Holography, Quantum Entanglement and Higher Spin Gravity II @ PI2018/3/14

Entanglement Spreading and Oscillation

Masahiro Nozaki (University of Chicago) Collaborate with

Akio Tomiya (CCNU), Mitsuhiro Nishida (GIST), Yuji Sugimoto (Osaka University), Hiroyuki Fujita (Tokyo University)

arXiv:1712.09899 [hep-th]

- EE is a candidate of an entropy in Non-equilibrium physics.
- In AdS/CFT correspondences, *Entanglement* in CFT living on the boundary is expected to be significantly related to *Gravity* in the bulk.

- EE is a candidate of an entropy in Non-equilibrium physics.
- In AdS/CFT correspondences, *Entanglement* in CFT living on the boundary is expected to be significantly related to *Gravity* in the bulk.
- Late-time EE in a sudden quench is proportional to subsystem size (thermal-entropy-like behavior)

- EE is a candidate of an entropy in Non-equilibrium physics.
- In AdS/CFT correspondences, *Entanglement* in CFT living on the boundary is expected to be significantly related to *Gravity* in the bulk.
- Late-time EE in a sudden quench is proportional to subsystem size (``thermalization").

- EE is a candidate of an entropy in Non-equilibrium physics.
- In AdS/CFT correspondences, *Entanglement* in CFT living on the boundary is expected to be significantly related to *Gravity* in the bulk.
- Late-time EE in a sudden quench is proportional to subsystem size (``thermalization").

The dynamics of entanglement < The dynamics of gravity

- EE is a candidate of an entropy in Non-equilibrium physics.
- In AdS/CFT correspondences, *Entanglement* in CFT living on the boundary is expected to be significantly related to *Gravity* in the bulk.

The dynamics of entanglement

Thermalization

The dynamics of gravity

Black Hole Physics

- EE is a candidate of an entropy in Non-equilibrium physics.
- In AdS/CFT correspondences, *Entanglement* in CFT living on the boundary is expected to be significantly related to *Gravity* in the bulk.
- Late-time EE in a sudden quench is proportional to subsystem size (``thermalization").

The dynamics of entanglement

The dynamics of gravity

Thermalization

Creation of Black Hole

• EE is a candidate of an entropy in Non-equilibrium physics.

It is important to study the *dynamical features* of Entanglement.

The dynamics of entanglement

Thermalization

The dynamics of gravity

Black Hole Physics

Motivation

In the sudden global quenches where Hamiltonian suddenly change, in the late time, the change of entanglement entropy $(\Delta S_A(t) = S_A(t) - S_A(t_{initial}))$ is:

[Calabrese-Cardy, 06] [Hartman-Maldacena, 13] [Liu-Suh, 13]

In the sudden global quenches where Hamiltonian suddenly change, in the late time, the change of entanglement entropy $(\Delta S_A(t) = S_A(t) - S_A(t_{initial}))$ is:

m(t)

[Calabrese-Cardy, 06] [Hartman-Maldacena, 13] [Liu-Suh, 13]

In the sudden global quenches where Hamiltonian suddenly change, in the late time, the change of entanglement entropy $(\Delta S_A(t) = S_A(t) - S_A(t_{initial}))$ is:

$$\Delta S_A \rightarrow S_{thermal}$$

m(t)

Sudden Quenches

Thermalizes

Our Motivation m(t)Sudden Quenches **Thermalizes** t

Is this unique behavior for sudden quenches?

If the state is quenched gradually (smooth quenched),

is subsystem thermalized?

and

how does entanglement time-evolve?

