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WHY SYK?
[Sachdev-Ye ’92, Kitaev ’15, Maldacena-Stanford ’16]
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ABC’s of SYK

H = i
q
2 Ji1i2···iq i1 i2 · · · iq .

[Sachdev-Ye ’92, Kitaev ’15, Maldacena-Stanford ’16, Maldacena et.al ’16]

To summarize, among 
its several remarkable 
properties:
 It is solvable in the 

   large N limit
 It has an emergent 

   low-energy  
   conformal symmetry 

 It is maximally  
    chaotic

The large N limit is dominated by Feynman 
diagrams:

Schwinger-Dyson  
equation:

G(!) =
1

�i! � ⌃(!)

⌃(!) = J2G(!)3

Chaos in a quantum 
system can be 
diagnosed through the 
growth of the out-
of-time-order 
correlator

h j(t) k(0) j(t) k(0)i
F (t) ⌘

whose connected part
F (t)conn ⇠ e�Lt

defines a Lyapunov/
chaos exponent�L

bounded by the MSS 
chaos bound�L  2⇡/�

The Sachdev-Ye-Kitaev model is a quantum mechanical system 
of N Majorana fermions with all-to-all random (q)uartic interactions 
conjectured to be dual to a nearly            geometry.             AdS2
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The SYK’s the limit
[Berkooz et.al. ’16, Turiaci-Verlinde ’17, Berkooz et.al. ’17]

Fermions in 1-d have mass dimension    so the 4-fermi interaction is 
relevant and the theory flow to a strongly interacting SYK phase in the IR. 
In 2-d canonical fermions have dimension 1/2 so 4-fermi interactions are 
marginal (and higher q are irrelevant). 

0A free boson with 
canonical kinetic term 
in 2-d has dimension 
zero so that a random 
q-boson interaction 
term will be relevant 
but such models 
either:
 Have potentials with  

   generic negative  
   directions leading to    
   instabilities or

 Are stable but do 
   not flow to an 
   SYK-like fixed point.

Most promising is a 2-d supersymmetric model with N bosons       and  
N pairs of chiral fermions              . All fields have canonical kinetic terms 
and interact in two ways:

 Random positive bosonic potentials:
 2-fermion-(q-2)-boson potentials:

�i

( i,  ̄i)

X

a

⇣
Ca

i1···iq/2�i1 · · ·�q/2

⌘2

Ci1i2···iq i1  ̄i2�i3 · · ·�q

Is there a higher dimensional realization of 
SYK physics?
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The shadow representation

The shadow formalism offers a construction of (super)conformal blocks appropriate for 
constructing 4-point functions (of two conformal primaries     and      with 
dimension     ) in a D-dimensional CFT with a specified value of the (super)conformal 
Casimir in a chosen channel.         

[Ferarra et.al. ’72, Dolan-Osborn ’01, Simmons-Duffin ’12]

hO(x1)O(x2)O
0(x3)O

0(x4)i = "

Z
d
D
yhO(x1)O(x2)V(y)ihV 0(y)O(x3)O(x4)i

The RHS is a 
conformally 
invariant, single-
valued eigenstate 
of the 2-particle 
Casimir C12

O
0

O

�

Think of     and     as conformal primaries in two decoupled CFTs in 
which there also exists primaries     and     of dimension    and     
respectively. If the product theory is perturbed by 
then the 3-point function                                   describes the coupling 
of            and            to a dimension-h primary and is an eigenfunction 
of         with eigenvalue   

O O
0

h D � hV V 0

"

Z
dDy V(y)V 0(y)

hO(x1)O(x2)V(y)i
O(x1) O(x2)

h(h�D)C12
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An example: SYK revisited

 h(�) =
1

2

Z 1

�1
dy

|�|h

|y|h|�� y|h|1� y|1�h

The SYK model in 1-d with q-fold interactions has fermionic primaries           
        at large N, a disorder-averaged 2-point function                                           
                                         and a natural 4-pt functionh i(t1) j(t2)i = �ij

(t1 � t2)

|t1 � t2|2�

 i(t)

F(t1, t2, t3, t4) = N
h i(t1) i(t2) j(t3) j(t4)i0

h i(t1) i(t2)i0 h j(t3) j(t4)i0

The shadow formalism takes as input the 3-point function

V

h i(t1) i(t2)V(y)i =
sgn(t1 � t2)

|t1 � t2|2��h|t1 � y|h|t2 � y|h

with dimension-h bosonic primary     as well as an analogous 
expression for     and outputs a contribution                       to the 
normalized 4-pt function that is also an eigenfunction of 

V 0

C12

 h(t1 · · · t4)

The shadow 
representation manifests 
various properties of 
the 4-point function:
 Symmetry under    

   exchange of           or 
              means

1 $ 2

3 $ 4

 h(�) =  h(
�

�� 1
)

