

Conformal blocks from Wilson lines with loop corrections

Yasuaki Hikida (YITP)

Refs: YH-Uetoko, PTEP(2017)113B03; 1801.08549

Mar. 16th, 2018

YITP Workshop "Holography, Quantum Entanglement and Higher Spin Gravity II"

Holography and its use

Quantum gravity

Conformal field theory

3d sl(N) Chern-Simons theory w/ Wilson lines

Conformal model w/ W_N symmetry

- Quantum gravity from well-defined CFT
 - Fix the renormalization prescription for quantum gravity corrections
- ② CFT data of CFT from gravity
 - New way to obtain the expressions of conformal blocks

Previous works

- ☐ Formal argument (Verlinde '90)
 - CS gravity + Wilson line → Liouville conformal blocks
 - A modification of Witten's work '89
- ☐ A practical computation (Fitzpatrick-Kaplan-Li-Wang '16)
 - Wilson line + CFT \rightarrow 1/c expansion of conformal blocks
 - Useful for real computations, not purely bulk picture
- ☐ A bulk interpretation (Besken-Hedge-Kraus '17)
 - Wilson line → Conformal weight at 1/c order
 - NOT succeeded at $1/c^2$ order, no prescription of regularization

Plan of this talk

- Introduction
- General methods
- Conformal blocks from Wilson lines
- Conclusion

General methods

sl(2) CS gravity

☐ Solution to EOM (in a gauge)

$$A = e^{-\rho L_0} a(z) e^{\rho L_0} dz + L_0 d\rho$$

- Boundary DOM are in α(z)
 ⇔ sl(2) WZW model (affine sl(2) sym.)
- ☐ Asymptotic AdS condition

$$\begin{array}{c}
\rho \to \infty \\
\left([L_m, L_n] = (m-n)L_{m+n} \\
m, n = 0, \pm 1 \end{array} \right)$$

$$(A - A_{AdS})|_{\rho \to \infty} = \mathcal{O}((e^{\rho})^0) \implies a(z) = L_1 + \frac{1}{\hat{k}}T(z)L_{-1}$$

- AdS background $\Leftrightarrow a(z) = L_1$
- DS reduction of affine sl(2)

$$\Leftrightarrow$$
 Virasoro symmetry by $\mathit{T(z)}$ with $c=6\hat{k}=rac{3\ell_{\mathrm{AdS}}}{2G_{N}}$

Wilson line in sl(2) CS theory

■ Wilson line operator

Wilson line operator
$$W(z_2,z_1)=P\exp\left[\int_{z_1}^{z_2}A_\mu dx^\mu\right]$$

$$\to P\exp\left[\int_{z_1}^{z_2}a(z)dz\right]=P\exp\left[\int_{z_1}^{z_2}\left(L_1+\frac{6}{c}T(z)L_{-1}\right)dz\right]$$
 A gauge transformation 1/c-expansion

 z_2

- Path integral over gauge fields
 - We use correlators of *T*(*z*) in a CFT with center *c*

$$\langle T(z_1)T(z_2)\rangle = \frac{c/2}{(z_1 - z_2)^4}$$

Correlators from Wilson lines

Natural extension of leading order conjecture

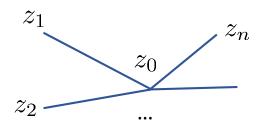
(Bhatta-Raman-Suryanarayana, Besken-Hegde-Hijano-Kraus '16, '17)

$$\langle \mathcal{O}_{h_1}(z_1)\cdots\mathcal{O}_{h_n}(z_n)\rangle = \langle S|\prod_{i=1}^n W_{j_i}(z_i,z_0)|j_i,j_i\rangle$$

$$(L_1|j,m\rangle = 0 \Rightarrow m=j)$$

- <S| is a singlet in $\mathcal{R}_{j_1}\otimes\cdots\otimes\mathcal{R}_{j_n}$
- A singlet ⇔ A conformal block
- 2pt function $(z_0
 ightarrow z_2)$

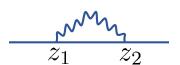
$$\langle \mathcal{O}_h(z_1)\mathcal{O}_h(z_2)\rangle = \langle j, -j|W_j(z_1, z_2)|j, j\rangle$$



Renormalization prescription

 \square Divergences would arise at the coincident points of T(z) in

the integral
$$\langle T(z_1)T(z_2)\rangle = \frac{c/2}{(z_1-z_2)^4}$$



- Our proposal for removing divergences
 - Introduce a regulator ϵ

$$\langle T(z_1)T(z_2)\rangle = \frac{c/2}{(z_1-z_2)^{4-2\epsilon}}$$

Scaling invariance is preserved

Remove divergences $1/\epsilon^n$ by redefining N_2, c_2

$$W(z_2, z_1) = \frac{N_2}{2} P \exp \left[\int_{z_1}^{z_2} (L_1 + \frac{6}{c} c_2 T(z) L_{-1}) dz \right]$$

 ϵ^0 term in c_2 is fixed by Ward identity at the boundary

$$\langle \mathcal{O}_h(z)\mathcal{O}_h(0)T(\infty)\rangle = \frac{h}{2}z^2 \langle \mathcal{O}_h(z)\mathcal{O}_h(0)\rangle$$

