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Introduction:

* EE is a candidate of an entropy in Non-equilibrium physics.

* In AdS/CFT correspondences, Entanglement in CFT living on
the boundary is expected to be significantly related to
Gravity in the bulk.
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Introduction:

* EE is a candidate of an entropy in Non-equilibrium physics.

It is important to study the dynamical features of Entanglement.

The dynamics of entanglement The dynamics of gravity

H Black Hole Physics

Thermalization
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Our Motivation

In the sudden global quenches
where Hamiltonian suddenly
change, in the late time, the
change of entanglement entropy

(ASA(t) — SA(t) — SA(tinitial) )iS:

[Calabrese-Cardy, 06] [Hartman-Maldacena, 13] [Liu-Suh, 13]
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Our Motivation
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In the sudden global quenches
where Hamiltonian suddenly
change, in the late time, the
change of entanglement entropy
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Our Motivation

Sudden Quenches

\ 4

Thermalizes
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Is this unigue behavior for sudden quenches?




Our Motivation
If the state is quenched gradually (smooth quenched),

is subsystem thermalized?

and

how does entanglement time-evolve?



What we have done

We have studied the time evolution of quantities
(EE, LN, MI) in smooth quenches(ECP and CCP).

ASA (t) — SA (t) — SA (tinitia,l)

7
EE for initial mass



SmOOth QuenCheS [Das-Galante-Myers, 14]

2d —Time-dependent Hamiltonian

H(t) = % / dz [T12(x) + 0,62 () + m*(£)¢2 ()

CECP: - L (1 (L)) +CCP: w0 = v (1)

ot
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SmOOth QuenChes [Das-Galante-Myers, 14]

ot

*ECP: n2= & (1w (£)) 2 CCP: w0 = guan ()




Smooth Quenches (Das-Galante-Myers, 14
*ECP: miw = & (-t (5))  *CCP: mi0) = g tant? (5)

ot

Changing a ratio, dt/&, we have studied time
evolution of EE, LN and M.




SmOOth QuenCheS [Das-Galante-Myers, 14]

Fast Iiit:
w1l (0t K€)

We took two extreme limits: Slow limit-

w>1 (6t > &)




Results(EE)

Late-time AS 4in ECP
IS proportional to subsystem size.
(Thermalized.)

Late-time AS 4 in fast-CCP ( § <K o0t )
is proportional to subsystem size.



ECP:
ot

Fast limit: w=46-m=— <1 SIOW/imit.'w:5t-m:%>>1,Ekz =5 < 1

———

"CCP: . .
Fast limit: w=46t-m=— <1 slow limit: w=6t-m = % > 1, &k = \/%: VeIt > 1

S ———




-ASS ump Constant. .g'

ECP:

. t e
Fast limit: w=20t-m=— L1 slow limit :w = 6t g LN ‘Ekz:§<<1

"CCP: . ) .
Fast limit: w=46t-m=— <1 slow limit: w=6t-m = > , Skz = \/%: VeIt > 1
—_— st
[
AS 4 ~ Cs(w)
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ECP:

Fast limit: w = 6t-m = ot <1 slow limit :w=dt-m = % >1 Lk = 5 < 1
R R R RN R,
__ssumof Dependson W | CoB -
CCP' ot . 5t 5t
Fast limit: w=46t-m=— <1 slomlimit: w=6t-m = > ,Ee =\ — = VEst > 1
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Resultl

Fast limit: w =0t -m = ot <1  slowlimit:w=dt-m= % >1 Lk = 5 < 1
—_—
__ssumof Dependson W | CoB -
CCP' ot . 5t 5t
Fast limit: w=46t-m=— <1 slomlimit: w=dt-m = >l ke =\ = VEst > 1
4
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Cg (UJ)

In fast limit, keeping & constant and, ({) decreases

# C'3 (LU) decreases.

In slow limit, keeping& constant and, ({) increases

# ('3 (w) decreases.




Cg (LU)

In fast limit, keeping & constant and, ({) decreases

Consistent with a number operator in late time.

n 1ast IImiIt, keeping ¢ constant and, ({/ INcCreases

# ('3 (w) decreases.




Results in slow ECP

* How does the subsystem thermalize in slow ECP?
(Quasi-particles are created?)

Quasi-particles are created when
the adiabaticity breaks down!

(Subsystems thermalize!)