What we have done

We have studied the time evolution of quantities (EE, LN, MI) in smooth quenches(ECP and CCP).

$$\Delta S_A(t) = S_A(t) - \frac{S_A(t_{initial})}{\checkmark}$$

EE for initial mass

Smooth Quenches

2d – Time-dependent Hamiltonian

$$H(t) = \frac{1}{2} \int dx \left[\Pi^{2}(x) + \partial_{x} \phi^{2}(x) + m^{2}(t) \phi^{2}(x) \right]$$

• ECP: $m^{2}(t) = \frac{1}{\xi^{2}} \left(1 - \tanh\left(\frac{t}{\delta t}\right) \right)$
• CCP: $m^{2}(t) = \frac{1}{\xi^{2}} \tanh^{2}\left(\frac{t}{\delta t}\right)$
 m^{2}
 m^{2}

Smooth Quenches

[Das-Galante-Myers, 14]

Smooth Quenches

[Das-Galante-Myers, 14]

• ECP:
$$m^2(t) = \frac{1}{\xi^2} \left(1 - \tanh\left(\frac{t}{\delta t}\right) \right)$$
 • CCP: $m^2(t) = \frac{1}{\xi^2} \tanh^2\left(\frac{t}{\delta t}\right)$

Changing a ratio, $\delta t/\xi$, we have studied time evolution of EE, LN and MI.

Results(EE) Late-time ΔS_A in ECP is proportional to subsystem size. (Thermalized.)

Late-time ΔS_A in *fast-CCP* ($\xi \ll \delta t$) is proportional to subsystem size.

Assumptions:
$$\frac{1}{m \cdot a} = \frac{\xi}{a} \gg 1$$
, a : is a lattice spacing.

 • ECP:

 Fast limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \ll 1$
 $\Delta S_A \sim C_1 \frac{l}{\xi}$
 $\Delta S_A \sim C_2 E_{kz} \cdot l$

 • CCP:

 Fast limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \ll 1$

 slow limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \gg 1$, $\xi_{kz} = \sqrt{\frac{\delta t}{m}} = \sqrt{\xi \delta t} \gg 1$
 $\Delta S_A \sim C_3(\omega) \frac{l}{\xi}$

Assumptions:
$$\frac{1}{m \cdot a} = \frac{\xi}{a} \gg 1$$
, a: is a lattice spacing.
• ECP:
Fast limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \ll 1$ slow limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \gg 1$, $E_{kz} = \frac{1}{\delta t} \ll 1$
 $\Delta S_A \sim C_1$ Depends on \mathcal{W} $C_2 E_{kz} \cdot l$
• CCP:
Fast limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \ll 1$ slow limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \gg 1$, $\xi_{kz} = \sqrt{\frac{\delta t}{m}} = \sqrt{\xi \delta t} \gg 1$
 $\Delta S_A \sim C_3(\omega) \frac{l}{\xi}$

Result1

Assumptions: $\frac{1}{m \cdot a} = \frac{\xi}{a} \gg 1$, *a*: is a lattice spacing.

• ECP: Fast limit: $\omega = \delta t \cdot m = \frac{\delta t}{\varsigma} \ll 1$ slow limit: $\omega = \delta t \cdot m = \frac{\delta t}{\xi} \gg 1$ $E_{kz} = \frac{1}{\delta t} \ll 1$ $\Delta S_A \sim C_1$ Depends on $\mathcal{W} \mid C_2 E_{kz} \cdot l$ •CCP: Fast limit: $\omega = \delta t \cdot m = \frac{\delta t}{\zeta} \ll 1$ slow limit: $\omega = \delta t \cdot m = \frac{\delta t}{\zeta} \gg 1$, $\xi_{kz} = \sqrt{\frac{\delta t}{m}} = \sqrt{\xi \delta t} \gg 1$ $\Delta S_A \sim C_3(\omega) \frac{1}{\epsilon}$

 $C_3(\omega)$

In fast limit, keeping ξ constant and, $\, \omega \,$ decreases

 $\sim C_3(\omega)$ decreases.

In slow limit, keeping ξ constant and, ${\cal W}$ increases

 $C_3(\omega)$ decreases.

 $C_3(\omega)$

In fast limit, keeping ξ constant and, $\, \omega \,$ decreases

Consistent with a number operator in late time.

In fast limit, keeping ξ constant and, $\,\omega\,$ increases

 $\sim C_3(\omega)$ decreases.

Results in slow ECP

• How does the subsystem thermalize in slow ECP? (Quasi-particles are created?)

Quasi-particles are created when the adiabaticity breaks down! (Subsystems thermalize!)

Results in slow ECP

Quasi-particles are created when the adiabaticity breaks down! (Subsystems thermalize!)