 Since       is eigenfunction 
of the 2-particle Casimir 
with eigenvalue h 

 h

 h(�) =  1�h(�)

       is meromorphic with 
simple poles of h is a + odd, 
or - even integer

 h
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Computing the central charge

FT =
N�2�2

2c

The central charge of a (2-d) 
CFT can be read off from the 
stress-tensor contribution to 
the 4-point function

Think of a 2-d CFT with holomorphic stress tensor          and spinless operator     with dimensions 
                                  and 2-point function                                                . This and conformal 
invariance, fixes the form of the OOT 3-point function so that the         OPE is 
(h,eh) = (�/2,�/2) hO(x, x̄)O(0, 0)i = b/|x|2�

O(x1, x̄1)O(x2, x̄2) ⇠
b

|x1 � x2|2�

✓
1 +

2h

c
(x1 � x2)

2
T (x2) + . . .

◆

If the CFT has a second operator       with the same dimensions and 2-point function as     then in the 
limit               and                the normalized 4-point function  

T (z) O

OO

O
0

O

x1 ! x2 x3 ! x4

W =
hO(x1, x̄1)O(x2, x̄2)O0(x3, x̄3)O0(x4, x̄4)i
hO(x1, x̄1)O(x2, x̄2)ihO0(x3, x̄3)O0(x4, x̄4)i

⇠ · · ·+ 2h2

c

(x1 � x2)2(x3 � x4)2

(x2 � x4)4

In terms of the conformal cross-
ratio the stress tensor contribution 
is WT =

2h2�2

c
=

�2�2

2c
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A naive 2-dimensional bosonic model 

I =

Z
d2x


1

2
(r�i)

2 + Ji1i2···iq�i1�i2 · · ·�iq

�

[Klebanov-Tarnopolsky ’16, JM-Stanford-Witten ’17, Giombi et.al. ’17]

Consider N scalars interacting in a random degree-q potential. In the large 
N limit the disorder-averaged Schwinger-Dyson equations are 

⌃ = J2Gq�1, G =
1

�@2 � ⌃
But generic unboundedness of the action poses problems for exact solutions  
(unitarity, non reflection-positive solutions, etc) 

Ignoring these issues, in 
the IR we find

G =
b

|x|2�

bqJ2 =
(1��)2

⇡2

� =
2

q

The ladder kernel   
is constructed from   
diagrams

1

2

3

4

1
3

2 4

and has eigenvalue 
k(h,eh)

K

Properties of the model:
                             implies the existence of a holomorphic stress tensork(2, 0) = k(0, 2) = 1

 For            and           , the solution has complex dimension
 Using the IR propagator, the ladder diagrams are UV divergent for      

q = 4 J = 0

q � 4

E = 1± 3i

 The central charge of the theory can be computed as   
c = (1��)3N =

✓
1� 2

q

◆3

N
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A better 2-d bosonic model

I =

Z
d2x

"
1

2
(r�i)

2 +
X

a

⇣
Ca

i1i2···i q
2

�i1�i2 · · ·�i q
2

⌘2
#

[JM-Stanford-Witten ’17]The positive-definite square of a random potential ⇠ 1

4
(Ba)2 + iBaCa · � · · ·�

giving a model with two sets of fields    and     and Schwinger-Dyson  equations   � B

��

BB

G� =
1

�@2 � ⌃�
, GB =

1
1
2 � ⌃B

⌃� = �qr

2
J2G

q
2�1
� GB , ⌃B = �J2G

q
2
� .

This model has two 
parameters q and 
r=M/N and 
solutions that are 
compatible with 
unitarity and 
reflection positivity.

With two fields in the theory, the conformal ladder kernel is now a 2x2 
matrix which is diagonalized on a basis of conformal vectors                  with 
matrix-valued eigenvalue              . This satisfies:                            

(v��, vBB)

k(h,eh)
k(0, 0)|��!�� = �(

q

2
� 1)

(h,eh) = (2, 0)

                            
 One of the eigenvalues is one when                         and                             
 The central charge                          c = (1��)2 (1� 2/q)N

BUT within the IR 
ansatz       is UV 
divergent indicating 
a possible first 
order phase 
transition and that 
the model doesn’t 
actually flows to 
the critical solution 
in the IR. 