Results in slow ECP
Quasi-particles are created when

the adiabaticity breaks down!
(Subsystems thermalize!)

Quasi-particles are created at

t= 7. . and carry quantum
entanglement.

Adiabatic  ** » Thermalize around ¢ = t;.. + 5



Interpretation In ECP and fast CCP

* Time Evolution of ASA (If)

|

Propagation of Entangled particles



Results(EE)

Entanglement Oscillation

ASA ASA 150

(€,6t) = (5,100) | £ = 100 /€

S| -



Results(EE)

Entanglement Oscillation
ASA ASA vobn -
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(§,0t) = (5,100) 1., = 100 t/ &k

The period of oscillation @ late time.
@mm) The periodicity of zero mode ~ &




Results(EE)

Late-time AS 4in CCP oscillates with
periodicity determined by a late-time mass.

AS4 in fast-CCP
is minimized
at ¢t = 2¢ .

AS 4

{2 9¢ (€,6t) = (5,100)

S|



Results(EE)
Late-time AS 4in CCP oscillates with
periodicity determined by a late-time mass.

AS-A .t — 251{2

’:" ®

15 ‘f ‘e .0'-".'..,."
AS4 in slow-CCP P S

starts to oscillate N

after ¢ = 2¢..

Adiabaticity breaks down. 500
lkr = gkz = 200



Results(EE)

Late-time AS 4in CCP oscillates with
periodicity determined by a late-time mass.

t =26 and t = 2.

start

after ¢t = 2¢..
Adiabaticity breaks down.

! | 1 I I
-1000 -500 500

t
1000



Results(EE)

Time evolution is characterized by 1 = 251@2:7 25.
AS 4 ASA1

| -

0.05_—
A
NID~ A
? 20

(€,8t) = (5,100) & = 1000 /g
t22$kz b~ 28

After t = 2€, 26, AS 4 oscillates.



Result(LN, MI (work in progress))

Their time-evolution in ECP can be interpreted in terms
of relativistic propagation of quasi-particles.

* If two subsystem are well-separated,
Late-time MI in fast-ECP increases (logarithmically?).

* If two subsystem are well-separated, Al
Late-time LN in fast-ECP decreases .



Result(LN, MI (work in progress))

Their time-evolution in ECP can be interpreted in terms
of relativistic propagation of quasi-particles.

Late-time LN weakly depends on slow modes.

* If two subsystem are well-separated, Explain later

Late-time LN in fast-ECP decreases .



Result(LN, MI (work in progress))
Time evolution of LN and Ml in CCP strongly depends on Al

If Al < &, LN and Ml oscillate.

If Al > &, oscillation is suppressed. Their time evolution can
be interpreted in terms of relativistic propagation of quasi-

ticle.
particle N



The Contents of Talk

* Introduction

* Motivation

* Results(EE)

* Results(LN, M)

* Setup

* Method

* ECP(EE)

* CCP(EE)

Ml and LN (work in progress)
 Summary and Future directions
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Smooth Quenches

* These quenches are more realistic.

* Hamiltonian is not changed suddenly but is changed smoothly.

* We can excite the state slowly or fast.

* This is a kind of generalization of sudden quenches.



Our protocol (Smooth Quenches)  pacaenemyer 1

2d —Time-dependent Hamiltonian

H(1) = % [ [12(0) + 0,62 @) + (1))

1 , [t
5—2 tanh (5t>

1.0

0.8+

20

40



Our protocol (Smooth Quenches)  pacaenemyer 1

ot

*ECP: m= & (1-wan (5))  *CCP: m*) = grani® ()




We have » States are excited
two tunable parameters. slowly and rapidly.




Our setup

* Theory 2d Free scalar with time dependent mass m(t).
e Put it on the lattice but take the thermodynamic limit.

2
t 2
Mass profile: m?(t) = m? tanh (E) m”(t)

0.8

At t =0, the theory is
at critical point.

06

04

2r




Our setup

* Theory 2d Free scalar with time dependent mass m(t).
e Put it on the lattice but take the thermodynamic limit.

2
t 2
Mass profile: m?(t) = m? tanh (E) m (t)
Initial state: The Ground state 9 04
for massive free scalar with mass 11l . N



Slow Quenches

Mass profile: m*(t) = m? tanh (

t

0t




Slow Quenches

t
Mass profile: m*(t) = m? tanh (ﬁ

Very Early time:
Observables can

be computed adiabatically .