Quasi-particles are created at

t= t_{kz} and carry quantum entanglement.

Interpretation In ECP and fast CCP

• Time Evolution of $\Delta S_A(t)$

Propagation of Entangled particles

Results(EE)

Entanglement Oscillation

Results(EE) Entanglement Oscillation

The period of oscillation @ late time.

Results(EE) Late-time ΔS_A in CCP oscillates with periodicity determined by a late-time mass.

 ΔS_A in slow-CCP starts to oscillate after $t = 2\xi_{kz}$.

Adiabaticity breaks down.

Results(EE) Late-time ΔS_A in CCP *oscillates* with periodicity determined by *a late-time mass*.

Results(EE)

Time evolution is characterized by

After $t = 2\xi, 2\xi_{kz}, \Delta S_A$ oscillates.
Result(LN, MI (work in progress))

Their time-evolution in ECP can be interpreted in terms of *relativistic propagation of quasi-particles*.

If two subsystem are well-separated,
 Late-time MI in fast-ECP *increases* (logarithmically?).

• If two subsystem are well-separated, Late-time LN in fast-ECP *decreases*.

Result(LN, MI (work in progress))

Their time-evolution in ECP can be interpreted in terms of *relativistic propagation of quasi-particles*.

Result(LN, MI (work in progress)) Time evolution of LN and MI in CCP strongly depends on Δl .

If $\Delta l < \xi$, LN and MI *oscillate*.

If $\Delta l \gg \xi$, oscillation is suppressed. Their time evolution can be interpreted in terms of relativistic propagation of quasiparticle.

The Contents of Talk

- Introduction
- Motivation
- Results(EE)
- Results(LN, MI)
- Setup
- Method
- ECP(EE)
- CCP(EE)
- MI and LN (work in progress)
- Summary and Future directions

Smooth Quenches

• These quenches are *more realistic*.

• Hamiltonian is not changed suddenly but is changed smoothly.

• We can excite the state *slowly or fast*.

• This is a kind of generalization of sudden quenches.

Our protocol (Smooth Quenches)

[Das-Galante-Myers, 14]

2d – Time-dependent Hamiltonian

$$H(t) = \frac{1}{2} \int dx \left[\Pi^{2}(x) + \partial_{x} \phi^{2}(x) + m^{2}(t) \phi^{2}(x) \right]$$

• ECP: $m^{2}(t) = \frac{1}{\xi^{2}} \left(1 - \tanh\left(\frac{t}{\delta t}\right) \right)$
• CCP: $m^{2}(t) = \frac{1}{\xi^{2}} \tanh^{2}\left(\frac{t}{\delta t}\right)$
 m^{2}
 m^{2}

Our protocol (Smooth Quenches)

[Das-Galante-Myers, 14]

We have two tunable parameters.

States are excited slowly and rapidly.

Our setup

- Theory 2d Free scalar with time dependent mass m(t).
- Put it on the lattice but take the *thermodynamic limit*.

Our setup

- Theory 2d Free scalar with time dependent mass m(t).
- Put it on the lattice but take the *thermodynamic limit*.

Mass profile:
$$m^2(t) = m^2 \tanh\left(\frac{t}{\delta t}\right)^2$$
 $m^2(t)$
Initial state: The Ground state
for massive free scalar with mass m^2 .

 $2\delta t$

$$\left\langle \phi_i \phi_j \right\rangle = X_{ij}$$
$$\left\langle \dot{\phi}_i \dot{\phi}_j \right\rangle = P_{ij}$$
$$\frac{1}{2} \left\langle \left\{ \phi_i, \dot{\phi}_j \right\} \right\rangle = D_{ij}$$

Higher orders has higher derivative with respect to t.

Adiabatic Expansion $X_{ij} = X_{ij}^{(0)} + X_{ij}^{(1)} + \cdots$ $P_{ij} = P_{ij}^{(0)} + P_{ij}^{(1)} + \cdots$ $D_{ij} = D_{ij}^{(0)} + D_{ij}^{(1)} + \cdots$

 $\langle \phi_i \phi_j \rangle = X_{ij}$ $\left\langle \dot{\phi}_i \dot{\phi}_j \right\rangle = P_{ij}$ $\frac{1}{2}\left\langle \left\{ \phi_i, \dot{\phi}_j \right\} \right\rangle = D_{ij}$

Higher orders has higher derivative with respect to t.