⌃�
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An N=1, 2-dimensional supersymmetric model 

I =

Z
d2d2✓

"
1

2
D✓̄�iD✓�i + iCi1i2···iq�i1�i2 · · ·�iq

#

[JM-Stanford-Witten ’17]

Consider an            theory with a random superpotential.                                                       N = 1

�(X) = �(x) + i✓ (x) + i✓̄  ̄(x) + ✓✓̄F (x) Scalar superfields:
 Supercharge generators: Q = @✓ � ✓@x, Q̄ = @✓̄ � ✓̄@x̄

 Superspace derivatives: D✓ = @✓ + ✓@x, D✓̄ = @✓̄ + ✓̄@x̄

 Large N discrete R-symmetry: ✓ ! �✓, ✓̄ ! +✓̄, �i ! ��i

G(p) =
4

p2(1� ⌃(p))
, ⌃(x) = �J2G(x)q�1

which has the IR solution

At large-N the 2-point function is determined by the S-D equations

G(X1, X2) =
b

|x1 � x2 � ✓1✓2|2�
, � =

1

q
, bqJ2 =

1

⇡2

 Unlike the bosonic 
   models, the self- 
   energy of this 
   model is not UV  
   divergent.

Note the following:

 We do not need  
   to tune any 
  counter-term to  
  reach the  
  conformal solution

 Consistent with 
   numerical  
   solution
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�D✓̄1D✓1G(X1, X3)�

Z
dX2 ⌃(X1, X2)G(X2, X3) = �2(x13)�

2(✓1 � ✓3) ,

⌃(X1, X2) = �J2G(X1, X2)
q�1



Jeff Murugan (UCT)

An N=1, 2-dimensional supersymmetric model 

I =

Z
d2d2✓

"
1

2
D✓̄�iD✓�i + iCi1i2···iq�i1�i2 · · ·�iq

#

[JM-Stanford-Witten ’17]

Consider an            theory with a random superpotential.                                                       N = 1

�(X) = �(x) + i✓ (x) + i✓̄  ̄(x) + ✓✓̄F (x) Scalar superfields:
 Supercharge generators: Q = @✓ � ✓@x, Q̄ = @✓̄ � ✓̄@x̄

 Superspace derivatives: D✓ = @✓ + ✓@x, D✓̄ = @✓̄ + ✓̄@x̄

 Large N discrete R-symmetry: ✓ ! �✓, ✓̄ ! +✓̄, �i ! ��i

G(p) =
4

p2(1� ⌃(p))
, ⌃(x) = �J2G(x)q�1

which has the IR solution

At large-N the 2-point function is determined by the S-D equations

G(X1, X2) =
b

|x1 � x2 � ✓1✓2|2�
, � =

1

q
, bqJ2 =

1

⇡2

 Unlike the bosonic 
   models, the self- 
   energy of this 
   model is not UV  
   divergent.

Note the following:

 We do not need  
   to tune any 
  counter-term to  
  reach the  
  conformal solution

 Consistent with 
   numerical  
   solution



Jeff Murugan (UCT)

An N=1, 2-dimensional supersymmetric model 

I =

Z
d2d2✓

"
1

2
D✓̄�iD✓�i + iCi1i2···iq�i1�i2 · · ·�iq

#

[JM-Stanford-Witten ’17]

Consider an            theory with a random superpotential.                                                       N = 1

�(X) = �(x) + i✓ (x) + i✓̄  ̄(x) + ✓✓̄F (x) Scalar superfields:
 Supercharge generators: Q = @✓ � ✓@x, Q̄ = @✓̄ � ✓̄@x̄

 Superspace derivatives: D✓ = @✓ + ✓@x, D✓̄ = @✓̄ + ✓̄@x̄

 Large N discrete R-symmetry: ✓ ! �✓, ✓̄ ! +✓̄, �i ! ��i

G(p) =
4

p2(1� ⌃(p))
, ⌃(x) = �J2G(x)q�1

which has the IR solution

At large-N the 2-point function is determined by the S-D equations

G(X1, X2) =
b

|x1 � x2 � ✓1✓2|2�
, � =

1

q
, bqJ2 =

1

⇡2

 Unlike the bosonic 
   models, the self- 
   energy of this 
   model is not UV  
   divergent.

Note the following:

 We do not need  
   to tune any 
  counter-term to  
  reach the  
  conformal solution

 Consistent with 
   numerical  
   solution



Jeff Murugan (UCT)

An N=1, 2-dimensional supersymmetric model 

I =

Z
d2d2✓

"
1

2
D✓̄�iD✓�i + iCi1i2···iq�i1�i2 · · ·�iq

#

[JM-Stanford-Witten ’17]

Consider an            theory with a random superpotential.                                                       N = 1

�(X) = �(x) + i✓ (x) + i✓̄  ̄(x) + ✓✓̄F (x) Scalar superfields:
 Supercharge generators: Q = @✓ � ✓@x, Q̄ = @✓̄ � ✓̄@x̄

 Superspace derivatives: D✓ = @✓ + ✓@x, D✓̄ = @✓̄ + ✓̄@x̄

 Large N discrete R-symmetry: ✓ ! �✓, ✓̄ ! +✓̄, �i ! ��i

G(p) =
4

p2(1� ⌃(p))
, ⌃(x) = �J2G(x)q�1

which has the IR solution

At large-N the 2-point function is determined by the S-D equations

G(X1, X2) =
b

|x1 � x2 � ✓1✓2|2�
, � =

1

q
, bqJ2 =

1

⇡2

 Unlike the bosonic 
   models, the self- 
   energy of this 
   model is not UV  
   divergent.