Do
o —
oo o

(\)




Adiabatic Expansion

<¢i¢j> = Xij
X :Xigo)_|_Xi(J.1)_|_... o
(0) (1) <¢z¢j> — Pzg

Higher orders has higher derivative with respect to t.



Adiabatic Expansion

(i) = Xij
X :Xi(j(.))_|_Xi(j1)_|_... o
(0) (1) <¢z¢j> — Pzg

Higher orders has higher derivative with respect to t.

1 dm(t)

Landau Criteria m2 () di < 1 wm) Adiabaticity holds




Slow Quenches

Mass profile: m*(t) = m? tanh (

Very Early time:
Observables can

be computed adiabatically .

Around critical point:

Observables can not
be computed adiabatically .

t

0t




Adiabatic Expansion

(i) = Xij
X :Xi(j(.))_|_Xi(j1)_|_... o
(0) (1) <¢z¢j> — Pzg

Higher orders has higher derivative with respect to t.

1 dm(t)

~ 1 — Adiabaticity braeks down.
m?2(t) dt

Landau Criteria



Adiabatic Expansion

_ p(0) (1)
Py =P® 4+ P 1.

Xij =X+ X+ < .
) , O !

Higher orders has higher derivative with respect to t.

1 dm(t) - 1 ™) Adiabaticity braeks down.
m2(t) dt

Landau Criteria

The time when adiabaticity breaks down is called Kibble-Zurek Time Ty,



Slow Quenches

2 m*(t)

Mass profile: m*(t) = m? tanh (ﬁ) | wr

| o

| ook

Very Early time: m2 : 0.4;

Observables can : 2
be computed adiabatically . | '
. y_1r . fr

Around critical point:

We assume thatat ¢ = —¢;, ,
adiabaticity breaks down.

(Around T = 1., , time process becomes adiabatic again. )



If t.. issosmall, the most of whole time evolution is adiabatic.

Tis 2
More precisely, —; <1 m*(t)

1.0

0.8
0.6

04

20t




If t.. issosmall, the most of whole time evolution is adiabatic.

Tis 2
More precisely, —; <1 m*(t)

2

1.0

0.8

0.6

04

20t

w = mot > 1 "




If t.. issosmall, the most of whole time evolution is adiabatic.

Tis 2
More precisely, 5 <1 m*(t)

2

1.0

0.8

0.6

04

20t

w=mot > 1 "




If t.. issosmall, the most of whole time evolution is adiabatic.

Tis 2
More precisely, —; <1 m*(t)

1.0

0.8

0.6

In slow quenches, Kibble-Zurek time is
small.




* ECP: m2@) = glz (1 — tanh (%)) * CCP: m() = fiztanhQ (é)

~ 0t

Fast Quench limit: w < 1 (0t < &)
Slow Quench limit: w > 1 (0t > &)



ot

*ECP :mz(t)zgiz(l_mnh (i)) * CCP: m*(t) = & tanh” (a)

Parameters |







Discretize

* We put our theory on the lattice so that we compute AS 4 by
the correlator method.

Correlator method

* This is a method to compute AS 4 by using the correlation functions.

Conditions: 1. State is a Gaussian state.
2. Local observables can be computed by Wick theorem.



Correlator Method

e If an initial state |¥) is given by a gaussian state:
For example, ‘\IJ> ( a ‘\IJ) —0)



Correlator Method

e If an initial state |¥) is given by a gaussian state:
For example, ‘\IJ> ( a ‘\IJ) —0)

We assume that a reduced density matrix is given by

_ T
DA = tTBP ~ e > Yeb, bi

If @;, gbj are included in A,

(Ditj) =tr (poid;) =tra (padidj) = (Pid;) 4



Correlator Method

e If an initial state |¥) is given by a gaussian state:
For example, ‘\II> ( a ‘\IJ) —0)

We assume that a reduced density matrix is given by

_ T
DA = t’?"BP ~ e > Yeb, bi

If s, @; are included in A,
(6i05) = tr (pdid;) = tra (padid;) = (did;) 4



Correlator Method

(Did;) =tr (poid;) =tra (padi®j) = (PiP;) 4
t ¢

Determined by f (k)
E.O.M and so on.




Correlator Method

(Did;) =tr (poid;) =tra (padi®j) = (PiP;) 4

t ¢
Determined by f (k)
E.O.M and so on.