Landau Criteria
$$\frac{1}{m^2(t)} \frac{dm(t)}{dt} \ll 1$$
 \implies Adiabaticity holds

Adiabatic Expansion $X_{ij} = X_{ij}^{(0)} + X_{ij}^{(1)} + \cdots$ $P_{ij} = P_{ij}^{(0)} + P_{ij}^{(1)} + \cdots$ $D_{ij} = D_{ij}^{(0)} + D_{ij}^{(1)} + \cdots$

$$\left\langle \phi_i \phi_j \right\rangle = X_{ij}$$
$$\left\langle \dot{\phi}_i \dot{\phi}_j \right\rangle = P_{ij}$$
$$\frac{1}{2} \left\langle \left\{ \phi_i, \dot{\phi}_j \right\} \right\rangle = D_{ij}$$

Higher orders has higher derivative with respect to t.

Landau Criteria

teria
$$\frac{1}{m^2(t)} \frac{dm(t)}{dt} \sim 1 \implies$$
 Adiabaticity braeks down.

 $\left\langle \phi_i \phi_j \right\rangle = X_{ij}$ $\left\langle \dot{\phi}_i \dot{\phi}_j \right\rangle = P_{ij}$ $\frac{1}{2} \left\langle \left\{ \phi_i, \dot{\phi}_j \right\} \right\rangle = D_{ij}$

Higher orders has higher derivative with respect to t.

$$\frac{1}{m^2(t)} \frac{dm(t)}{dt} \sim 1 \implies \text{Adiabaticity braeks down.}$$

The time when adiabaticity breaks down is called Kibble-Zurek Time $\,t_{kz}$.

If t_{kz} is so small, the most of whole time evolution is adiabatic.

More precisely,
$$\frac{t_{kz}}{\delta t} \ll 1$$

• ECP :
$$m^{2}(t) = \frac{1}{\xi^{2}} \left(1 - \tanh\left(\frac{t}{\delta t}\right)\right)$$
 • CCP: $m^{2}(t) = \frac{1}{\xi^{2}} \tanh^{2}\left(\frac{t}{\delta t}\right)$
 $\frac{1}{\xi^{2}}$
 $\frac{1}{10}$
 $\frac{1}{\xi^{2}}$
 $\frac{1}{\xi^$

Method

Discretize

• We put our theory on *the lattice* so that we compute ΔS_A by the correlator method.

Correlator method

• This is a method to compute $\Delta S_A\,$ by using the correlation functions.

Conditions: 1. State is *a Gaussian state*.

2. Local observables can be computed by Wick theorem.

• If an initial state $|\Psi\rangle$ is given by a gaussian state: For example, $|\Psi\rangle$ ($a_k |\Psi\rangle = 0$)

• If an initial state $|\Psi\rangle$ is given by a gaussian state: For example, $|\Psi\rangle$ ($a_k |\Psi\rangle = 0$)

We assume that a reduced density matrix is given by

$$\rho_A = tr_B \rho \sim e^{-\sum \gamma_k b_k^{\dagger} b_k}$$

If ϕ_i, ϕ_j are included in A, $\langle \phi_i \phi_j \rangle = tr \left(\rho \phi_i \phi_j \right) = tr_A \left(\rho_A \phi_i \phi_j \right) = \langle \phi_i \phi_j \rangle_A$

• If an initial state $|\Psi\rangle$ is given by a gaussian state: For example, $|\Psi\rangle$ ($a_k |\Psi\rangle = 0$)