Note the following:

 We do not need  
   to tune any 
  counter-term to  
  reach the  
  conformal solution

 Consistent with 
   numerical  
   solution

-2 -1 0 1 2 3

log(p/J)

-8

-6

-4

-2

0

2
lo
g(
G
)

Numerical  
solution for  

q=3

IR behaviour

Free behaviour



Jeff Murugan (UCT)

Operator spectrum

F
���
⇣=⇣̄=0

=
1

⇡(q � 1)

X

`=even

Z 1

�1

ds

2⇡

sin(⇡h)

cos(⇡eh))
�(h)2

�(2h)

�(eh))2

�(2eh))
Fh(�)Feh)(�̄)

"
kFB(h� 1

2 ,
eh)

1� kFB(h� 1
2 ,
eh))

+
kBF (h,eh)� 1

2 )

1� kBF (h,eh)� 1
2 )

� kBB(h,eh))
1� kBB(h,eh))

�
kFF (h� 1
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eh)� 1

2 )
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#

[JM-Stanford-Witten ’17]

To construct the 4-point function, we sum 
the ladder diagrams as usual 

F =
1

1�K
F0

and use the shadow representation.

K = � (q � 1)

⇡2

1

|h1, 3i|2�|h2, 4i|2�|h3, 4i|2�4�

The ladder kernel and zero-rung ladder are:

kBB(h,eh), kFB(h,eh), kBF (h,eh), kFF (h,eh)

F0 = |�+ ⇣|2� +

����
�+ ⇣

�� 1

����
2�
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Additional U(1) symmetry

iCi1···ir j̄1···j̄r�i1 · · ·�ir �̄j1 · · · �̄jr

[JM-Stanford-Witten ’17]

The holomorphic and anti-holomorphic parts of the current associated 
to a 2-d (S)CFT with a continuous symmetry must be separately 
conserved. This means that in a 2-d supersymmetric model with SYK-
like ladder structure we must expect to find a dimension (1/2,0) 
primary in the FB channel. A candidate theory has N/2 complex 
superfields and their complex conjugates interacting in a random 
superpotential.

The 4-point function splits 
into an S and A channel. 
This induces a splitting of 
the kernel eigenvalues as 

kFB ! kFB
S + kFB

A

where
kFB
S (h,eh) = kFB(h,eh),

kFB
A (h,eh) =

1

q � 1
kFB(h,eh)

follows from the ladder 
diagrams

1

2

r 3

4

1

2

3

4

r
-
1

Since                                  , we find indeed that 
as expected for the (1,0) part of the U(1) current. BUT the function   
                                 has a double pole at (1/2,0) that lies on the 
integration contour of the 4-point function. We therefore expect the 
model to not find a true IR fixed point.                             

kFB(1/2, 0) = q � 1 kFB
A (1/2, 0) = 1

1/
�
1� kFB

A (1/2, 0)
�
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Chaos
[Stanford ’16, Maldacena-Stanford ’15, JM-Stanford-Witten ’17]

W (t1, t2) = W0(t1, t2) +

Z t1

0
dt3

Z t2

0
dt4 KR(t1, t2, t3, t4)W (t3, t4)

τn+1,ℓ τn+1,r

τn,ℓ

τ1,r

τ0,ℓ τ0,r

τn,ℓ

τ1,ℓ

Out-of-time-order thermal correlators provide a diagnostic for quantum 
chaos in large N systems 

F (t) =
⌦
V (0)W (�/4 + it)V (�/2)W (3�/4 + it)

↵

In a chaotic system                                      where      is a chaos exponentF (t) = 1� 1

N
e�Lt + . . . �L

In SYK-like models we get this information from the correlator
W (t1, t2) =

⌦�
 i(")�  i(�")

�
 j(it1)

�
 i(�/2 + ")�  i(�/2� ")

�
 j(�/2 + it2)

↵

There are two ways to compute the correlator:
  The retarded kernel and an integral equation
  A direct analytic continuation from the Euclidean 4-point function.
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Eigenfunctions of 
the retarded kernel 
with eigenvalue 1 
control the chaos 
region of the 4-
point function. In the 
SYK model in 1-d

exp
�
�h

2 (t1 + t2)
�

�
2 cosh 1

2 (t1 � t2)
�2��h

W+(t1, t2) =



Conclusions and Future work

2-d random disordered 
supermodels

Chaotic but not  
maximally so!

What about higher orders 
in 1/N?

A new class of strongly 
interacting 2d CFT’s!

Holography? Random tensor 
models in d>2?
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