Two point l I Vi

functions



Correlator Method

(Did;) =tr (poid;) =tra (padi®j) = (PiP;) 4

$ t
Determined by f (k)
E.O.M and so on.

Two point T



Correlator Method

(Did;) =tr (poid;) =tra (padi®j) = (PiP;) 4

Two point T

¥

S A is determined by two point functions.



Correlator method

Entanglement Entropy:
[

Sa=» sa(n)

k=1

1 1 1 1
sa(vk) = (5 + ’Yk) log (5 + ’Yk) — (5 + ’Yk) log (5 + ”Yk)
r— (1X” %D“) J = ( ! 1)

2 Dji By -1 0
<

i®;) Pij — <7Ti7Tj> Dz’j — ({qb,m})

- M = 12.JT has eigenvalues =7k .



Correlator method

Entanggement Entropy: The subsystem size =/

S, = Z s4(7) 2| x2| matrix
k=1
(V&) L Nog (= + ) -
p— —_ —_ — _— 9 S
SA\Vk 9 Tk 108 9 Tk 9 Tk & 9 Tk
[
v, 22

Xij = <¢z¢3> Pz'j — <7TZ'7TJ'> D’ij — <{¢27 ﬂ-j}>

- M = 12.JT has eigenvalues =7k .



Correlator method

Entanglement Entropy: The subsystem size =/

S, = Z s4(7) 2| x2| matrix
k=1

1

‘ By evaluating M/, we can compute S4.
Xiy =, T =0 T })

. M = iJT has eigenvalues *7V .



EE Iin ECP



EE in fast ECP



Plot of EE in Fast ECP
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Orange Curve: [=2000, Green Curve: |=1000, Pink Curve: |= 500,
Blue Curve: |=100, Purple Curve: |1=10, Red Curve: |=5
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Orange Curve: [=2000, Green Curve: |=1000, Pink Curve: |= 500,
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Orange Curve: [=2000, Green Curve: |=1000, Pink Curve: |= 500,
Blue Curve: |=100, Purple Curve: |1=10, Red Curve: |=5
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Orange Curve: [=2000, Green Curve: |=1000, Pink Curve: |= 500,
Blue Curve: |=100, Purple Curve: |1=10, Red Curve: |=5
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Quasi-Particle Interpretation

* As in sudden quenches, around
t=0, entangled quasi-particle are
created everywhere.

ﬁ

............
------
.....




* Entangled pair is constructed two particles.
They propagate in the opposite directions with ‘U :

— 0@




* Entangled pair is constructed two particles.
They propagate in the opposite directions with U :

— 0@

If one of them is included in A and the other is out of A,

Entangled pair can contribute to entanglement entropy.

Cm— O

A ‘ 'A A‘v

Not Contribute Contribute




At /2 >t > 1/m, the distance between entangled particles is given 2vt:

—_—

< >

20t




At /2 >t > 1/m, the distance between entangled particles is given 2vt:

—_—

< >

20t

The particle created at the boundary att=0isat * = vt or * = —[ — vt.




At /2 >t > 1/m, the distance between entangled particles is given 2vt:

—_—

< >

20t

The entangled pairs in the blue region can contribute to S4 .
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At /2 >t > 1/m, the distance between entangled particles is given 2vt:
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The entangled pairs in the blue region can contribute to S4 .




At /2 >t > 1/m, the distance between entangled particles is given 2vt:

—_—

< >

20t

The entangled pairs in the blue region can contribute to S4 .




At t=1/2v, the distance between quasi-particles is the subsystem size.




At t=1/2v, all entangled pairs in the region A can contribute to




At t=1/2v, all entangled pairs in the region A can contribute to

20t =1 Yol — |
< > < >
#
T / xLO

E> # of entangled pair ~ |



At t=1/2v, all entangled pairs in the region A can contribute to

20t =1 Yol — |
< > < >
#
T / xLO

E> S 4 has volume law.

