Basics of quantum computing and some recent results

Tomoyuki Morimae (YITP Kyoto University) $50+10$ min

Outline

1. Basics of quantum computing circuit model, classically simulatable/unsimulatable, quantum supremacy (15min)
2. Measurement-based quantum computing Tensor-network and quantum computing (15min)
3. Quantum interactive proof system, verification of quantum computing, blind quantum computing (20min)
4. Question (10min)

Basics of Quantum Computing

Circuit model

Projective measurement

Single-qubit unitary operator

$$
|\psi\rangle=U|0 \ldots 0\rangle
$$

Two-qubit unitary operator

Universal gates

X-rotation + Z-rotation is single-qubit universal

$$
e^{i \theta X}, e^{i \phi Z} \quad e^{i \theta Z}, H
$$

Hadamard $\mathrm{H} \rightarrow$ basis changing

Single-qubit universal + any entangling two-qubit gate is n-qubit universal $e^{i \theta Z_{i} \otimes Z_{j}}$
$C X=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes X$
$C Z=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes Z$

Hadamard + Toffoli $=$ universal
Toffoli is classically universal
\rightarrow Hadamard has the quantum power

Important question

Which quantum circuits are classically simulatable? Which are not?

Simulatable 1: Clifford circuits

$H, \operatorname{diag}(1, i), C Z \quad$ clifford gates

Quantum circuit that consists of only Clifford gates is classically simulatable = Gottesman-Knill theorem

Clifford circuits can generate highly-entangled states...

$$
\text { GHZ state } \quad\left|0^{n}\right\rangle+\left|1^{n}\right\rangle
$$

Graph state
States for QEC
Having strong entanglement is not enough for quantum speed up

Simulatable 2: Neural-network representation

$$
\begin{aligned}
& |\psi\rangle=\sum_{\sigma} \psi(\sigma)|\sigma\rangle \\
& \psi(\sigma)=\sum_{\eta} \frac{e^{-\beta H(\sigma, \eta)}}{Z}
\end{aligned}
$$

Carleo and Troyer, Science 2017

Simulatable 3: Match gate circuit

Valiant 2001

$$
\begin{array}{r}
e^{i H}, H=H_{1}+H_{2}+H_{3} \\
H_{1}=\alpha_{1} Z \otimes I+\beta_{1} I \otimes Z \\
H_{2}=\alpha_{2} X \otimes X+\beta_{2} Y \otimes Y \\
H_{3}=\alpha_{3} X \otimes Y+\beta_{3} Y \otimes X
\end{array}
$$

Jordan-Wigner transform

$$
c_{2 k-1}=Z_{1} \ldots Z_{k-1} X_{k} I_{k+1} \ldots I_{n}
$$

Majonara

$$
c_{2 k}=Z_{1} \ldots Z_{k-1} Y_{k} I_{k+1} \ldots I_{n}
$$

$$
H=\sum_{k, l} h_{k, l} c_{k} c_{l} \quad \quad \text { Quadratic form of Fermions } \rightarrow \text { solvable! }
$$

We have seen several quantum circuits are classically simulatable.

Next question: which circuits are NOT classically simulatable?
Universal QC \rightarrow classically not simulatable \rightarrow even non-universal weak QCs are faster than classical computing?
\rightarrow Important for quantum supremacy

Google 72qubit quantum computer (this March APS)

One clean qubit model

Model for NMR QC
Knill and Laflamme PRL1998

May be here?

Not here

Classical
Q universal

Ex: Jones polynomial

Classical: no efficient algorithm is known
One clean qubit model: poly-time algorithm (Shor and Jordan, QIC 2008)

May be here

Classical

Not here

Q universal

Ambainis STOC2000

Not persuading:
A classical fast algorithm may be found in a future
c.f. Factoring: it can be in BPP since it is not believed to be NP-complete

Hardness of classically simulating one clean qubit model

If one clean qubit is classically simulated then PH collapses
[TM, Fujii, and Fitzsimons, PRL 112, 130502 (2014); TM, PRA(R)2017]
Polynomial hierarchy

$$
\mathrm{P} \subset \mathrm{NP} \subset \mathrm{NP}^{\mathrm{NP}} \subset \mathrm{NP}^{\mathrm{NP}^{\mathrm{NP}}} \subset \ldots
$$