We assume that a reduced density matrix is given by

$$\begin{split} \rho_{A} &= tr_{B}\rho \sim e^{-\sum \gamma_{k}b_{k}^{\dagger}b_{k}} \\ \text{If } \phi_{i}, \phi_{j} \text{ are included in A,} \\ \langle \phi_{i}\phi_{j} \rangle &= tr\left(\rho\phi_{i}\phi_{j}\right) = tr_{A}\left(\rho_{A}\phi_{i}\phi_{j}\right) = \langle \phi_{i}\phi_{j} \rangle_{A} \end{split}$$

$$\frac{\langle \phi_i \phi_j \rangle = tr \left(\rho \phi_i \phi_j \right) = tr_A \left(\rho_A \phi_i \phi_j \right) = \frac{\langle \phi_i \phi_j \rangle_A}{\uparrow}$$
Determined by
$$f(\gamma_k)$$

$$\begin{array}{l} \langle \phi_i \phi_j \rangle = tr \left(\rho \phi_i \phi_j \right) = tr_A \left(\rho_A \phi_i \phi_j \right) = \frac{\langle \phi_i \phi_j \rangle_A}{\uparrow} \\ \hline \\ \textbf{Determined by} \\ \textbf{E.O.M and so on.} \end{array}$$

$$\begin{array}{l} \langle \phi_i \phi_j \rangle = tr \left(\rho \phi_i \phi_j \right) = tr_A \left(\rho_A \phi_i \phi_j \right) = \frac{\langle \phi_i \phi_j \rangle_A}{\uparrow} \\ \hline \\ \textbf{Determined by} \\ \textbf{E.O.M and so on.} \end{array}$$

$$\langle \phi_i \phi_j \rangle = tr \left(\rho \phi_i \phi_j \right) = tr_A \left(\rho_A \phi_i \phi_j \right) = \left\langle \phi_i \phi_j \right\rangle_A$$
Two point $\longleftrightarrow \gamma_k$
functions
$$\rho_A \sim e^{-\sum \gamma_k b_k^{\dagger} b_k}$$

$$S_A \text{ is determined by two point functions.}$$

Correlator method **Entanglement Entropy:** $S_A = \sum s_A(\gamma_k)$ $s_A(\gamma_k) = \left(\frac{1}{2} + \gamma_k\right) \log\left(\frac{1}{2} + \gamma_k\right) - \left(-\frac{1}{2} + \gamma_k\right) \log\left(-\frac{1}{2} + \gamma_k\right)$ $\Gamma = \begin{pmatrix} X_{ij} & \frac{1}{2}D_{ij} \\ \frac{1}{2}D_{ii} & P_{ii} \end{pmatrix} \quad J = \begin{pmatrix} 0 & \mathbf{1} \\ -\mathbf{1} & 0 \end{pmatrix}$ $X_{ij} = \langle \phi_i \phi_j \rangle \qquad P_{ij} = \langle \pi_i \pi_j \rangle \qquad D_{ij} = \langle \{\phi, \pi_j\} \rangle$

• $M = i J \Gamma$ has eigenvalues $\pm \gamma_k$.

 $\cdot M = i J \Gamma$ has eigenvalues $\pm \gamma_k$.

 $\cdot M = i J \Gamma$ has eigenvalues $\pm \gamma_k$.

EE in ECP

EE in fast ECP

Plot of EE in Fast ECP

Orange Curve: I=2000, Green Curve: I=1000, Pink Curve: I= 500, Blue Curve: I=100, Purple Curve: I=10, Red Curve: I=5

If I is sufficiently larger than ξ and $\,\xi \ll t \leq l/2$,

 ΔS_A does not depend on I and linearly increases with time.

If I is sufficiently larger than ξ and $\xi \ll t \leq l/2$, $\Delta S_A(t) \sim 0.57 imes rac{t}{\epsilon}$

If t is sufficiently larger than I/2 ($t \gg l/2$),

$$\Delta S_A(l) \sim 0.28 \times \frac{l}{\xi}$$

Thermalize

Slowly increase

 As in sudden quenches, around t=0, entangled quasi-particle are created everywhere.

• Entangled pair is constructed two particles.

They propagate in the opposite directions with ${\cal U}$:

$$\longleftarrow \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow$$

• Entangled pair is constructed two particles.

They propagate in the opposite directions with ${\cal U}$:

$$\longleftarrow \bigcirc \frown \bigcirc \longrightarrow$$

If one of them is included in A and the other is out of A,

Entangled pair can contribute to entanglement entropy.