E> # of entangled pair ~ |



Quasi-Particle Interpretation

* As in sudden quenches, around
t=0, entangled quasi-particle are
created everywhere. AS,

* Their speed is given by the
group velocity at t=0

 duwy(t) ; —

vV = Fa wi(t) = \/481112 (§> +m2(t)

[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16] \J




Quasi-Particle Interpretation

* As in sudden quenches, around
t=0, entangled quasi-particle are
created everywhere. AS,

* Their speed is given by the 4
group velocity at t=0 3 &)

B dwi (1)

k‘ 00 800 1000 1200 1400
U = wi(t) = 4 | 4sin? (—) + m?2(t)
ik i \/ : |

‘fU ‘ ~ ]_ ‘ Around t =I/2, the time evolution of AN
max

AS 4 changes.
[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]




Quasi-Particle Interpretation

* As in sudden quenches, around
t=0, entangled quasi-particle are
created everywhere.

* Their speed is given by the
group velocity at t=0

dwi (1)
Uk = )= \/4sm2 (5)+m0

Slow mode ( ~ zero mode and large k mode)

‘ Slowly increases in the late time
[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]




Quasi-Particle Interpretation

* As in sudden quenches, around
t=0, entangled quasi-particle are
created everywhere.

* Their speed is given by the
group velocity at t=0

o = 2 (t 2 (2) 4 m2w
k — wi(t) = 4/ 4sin (—) + m2(t
dk " 2 :
Lattice effect
Slow mode ( ~ zero mode and large k mode) p

‘ Slowly increases in the late time
[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]



EE in slow ECP



Plot of EE in Slow ECP

Orange Curve: [=2000, Gray Curve: [=1000, Brown Curve: |= 800,
Green Curve: [=600, Pink Curve: |=500, Blue Curve: 1=100, Purple Curve: [=10

ASA
3.5f
3.0:—
25}
20t
1.5;
1.0}

0.5}

00000

I L 1 L I L 1 1 1 I i | i e S L S T T T——

0950
=
.-"...‘...
0..... .“.—
oo
o
o" -
.-"
.....
400 600 800



Plot of EE in Slow ECP

Orange Curve: [=2000, , Brown Curve: |= 800,
Green Curve: [=600, Pink Curve: |=500, Blue Curve: 1=100, Purple Curve: [=10
AS,
Uk, + l ot | + l >t > 1 25] ..m*“"
— = og w + — | -
k2 T 5 S Er. | = e
1:03 .’.:::::w._
AS 5 doesnotdependonl. | =

(¢,5t) = (1,100)



Plot of EE in Slow ECP

Orange Curve: [=2000, , Brown Curve: |= 800,
Green Curve: [=600, Pink Curve: |=500, Blue Curve: 1=100, Purple Curve: [=10
AS,

30r

t +l ot 1 +l>t>> = B8
— = otlogw + — |

kz 9 g 9 Ekz 20
1 ' ois

ASA g §Ekz t 1.0?

(¢,5t) = (1,100)



Plot of EE in Slow ECP
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Plot of EE in Slow ECP
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Quasi-Particle Interpretation

[ [ 1 1

2 Ekz, 3

[ 1
t>>tkz—|-§ ASANEEI«;;’Z

4




Quasi-Particle Interpretation

[ [ 1 1

2 Ekz, 3

[ 1
t>>tkz—|-§ ASANEEI«;;’Z

4

» Quasi-particles are created at T = {1



Quasi-Particle Interpretation

l [ 1 1
thy + — = Ot — >t ~ = :
ke 5 ogw+ 5 >1> Br., AS 4 SE’“Z t

1

[
t>>tkz—|-§ ASANEEkz'l

’

» Quasi-particles are created at T = {1

» When adiabaticity breaks down, quasi-
particles are created.




Proportionality Coefficient

The proportionality coefficient of / or t is set by

an initial correlation length g in the fast limit,

a scale generated when adiabaticity breaks down, E L,
in the slow limit.
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Plot of EE in fast CCP
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Plot of EE in fast CCP
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Plot of EE in fast CCP
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Plot of EE in fast CCP

Orange Curve: |[=2000, Green Curve: |=1000, Pink Curve: I= 500,
Blue Curve: 1=100, Purple Curve: |=10, Red Curve: |=5
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Minimum Value

* Minimum value of AS 4 isat t = 2§ .
AS 4
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Minimum Value

e Around l — 45 ASAiS constant The plot for I-dependence of AS 4 at T = 25
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e Around [ = 45 ASAiS constant The plot for I-dependence of AS 4 at T = 2&

Entangled particle picture l
Att = 2, the blue region of ss) | = 4¢

the subsystem A is entangled with I 0o 50 e

the complemental region.