Collapse of PH is not believed to happen
\rightarrow one-clean qubit model cannot be simulated classically

IQP(Instantaneous Quantum Polytime)

C' : Z-diagonal gate, such as Z, CZ, CCZ, exp(iZӨ)
IQP is closely related to Ising partition function [Fujii and TM, NJP2016]
IQP is not universal, but its classical simulation leads to the collapse of PH [Bremner, et. al. Proc. Roy. Soc. 2010]

Summary

1. Some circuits are classically simulatable

Clifford circuits
Neural network states
Match gate circuits
\rightarrow Efficient numerical algorithm for cond-mat and stat phys?
2. Some circuits exhibit quantum supremacy
\rightarrow Near-term realization of QC
\rightarrow Foundation of quantum physics: clarifies the boarder between Q and C

Measurement-based quantum computing

Measurement-based quantum computing

(Raussendorf and Briegel, PRL 2001)

Generate a many-qubit state

Measure each qubit

The state is generated!
$\mid \psi>$ is generated \rightarrow quantum computing is done!
Why we can generate it? \rightarrow intuitive idea: disturbance
The initial state is indepent of $\mid \psi>\rightarrow$ existance of universal resource state

Cluster state (graph state)

Definition 1: CZ|++...+>

Definition 2: Stabilized by commuting $\quad K_{i}=X_{i} \bigotimes_{j \in N_{i}} Z_{j}$

[Raussendorf and Briegel, PRL 2001]

How MBQC work

$$
\begin{gathered}
C Z(|+\rangle|+\rangle)=C Z(|0\rangle|+\rangle+|1\rangle|+\rangle)=|0\rangle|+\rangle+|1\rangle|-\rangle \\
|0\rangle \pm e^{-i \theta}|1\rangle \\
|0\rangle|+\rangle+|1\rangle|-\rangle \rightarrow|+\rangle \pm e^{i \theta}|-\rangle=H e^{i \theta Z / 2}|+\rangle
\end{gathered}
$$

$$
J(\theta) \equiv H e^{i \theta Z} \quad \text { is universal }
$$

$$
J(0) J(\theta)=e^{i \theta Z}, J(\theta) J(0)=e^{i \theta X}
$$

One-dimensional cluster state is single qubit unviersal

2D-square graph state is universal

Advantage of MBQC

Clear separation between quantum and classical

entanglement

Which entanglement is essential?

Classical vs quantum is clear!
entanglement

MBQC and Ising partition function

An interesting relation between MBQC and Ising partition function

Classical Ising model

$$
H=J \sum_{<i, j>} \sigma_{i}^{z} \sigma_{j}^{z}+\sum_{j} h_{j} \sigma_{j}^{z}
$$

Graph state

$$
Z_{\beta}=|\langle\phi \mid C\rangle|^{2}
$$

$$
|\phi\rangle=\bigotimes_{j=1}^{n}\left|\phi_{j}\left(\beta, J, h_{j}\right)\right\rangle
$$

Classical statistical physics

Solvable, NP-hard....

Quantum computing
Classically simulatable, universal....
(Bravyi and Raussendorf, PRA 2007)
(Nest, et. al. PRL 2007)
(Fujii and TM, NJP2016)

Quantum subroutine

Another interpretation of measurement-based QC

Classical computer (only XOR gate)

Quantum many-body system (resource state)

Classical XOR + graph state $=$ quantum universal
$\mathrm{XOR}+\mathrm{GHZ}=$ classical universal [Anders and Browne, PRL2009]

XOR gate
$0 \rightarrow 0$
$01 \rightarrow 1$
$10 \rightarrow 1$
$11 \rightarrow 0$

Tensor network and measurementbased quantum computing

Matrix-product state

N -qubit state

$$
|\psi\rangle=\sum_{z_{1}=0}^{1} \ldots \sum_{z_{N}=0}^{1} c\left(z_{1}, \ldots, z_{N}\right)\left|z_{1} \ldots z_{N}\right\rangle
$$