Conformal blocks from Wilson lines

CFT results

- \square \mathcal{O}_{h_j} :Operator corresponding to |j,j>
 - Obtained by DS reduction of spin j operator in sl(2) WZW model
 - Conformal weight in 1/c expansion

$$h_j = -j - \frac{6j(j+1)}{c} - \frac{78j(j+1)}{c^2} + \cdots$$
$$= h_0 + \frac{h_1}{c} + \frac{h_2}{c^2} + \cdots$$

□ 2pt function

$$\langle \mathcal{O}_{h_j}(z)\mathcal{O}_{h_j}(0)\rangle = \frac{1}{z^{2h_j}}$$

$$= \frac{1}{z^{2h_0}} \left[1 - \frac{2h_1 \log z}{c} + \frac{2h_1^2 (\log z)^2 - 2h_2 \log z}{c^2} \right] + \cdots$$

Wilson line computations

• <O(z)O(0)> at 1/c order

$$\underline{ } = \frac{1}{cz^{2h_0}} \left[\frac{6(h_0 - 1)h_0}{\epsilon} + 12h_0(h_0 - 1)\log z + 2h_0(5h_0 - 2) \right]$$

• $<O(z)O(0)T(\infty)>$ at 1/c order

Absorbed by redefining N_2

h₁ reproduced

•
$$<$$
O(z)O(0) $>$ at $1/c^2$ order
$$c_2 = 1 + \frac{1}{c} \left(\frac{6}{\epsilon} + 3 \right) + \cdots$$

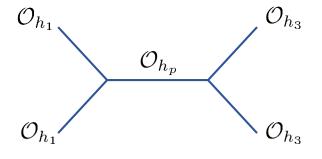
+ mm, mm, + mm, + m + m + m

 h_2 reproduced with redefined N_2 , c_2

Conformal blocks

☐ The expansion of 4pt function

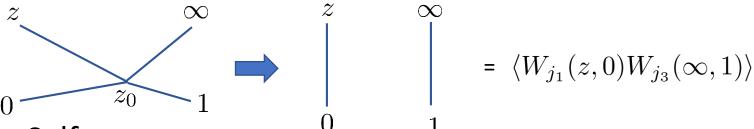
$$\begin{split} \langle \mathcal{O}_{h_1}(z)\mathcal{O}_{h_1}(0)\mathcal{O}_{h_3}(\infty)\mathcal{O}_{h_3}(1)\rangle \\ &= \sum_p C_{11}^p C_{33}^p \mathcal{F}(h_1,h_3;h_p;z) \\ &\text{3pt functions} \end{split}$$
 Conformal block



lacksquare Conformal blocks of \mathcal{O}_{h_n}

- p=0: Identity conformal block
 p≠0: General conformal block

Identity block up to $1/c^2$ order

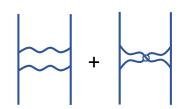


Self-energy type

$$+$$
 $+$ $+$ $+$ $h_0 \rightarrow h_0 + \frac{1}{c}h_1 + \frac{1}{c^2}h_2$

• T exchange

• TT exchange



Reduces to the analysis of Fitzpatrick et al

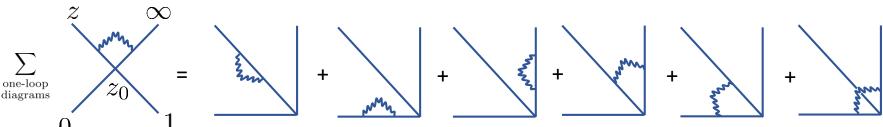
General blocks at 1/c order

☐ Known results (e.g. Fitzpatrick et al '16)

$$\mathcal{F}(h_1,h_3;h_p;z)=z^{-2h_3+h_p}{}_2F_1(h_p,h_p;2h_p;z)$$

$$+\frac{1}{c}\left[h_1h_3f_a(h_p,z)+(h_1+h_3)f_b(h_p,z)+f_c(h_p,z)\right]+\cdots$$
 Known in all orders of z Known in first few orders of

Our computations



Obtain the all order expressions of f_a , f_b , f_c in z

Conclusion

Summary

Quantum gravity

Conformal field theory

Wilson lines in 3d sl(N)
Chern-Simons theory

Conformal blocks in 2d W_N CFT w/ large c

- ① Quantum gravity from well-defined CFT
 - Fix the renormalization prescription from the boundary theory
 - \rightarrow Reproduced conformal weight at $1/c^2$ order
- ② CFT data of CFT from gravity
 - A new systematic way for 1/c expansion of conformal blocks
 - → Obtained new expressions of conformal blocks

(The analysis has been generalized from N=2 to N=3)

Future directions

☐ Treatment of heavy operators

Operators with $h_{1,s} \propto \mathcal{O}(c) \iff$ Conical spaces

- Quantization of conical spaces (cf. Raeymaekers '14)
- Application to heavy-light correlators (YH-Uetoko '17)
- Extension to W₃ case is an open problem
- ☐ Introduce supersymmetry (YH-Uetoko in progress)
 - Important to see relation to superstring theory
 - *N*=3 SUSY ⇔ AdS3 x SU(3)/U(1) (x SO(5)/SO(3)) (Creutzig-YH-Rønne'13,'14)
 - N=4 SUSY ⇔ AdS3 x S3 x T4 (x S3 x S1) (Gaberdiel-Gopakumar '13,'14)