-0.005 -
|

[ > 4&, AS 4 is constant (<0). _00105

2¢ 2¢




Minimum Value
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Entangled particle picture l
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4 5 / 4 ‘5 related with a distance between entangled pair.
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e Around l — 45 ASAiS constant The plot for I-dependence of AS 4 at T = 25

Entangled particle picture l
Att = 2, the blue region of ss) | = 4¢
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Plot of EE in Slow CCP
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Plot of EE in Slow CCP

Green Curve: |=3000, Orange Curve: |=2500, Black Curve: |I= 1000,

Blue Curve: 1=500,Purple Curve: =100, Red Curve: |=10

After t = 2¢;.., ASa

AS 4 starts to oscillate.




Plot of EE in Slow CCP

Green Curve: |=3000, Orange Curve: |=2500, Black Curve: |I= 1000,
Blue Curve: 1=500,Purple Curve: =100, Red Curve: |=10
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Plot of EE in Slow CCP

Green Curve: |=3000, Orange Curve: |=2500, Black Curve: |I= 1000,
Blue Curve: 1=500,Purple Curve: =100, Red Curve: |=10

Periodicity of A.S 4 at late time

~ Periodicity of zero mode — 7T£
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- Entangled particle interpretation
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Entangled particles are created.
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A5§4 5t03(W)
""""""""""""""" L
l/€ W




Late time In CCP (£,t) = (10, 1000000)
AS) ot Cs(w)




Volume law in Fast and slow limits

[
* In the fast limit, Fitting function: ASj ~ —w?*log (w) % :
*In the slow limit, Fitting function: AS 4 ~ C3(w)l + B
§

N is the number operator/ Volume at late time. g — 1 OO

If (W decreases ( £ is fixed),

—w?log (w) decreases.

If () increases ( & is fixed),
C'3(w) decreases.




Volume law in Fast and slow limits

[
* In the fast limit, Fitting function: AS4 ~ —w? log (w) x :
"In the slow limit, Fitting function: AS 4 ~ CS(W)Z + B
§

N is the number operator/ Volume at late time. g — 1 OO

If (1) decreases( & is fixed

The behavior of entanglement entropy at late time
is consistent with the behavior of number operator at late time.

If () increases ( & isfixed) | ;
C'3(w) decreases. -

5t



Oscillation (naive)

* In the late time, the mass profile slowly changes.

‘ Slowly Changes

* Physical quantities can be computed
adiabatically.
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Oscillation (naive)

* In the late time, the mass profile slowly changes.

‘ Slowly Changes

* Physical quantities can be computed

adiabatically.

*As in ECP, in the late time, slow mode

(zero mode) contribute to AS 4.

zero mode: ¢ "Wkt ~ TVt



Oscillation

Entanglement Entropy:
[

Sa=» sa(n)

k=1

- M = 12.JT has eigenvalues =7k .



Oscillation

Entanglement Entropy:
[

Sa=» sa(n)

k=1

1 1 1
sa(vk) = (5 + ’Yk) log (5 + ’Yk) — (—5 + ’Yk) log (—— + Vi

- M = 12.JT has eigenvalues =7k .



Oscillation
Xaolt) = (Xu(®X5(0) = [ S Xucos(kla=8) = [ FER(OF cos (kla— ).

dk | .
P, (t) f—PkCOS (k|la —0b|) /—‘fkt

Dap(t) =%<{X (), Po(t)}) = / ;l—kaCOS (kla —0]) = / —Re fk COS(’f!a—b!)

2
cos (k|a —b|),

oS —TIT

In the late limit,
fk(t) ~ Akeiwkt 1+ Bke—iwkt

Left moving mode + Right moving mode
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Oscillation
Xaolt) = (Xu(®X5(0) = [ S Xucos(kla=8) = [ FER(OF cos (kla— ).

dk | .
P, (t) f—Pkcos (k|la —0b|) /—‘fkt

Dap(t) =%<{X (), Po(t)}) = / ;l—kaCOS (kla —0]) = / —Re f;f COS(k!a—b!)

2
cos (k|a —b|),

oS —TIT

In the late limit,

Xy, P = C." 4+ D" cos (2wt + ©7.7),

Dy, ~ D} cos (2wot + OF), | Wo = T
slow mode (physical) = zero mode (k=0)



Oscillation
Xaplt) = (X, ()X, (1)) = /

—T

™ dk " dk
Q—Xkcos(k]a—b]) 2/ — | fu (1) cos (k [a — b]).
T 27

T 7'(' 2

Xo, Py, Dgoscillate with 7§ .
m) AS 4 oscillate withT& .