Exponentially many parameters have to be specified \rightarrow numerical simulation is hard
Only small corner of the huge Hilbert space is of interest

Matrix-product state

$$
|\psi\rangle=\sum_{z_{1}=0}^{1} \ldots \sum_{z_{N}=0}^{1}\langle L| A\left[z_{N}\right] \ldots A\left[z_{1}\right]|R\rangle\left|z_{1} \ldots z_{N}\right\rangle
$$

A is a D-dim matrix, $\mid L>$ and $\mid R>$ are $D-d i m$ vector

By specifying $A, \mid L>$, and $\mid R>$, we can specify the state!

Tensor-network state

Generalization of MPS to higher dimension

Contraction of tensors

$$
\begin{aligned}
& |\psi\rangle=\sum_{z_{1}=0}^{1} \ldots \sum_{z_{N}=0}^{1}\langle L| A\left[z_{N}\right] \ldots A\left[z_{1}\right]|R\rangle\left|z_{1} \ldots z_{N}\right\rangle \\
& |\eta\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle \\
& \sum_{z_{2}=0}^{1} \ldots \sum_{z_{N}=0}^{1}\langle L| A\left[z_{N}\right] \ldots A\left[z_{2}\right] A[\theta, \phi]|R\rangle|\eta\rangle \otimes\left|z_{2} \ldots z_{N}\right\rangle \\
& A[\theta, \phi]=\cos \frac{\theta}{2} A[0]+e^{-i \phi} \sin \frac{\theta}{2} A[1] \\
& \text { Simulating QC in the virtual space! } \\
& \text { (Gross and Eisert, PRL 2007) } \\
& \text { (TM, PRA 2012) }
\end{aligned}
$$

Edge state

Virtual space corresponds to the edge state

$$
|\psi\rangle=\sum_{z_{1}=0}^{1} \ldots \sum_{z_{N}=0}^{1}\langle L| A\left[z_{N}\right] \ldots A\left[z_{1}\right]|R\rangle\left|z_{1} \ldots z_{N}\right\rangle
$$

AKLT
Edge state

Edge state is the register of QC!
New resource states for MBQC:
AKLT (Brennen, et. al. PRL 2008)
VBS, PEPS (Verstraete, et. al. PRA(R) 2004; Fujii and TM PRA(R) 2012)
Haldane phase (Bartlett, et. al. PRL 2010)
String-net condensate (TM, PRA 2011)

Recent interest

How physical properties affect the structure of virtual space? Is it useful for QC?

Some structure in Hilbert space
\rightarrow useful/useless for QC

Some physical properties: Topological order, SPT, etc.

Some symmetry-protected topological order

$$
\rightarrow \quad A=U \otimes B_{j u n k}
$$

Else, PRL 2012

Summary

- Tensor network representation/MPS
- MBQC and tensor network (virtual space)
- Edge state interpretation
- Relation between physical properties and virtual space structure

Quantum interactive proof system and its applications

Quantum computational complexity

Computational complexity: how much resource (time, space, entanglement, etc.) you need to solve a problem?

Decision problem: answerable with YES or NO
For example,
what is $1+1=$? (it is not decision problem)
Is $1+1$ larger than 3 ? (it is)

QMA(Quantum Merlin-Arthur)

A problem is QMA if and only if
If yes then there exists a quantum state such that Arthur accepts with high probability If no then for any state Arthur accepts with small probability

QIP(Quantum Interactive proof)

QZK(Quantum Zero Knowledge)

Local Hamiltonian problem

$$
H=\sum_{j} H_{j}
$$

$H_{\perp} \mathrm{j}=$ local Hamiltonian acting on 2 qubits

Yes: The ground energy of H is smaller than a No: The ground energy of H is larger than b Here, $a-b>1 /$ poly

Local Hamiltonian problem is QMA-complete
Kitaev, Kempe, Regev,
Review by Aharonov arXiv:0210077

Even quantum computing cannot calculate the ground energy of Hamiltonians

Verification of QC

If Merlin answers correctly every time, Arthur is persuaded.

How about it?

I don't believe it

Arthur
Only classical power

Can Arthur verify it?