The particle created at the boundary at t=0 is at x = vt or x = -l - vt.

At t=l/2v, the distance between quasi-particles is the subsystem size.

At t=l/2v, all entangled pairs in the region A can contribute to

•

At t=l/2v, all entangled pairs in the region A can contribute to

•

At t=l/2v, all entangled pairs in the region A can contribute to

•

- As in sudden quenches, around t=0, entangled quasi-particle are created everywhere.
- Their speed is given by the group velocity at t=0

$$v_k = rac{d\omega_k(t)}{dk}$$
 , $\omega_k(t) = \sqrt{4\sin^2\left(rac{k}{2}
ight) + m^2(t)}$

[Jordan-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]

- As in sudden quenches, around t=0, entangled quasi-particle are created everywhere.
- Their speed is given by the group velocity at t=0

[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]

 $|v_{max}| \sim 1 \implies$

$$v_k = rac{d\omega_k(t)}{dk}$$
 , $\omega_k(t) = \sqrt{4\sin^2\left(rac{k}{2}
ight) + m^2(t)}$

Around t =1/2, the time evolution of ΔS_A changes.

- As in sudden quenches, around t=0, entangled quasi-particle are created everywhere.
- Their speed is given by the group velocity at t=0

$$v_k = rac{d\omega_k(t)}{dk}$$
 , $\omega_k(t) = \sqrt{4\sin^2\left(rac{k}{2}
ight) + m^2(t)}$

Slow mode (\sim zero mode and large k mode)

Slowly increases in the late time [Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]

- As in sudden quenches, around t=0, entangled quasi-particle are created everywhere.
- Their speed is given by the group velocity at t=0

$$v_k = rac{d\omega_k(t)}{dk}$$
 , $\omega_k(t) = \sqrt{4\sin^2\left(rac{k}{2}
ight) + m^2(t)}$

Slow mode (\sim zero mode and large k mode)

EE in slow ECP

Orange Curve: I=2000, Gray Curve: I=1000, Brown Curve: I= 800,

Orange Curve: I=2000, Gray Curve: I=1000, Brown Curve: I= 800,

Orange Curve: I=2000, Gray Curve: I=1000, Brown Curve: I= 800,

Orange Curve: I=2000, Gray Curve: I=1000, Brown Curve: I= 800,

Orange Curve: I=2000, Gray Curve: I=1000, Brown Curve: I= 800,

Orange Curve: I=2000, Gray Curve: I=1000, Brown Curve: I= 800,

$$t_{kz} + \frac{l}{2} = \delta t \log \omega + \frac{l}{2} > t \gg \frac{1}{E_{kz}}, \quad \Delta S_A \sim \frac{1}{3} E_{kz} \cdot t$$
$$t \gg t_{kz} + \frac{l}{2}, \quad \Delta S_A \sim \frac{1}{6} E_{kz} \cdot l$$

$$t_{kz} + \frac{l}{2} = \delta t \log \omega + \frac{l}{2} > t \gg \frac{1}{E_{kz}}, \quad \Delta S_A \sim \frac{1}{3} E_{kz} \cdot t$$
$$t \gg t_{kz} + \frac{l}{2}, \quad \Delta S_A \sim \frac{1}{6} E_{kz} \cdot l$$

Quasi-particles are created at
$$t=t_{kz}$$
.

$$t_{kz} + \frac{l}{2} = \delta t \log \omega + \frac{l}{2} > t \gg \frac{1}{E_{kz}}, \quad \Delta S_A \sim \frac{1}{3} E_{kz} \cdot t$$
$$t \gg t_{kz} + \frac{l}{2}, \quad \Delta S_A \sim \frac{1}{6} E_{kz} \cdot l$$

Proportionality Coefficient

The proportionality coefficient of **/** or **t** is set by

an initial correlation length
$$\, \xi\,$$
 in the fast limit,

a scale generated when adiabaticity breaks down, $E_{kz}\,$, in the slow limit.
EE in fast CCP

• ΔS_A is oscillating

• Minimum value of ΔS_A is at $t=2\xi$.