Dy = Df cos (2ot + Of).

slow mode (physical) = zero mode (k=0)

os (k|a — b))




Oscillation

* In the late time, the mass profile slowly changes.

‘ Slowly Changes

*As in ECP, in the late time, slow mode L | | f

-40 -20 20 40

(zero mode) contribute to AS 4.

zero mode: ¢ "Wkt ~ TVt



MI and LN



| | size ~ [, size ~ [
Time evolution of Ml and LN

0
e Mutual Information:

Iap=54+5B—SauB A .

* Logarithmic Negativity:
T
= log ||patpl| = log E A

PAUB — Pij,kl \”&> <j‘A & Vf>< ‘B ’ /OAuB — Pij,lk ‘7’> <]‘A & ‘k> <”B



size ~ [, size ~ [
Time evolution of Ml and LN

0
e Mutual Information:

Iap=54+5B—SauB A .

* Logarithmic Negativity: Eigenvalues of p' .

= log ||l || = log ZW

PAUB — Pij,kl \”&> <]‘A & Vf>< ‘B ’ /OAuB — Pij,lk ‘7’> <]‘A & ‘k> <”B



What we are studying

Change of Ml and LN:

Alyp(t) =1ap(t) —1a p(tin)

AE() = & — E(tin)



What we are studying

Change of Ml and LN:

Alyp(t) =1ap(t) —1aa(tin)

—

|
Ag(t) — (C; — S(tm) «— Ml and LN

for initial mass




Time evolution of Ml and LN in Fast-ECP
Parameter : (&, 0t, 1, 1) = (100, 5, 1000, 1000)

Al =0 : Red Al = 10 : Purple
Al = 100 : Blue Al =500 : Green
Al = 800 : Al = 1500 : Black
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Time evolution of Ml and LN in Fast-ECP
Parameter : (&, 0t, 1, 1) = (100, 5, 1000, 1000)

Al =0: Red Al = 10 : Purple
Al = 100 : Blue Al =500 : Green
Al = 800 : Al = 1500 : Black
A‘C/;\(t) AI;OLX,BI(\t) Increases (logarithmically)




Time evolution of M| and LN in Fast-ECP

Parameter : (&, 0t, 1, 1) = (100, 5, 1000, 1000)
Al =0 : Red Al = 10 : Purple
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Time evolution of M| and LN in Fast-ECP

Parameter : (&, 0t, 1, 1) = (100, 5, 1000, 1000)
Al =0: Red Al = 10 : Purple
Al = 100 - Bl Al — 500 - ooy

LN is independent of slow mode.




Time evolution of Ml and LN in Fast-ECP

Parameter : (&, 0t, 1, 1) = (100, 5, 1000, 1000)
AE(t) Alap(l)
N

W
AE(t) and Ala p(t) for Al > & increase after t—%

The width of wavelet is () — la,



Quasi-particle picture
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Quasi-particle picture
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Quasi-particle picture
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Time evolution of Ml and LN in Fast-CCP

Parameter : (£, 0t, [, 1) = (200, 5,600, 600)
Al =0: Red Al = 10 :
Al =100 : Brown Al =500: Magenta

Al = 800 : Black Al = 1500 : Cray
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Time evolution of Ml and LN in Fast-CCP

Parameter : (£, 0t, [, 1) = (200, 5,600, 600)

Al =0 : ‘
Al = 10( e go_o
Periodicity = f
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Time evolution of Ml and LN in Fast-CCP

Parameter : (£, 0t, [, 1) = (200, 5,600, 600)
Al=0: Red Al =10 :

Al = 10( . . i nta
Al .
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Time evolution of Ml and LN in Fast-CCP

Parameter : (£, 0t, [, 1) = (200, 5,600, 600)
Al=0: Red Al =10 :

Short-range entanglement - Oscillation
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Summary and
Future directions



summary

* We study what makes quasi-particles.

» In slow ECP, adiabaticity-breaking plays an important role.

* Scaling of EE depend on scales
when adiabaticity breaks down.

* Late time behavior depends on slow mode (zero mode).



Future directions

* Why does change of EE oscillate aftert = 2¢,.. , T = 25 ?
* Interacting theories
* Holographic Dual

* Floquet type potential



Thank you for your attention