Long-standing open problem in computer science!
Practically important: Can we verify Google?

Partial solutions

Partial solutions

1. multi provers
2. verifier can generate single qubits

3 . verifier can measure single qubits

More than two servers

Non-communicating provers cannot cheat!
Reichardt, Unger, Vazirani, Nature 2013 McKague Theory of Computing 2016 Zi, STOC16

Experiment: Jian-Wei Pan, PRL2017

Partial solutions

Partial solutions

1. multi provers
2. verifier can generate single qubits
3. verifier can measure single qubits

Trap technique (FK protocol)

Hiding traps

Fitzsimons and Kashefi, arXiv 2012 TM, Phys. Rev. A (R) 2014

news \& views

QUANTUM COMPUTATION

Honesty test

Alice does not have a quantum computer so she delegates a computation to Bob, who does own one. But how can Alice check whether the computation that Bob performs for her is correct? An experiment with photonic qubits demonstrates such a verification protocol.

Tomoyuki Morimae

Acess to first-generation quantum as a cloud service because only few organizations, such as governments or big companies, will own such expensive and high-maintenance machines. How can client's privacy be protected in cloud quantum computing? How can clients test the correctness of the results output by the quantum server even though they do not have a quantum computer of their own? Writing in Nature Physics, Stefanie Barz and colleagues' answer these questions with a photonic qubit experiment.
When you shop online, you do not want to reveal to a third party your private information, such as what you bought, your credit card number, your home address and 50 on. Alternatively, imagine that a pharmaceutical company uses a timesharing service of a super-computer to run their molecular dynamics simulations. The pharmaceutical company wants to make sure that the data and the program which are top secret in the industry cannot he read he nthers In short. sernrin
computers will most probably come

Experiment by Vienna group Barz et al. Nature Phys. 2013 TM, Nature Phys. N\&V 2013

Hiding traps

Fitzsimons and Kashefi, PRA 2017

CZ CZ |+>|0>|+>=|+>|0>|+>
$C Z C Z|+>|+>|+>=| G>$

Quantum error correcting code

Probability being detected $=1 / \mathrm{N}$

Encoding registers with QEC
Few qubit error \rightarrow corrected
To change the logical state, more than d qubits must be changed
\rightarrow probability that Bob can change state without touching any trap $=2^{\wedge}\{-\mathrm{d}\}$

Partial solutions

Partial solutions

1. multi provers
2. verifier can generate single qubits
3. verifier can measure single qubits

Verification with stabilizer testing

 Hayashi and TM, PRL 2015

(b)

If the test passes, the resultant state satisfies (k is \# of samples)

$$
\langle G| \sigma|G\rangle \geq 1-\frac{1}{\operatorname{poly}(k)}
$$

Experiment by Vienna group Greganti et al. NJP2016

Verification of Q supremacy

Can Arthur verify Q supremacy?

IQP(Instantaneous Quantum Polytime)

Output state of IQP is hypergraph state!

Verification of hypergraph state

Generalized stabilizer state!

$$
\begin{aligned}
& |\psi\rangle=U\left|0^{n}\right\rangle \\
& g_{i} \equiv U Z_{i} U^{\dagger}=\sum_{i} c_{i} \sigma_{i} \quad \text { z_i }_{-}=\operatorname{diag}(1,-1)
\end{aligned}
$$

If the test passes

TM, Takeuchi, Hayashi, PRA2017
Takeuchi and TM, arXiv:1709.07575

Blind quantum computing

Blind quantum computing

Can Alice delegate her quantum computing while protecting her privacy?

BFK protocol

cluster MBQC is used
Alice Bob Alice (b) Bob

Alice

$\left\{e^{i Z \theta_{j}}|+\rangle\right\}_{j}$
$C Z\left(\otimes_{j=1}^{N} e^{i Z \theta_{j}}|+\rangle\right)=\left(\otimes_{j=1}^{N} e^{i Z \theta_{j}}\right)|G\rangle$
$e^{i Z \delta_{j}}| \pm\rangle$ measurement

$$
\delta_{j}=\phi_{j}-\theta_{j}
$$

Measurement result

Bob cannot learn $\left\{\phi_{j}\right\}_{j}$
More rigorous proof: Dunjko et al. ASIACRYPTO2014

Experiment

Photonic qubits (Vienna group)
Barz et al., Science 2012

A novel high-speed, high-security computing technology will be compatible with the "cloud computing" approach popular on the web, a study suggests.