- Minimum value of ΔS_A is at $t=2\xi$.
- Around $l=\xi$, ΔS_A is *minimized*.
- Around $l = 4\xi$, ΔS_A is constant.

- Minimum value of ΔS_A is at $t=2\xi$.
- Around $l = \xi$, ΔS_A is *minimized*.

- Around $l=4\xi$, ΔS_A is constant.

• Around $l=4\xi$, ΔS_A is constant.

• Around $l=4\xi$, ΔS_A is constant.

Entangled particle picture

At $t = 2\xi$, the blue region of the subsystem A is entangled with the complemental region.

• Around
$$l=4\xi$$
 , ΔS_A is constant

At $t = 2\xi$, the blue region of the subsystem **A** is entangled with

the complemental region.

• Around
$$l=4\xi$$
 , ΔS_A is constant

 2ξ

At $t = 2\xi$, the blue region of the subsystem A is entangled with

the complemental region

$$\begin{array}{c} \Delta S_A \sim \\ 1 > 4\xi, \ \Delta S_A \text{ is constant (<0).} \end{array} \xrightarrow{2\xi} \\ \downarrow \\ 4\xi \end{array} \xrightarrow{2\xi} \\ 4\xi \end{array} \xrightarrow{2\xi} \\ 4\xi \end{array} \xrightarrow{\xi} \\ \xi effective < \xi \end{array}$$

EE in slow CCP

After $t = 2\xi_{kz}$,

 ΔS_A starts to oscillate.

 $\Delta S_A(t=2\xi_{kz})$

- $l > 6\xi_{kz}$
 - ΔS_A is a constant (>0).

 $\Delta S_A(t=2\xi_{kz})$

 $l > 6\xi_{kz}$

 $\Delta S_A~$ is a constant (>0).

Entangled particle interpretation

Adiabaticity breaks down.

 $e t \sim -t_{kz}$

Entangled particles are created.

Red: $(\omega, \xi_{kz}) = (100, 100)$ Blue: $(\omega, \xi_{kz}) = (100, 200)$ Green: $(\omega, \xi_{kz}) = (400, 200)$ ΔS_A 1.4 1.2 1.0 0.8 0.6 0.4 0.2 $\frac{1}{10} l/\xi_{kz}$ 2 4 8 $l = 6\xi_{kz}$

 $\Delta S_A(t=2\xi_{kz})$

 $l > 6\xi_{kz}$

 ΔS_A is a constant (>0).

Entangled particle interpretation

Adiabaticity breaks down.

Red: $(\omega, \xi_{kz}) = (100, 100)$ Blue: $(\omega, \xi_{kz}) = (100, 200)$ Green: $(\omega, \xi_{kz}) = (400, 200)$ ΔS_A 1.4 1.2 1.0 0.8 0.6 0.4 @ $t \sim -t_{k_{z}}$ 0.2 Entangled particles are created. $\frac{1}{10} l/\xi_{kz}$ 2 4 8 $\Delta S_A \sim \xi_{effective} > \xi$ $l = 6\xi_{kz}$ $K \log \left(\xi_{effective} \right) - K \log \left(\xi \right)$

 ΔS_A Is fitted by $\Delta S_A \sim rac{C_3(\omega)}{\xi} l+B$

Volume law in Fast and slow limits

- In the fast limit , Fitting function:
- In the slow limit, Fitting function:

N is the number operator/ Volume at late time. $\xi=100$

If
$$\mathcal{W}$$
 decreases (ξ is fixed),
 $-\omega^2 \log(\omega)$ decreases.

If
$${\it U}$$
 increases (ξ is fixed), $C_3(\omega)$ decreases.

Volume law in Fast and slow limits

- In the fast limit , Fitting function:
- In the slow limit, Fitting function:

N is the number operator/ Volume at late time. $\xi=100$

If ω decreases (ξ is fixed),

The behavior of entanglement entropy at late time is consistent with the behavior of number operator at late time.

N

0.00025

0.00020

If ${\cal U}$ increases (ξ is fixed), $C_3(\omega)$ decreases.

