectively.

That is, S(2)
EE is proportional to the ordinary entanglement entropy while S(3)

EE defines a

new nonlinear observable related to the spin-three current, i.e., it vanishes in states where

hW (x+)i = 0. We also note that the short distance regulators cancel out in our definition

of S(3)
EE since ✏adj = ✏ 2fun — see the definition of ✏R above Eq. (5.6). Hence our spin-three

entanglement entropy is a completely UV finite observable.

Note that both expressions (5.21) carry an overall factor of the normalization constant

cfun since as above, we set cfun = cadj. However, we have not fixed the precise normalization
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[Kraus et.al…..]



Then one can show SL(3,R) Toda

of S(2)
EE and S(3)

EE since we are mostly interested in the question whether these obey local

field equations on dS2 or not. It is in principle straightforward, by examining the first laws

for S(2)
EE and S(3)

EE and using the known relation between the generators in Eq. (5.14) and

the spin-two and spin-three generators with their canonical normalization to determine the

precise normalization factors.

5.4 de Sitter field equations for higher spin entanglement entropy

We can now explicitly compute S(2)
EE and S(3)

EE in the most general spin-two and spin-three

background. To simplify the final answers, we will denote u = P+ and v = Q+, and define

⌃1 = (�2(u)� �2(v))�
0

1(u)� (�1(u)� �1(v))�
0

2(u) ,

⌃2 = (�2(u)� �2(v))�
0

1(v)� (�1(u)� �1(v))�
0

2(v) , (5.22)

�1 = (�01(u)�
00

2 (u)� �02(u)�
00

1 (u)) ,

�2 = (�01(v)�
00

2 (v)� �02(v)�
00

1 (v)) ,

and with these we find that

S(2)
EE = cfun log

✓
�

⌃1⌃2

✏ 2fun �1�2

◆
and S(3)

EE =
cfun
6

log

✓
�
⌃ 3
2 �1

⌃ 3
1 �2

◆
. (5.23)

Interestingly, these quantities obey the following local field equations,

✏fun
@S(2)

EE

@u@v
= 2 cfun e

�S
(2)
EE/(2cfun) cosh

⇣
3S(3)

EE /cfun
⌘
,

✏fun
@S(3)

EE

@u@v
= �cfun e

�S
(2)
EE/(2cfun) sinh

⇣
3S(3)

EE /cfun
⌘
.

(5.24)

These equations are our spin-three extension of the Liouville equation appearing in Eq. (4.11)

in the previous section. In particular, they reduce to (4.11) if we set S(3)
EE = 0 and iden-

tify S(2)
EE with SR. In passing, we observe that these equations (5.24) are identical to the

so-called Toda equations for SL(3,R) (for a summary of some aspects of Toda theory and

further references see, e.g., [71]) and reserve further comments for later.

To see the de Sitter geometry of the kinematic space emerge in the field equations, we

follow our previous approach in Eq. (4.12) and consider the following di↵erence

�S(2)
EE = S(2)

EE � S(2)
EE

���
�1(z)=z; �2(z)=z2

. (5.25)

The second term corresponds to the usual vacuum entanglement entropy, i.e., one can

easily verify from Eqs. (5.22) and (5.23) that

S(2)
EE

���
�1(z)=z; �2(z)=z2

= 2 cfun log
(u� v)2

2 ✏fun
(5.26)

and further that S(3)
EE = 0 with this choice of �1 and �2. We can match this result with the

expected flat space entanglement entropy (4.8) (more precisely, the right-moving contribu-
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[de Boer,Heller,Hael,Myers’16]

This “supports” the story with Toda and PI optimization and 
continuation.

How do we compute h.s. EE from the Toda field?



Conclusions

• A new proposal for AdS/(c)TN and “PI Complexity” 

• Classical geometries from Minimization of PI Complexity.  

• In CFT our proposal applies to arbitrary central charge! 

• Progress for deformations and massive theories 

• Perturbative computations on the gravity side reproduce optimized metrics 

• Complexity <=> Dynamics of Geometry (Gravity) 

• W-symmetry and Toda action (still a lot to explore…)



Open Questions

• Beyond Universality? Is our approach useful for many-body problems?        
(Fernando’s Talk) 

• Free CFTs and relation to cMERA? Path Integral vs “Unitary Gates” 

• Geometry of networks with W-symmetry?  

• Kinematic space with W-symmetry? 

• Time dependent states !?



Thank You!