Quantum computing will use the inherent uncertainties in quantum physics to carry out fast, complex computations

A report in Science shows the trick can extend to "cloud" services such as Google Docs without loss of security

Related Stories

Quantum computing takes big leap
Quantum computer slips onto chips Limits of quantum world stretched

Topological QC

Physics

Quasi-particle in a 2D electron system: anyon

Topological equivalence

Unitary representation of braid group \rightarrow quantum gate

Different representation \rightarrow Difference anyons Ising anyon \rightarrow realistic, but non-universal Fibonattic anyon \rightarrow not yet found, but universal

Simulation of topological QC

Simulate topological QC on measurement-based model

(Raussendorf et al, Physical Review Letters 2007)

Topological blind QC

Topological QC with a nice error threshold

TM and Fujii, Nature Communications 2012

Measurement-only blind QC

(a)

Advantage:
Measurement is easier (optics, etc.) Simple
No-signaling security
Device independence security

Summary

- Quantum Interactive proof system (QMA, QIP, QZK)
- Verification of QC
- Verification of Q supremacy
- Blind QC

END

Problems of the BFK protocol

1. Generating single qubit is not easy
2. Fault-tolerant?
3. Security proof is complicated
(a)

(b)

Alice
Bob

Alice ${ }^{(c)} \mathrm{Bob}$

Post hoc verification

Post hoc verification

Fitzsimons, Hajdusek, TM, Phys. Rev. Lett. 2018

$$
\sum_{t=0}^{T}\left(V_{t} \ldots V_{1} V_{0}|\psi\rangle \otimes|0\rangle\right) \otimes|t\rangle
$$

Post hoc verification

BQP is in QMA
QMA can be verified with single-qubit measurements [TM, Nagaj, Schuch, PRA2016]

Summary

- QMA (higher than BQP)
- Verification of QC
- Blind QC

QMA for single-qubit measurement verifier

TM, Nagaj, Schuch, PRA 2016

Check stabilizers, or Doing MBQC

Graph state + witness

Correct graph state
\rightarrow by the soundness, rejection probability is high

Wrong state
\rightarrow Stabilizer check rejects it

$$
\begin{gathered}
s_{k}=\prod_{j=1}^{N} g_{j} \\
p_{\text {pass }}=\frac{1}{2^{n}} \sum_{k} \operatorname{Tr}\left(\frac{I+s_{k}}{2} \rho\right)
\end{gathered}
$$

By using gentle measurement lemma, $\quad\|\rho-\Lambda \rho \Lambda\|_{1} \leq 2 \sqrt{1-\operatorname{Tr}(\Lambda \rho)}$
If

$$
p_{\text {pass }} \geq 1-\epsilon \quad \frac{1}{2} \| \rho-C Z(|G\rangle \otimes|\phi\rangle) \|_{1} \leq \sqrt{2 \epsilon}
$$

$$
p_{\text {acc }}=q p_{\text {comp }}+(1-q) p_{\text {test }}
$$

if $\quad p_{\text {test }} \geq 1-\epsilon \quad$ then $\quad p_{\text {acc }} \leq q\left(2^{-r}+\sqrt{2 \epsilon}\right)+(1-q)$
if $p_{\text {test }}<1-\epsilon$ then $p_{\text {acc }} \leq q+(1-q)(1-\epsilon)$

QMA for Clifford Arthur

TM, Hayashi, Nishimura, Fujii, QIC 2015
Check magic state, and Doing QC

Clifford gates: $\mathrm{H}, \mathrm{CNOT}, \mathrm{S}=(1, \mathrm{i}) \rightarrow$ Classically simulatable (Gottesman-Knill)
Magic state: $\sin \frac{\pi}{8}|0\rangle+\cos \frac{\pi}{8}|1\rangle \rightarrow$ universal