 $\Delta S_A \sim -\omega^2 \log(\omega) \times \frac{l}{\xi}$ $\Delta S_A \sim \frac{C_3(\omega)}{\xi} l + B$

Oscillation (naive)

- In the late time, the mass profile slowly changes.
- Physical quantities can be computed adiabatically.

Oscillation (naive)

- In the late time, the mass profile slowly changes.
- Physical quantities can be computed adiabatically.

$$v_k = \partial_k \omega_k$$
 $\omega_k = \sqrt{4 \sin^2\left(rac{k}{2}
ight) + m_f^2}$

Oscillation (naive)

- In the late time, the mass profile slowly changes.
- Physical quantities can be computed adiabatically.

$$v_k = \partial_k \omega_k$$
 $\omega_k = \sqrt{4 \sin^2\left(rac{k}{2}
ight) + m_f^2}$

•As in ECP, in the late time, slow mode (zero mode) contribute to ΔS_A . zero mode: $e^{-i\omega_k t} \sim e^{-im_f t}$

Entanglement Entropy:

$$S_{A} = \sum_{k=1}^{n} s_{A}(\gamma_{k})$$

$$s_{A}(\gamma_{k}) = \left(\frac{1}{2} + \gamma_{k}\right) \log\left(\frac{1}{2} + \gamma_{k}\right) - \left(-\frac{1}{2} + \gamma_{k}\right) \log\left(-\frac{1}{2} + \gamma_{k}\right)$$

$$\Gamma = \begin{pmatrix} X_{ij} & \frac{1}{2}D_{ij} \\ \frac{1}{2}D_{ji} & P_{ij} \end{pmatrix} \quad J = \begin{pmatrix} 0 & \mathbf{1} \\ -\mathbf{1} & 0 \end{pmatrix}$$

$$X_{ij} = \langle \phi_{i}\phi_{j} \rangle \qquad P_{ij} = \langle \pi_{i}\pi_{j} \rangle \qquad D_{ij} = \langle \{\phi, \pi_{j}\} \rangle$$

• $M = i J \Gamma$ has eigenvalues $\pm \gamma_k$.

Entanglement Entropy:

$$S_{A} = \sum_{k=1}^{n} s_{A}(\gamma_{k})$$

$$s_{A}(\gamma_{k}) = \left(\frac{1}{2} + \gamma_{k}\right) \log\left(\frac{1}{2} + \gamma_{k}\right) - \left(-\frac{1}{2} + \gamma_{k}\right) \log\left(-\frac{1}{2} + \gamma_{k}\right)$$

$$\Gamma = \begin{pmatrix} X_{ij} & \frac{1}{2}D_{ij} \\ \frac{1}{2}D_{ji} & P_{ij} \end{pmatrix} J = \begin{pmatrix} 0 & \mathbf{1} \\ -\mathbf{1} & 0 \end{pmatrix}$$

$$X_{ij} = \langle \phi_{i}\phi_{j} \rangle \qquad P_{ij} = \langle \pi_{i}\pi_{j} \rangle \qquad D_{ij} = \langle \{\phi, \pi_{j}\} \rangle$$

 $\mathbf{M} = i J \Gamma$ has eigenvalues $\pm \gamma_k$.

$$\begin{aligned} X_{ab}(t) &= \langle X_a(t)X_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} X_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \,|f_k(t)|^2 \cos\left(k \,|a-b|\right), \\ P_{ab}(t) &= \langle P_a(t)P_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} P_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \left|\dot{f}_k(t)\right|^2 \cos\left(k \,|a-b|\right), \\ D_{ab}(t) &= \frac{1}{2} \left\langle \{X_a(t), P_b(t)\} \right\rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} D_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} Re\left[\dot{f}_k^*(t)f_k(t)\right] \cos\left(k \,|a-b|\right). \end{aligned}$$

In the late limit,

$$f_k(t) \simeq \mathcal{A}_k e^{i\omega_k t} + \mathcal{B}_k e^{-i\omega_k t}$$

Left moving mode + Right moving mode

$$\begin{aligned} X_{ab}(t) &= \langle X_a(t)X_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} X_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \,|f_k(t)|^2 \cos\left(k \,|a-b|\right), \\ P_{ab}(t) &= \langle P_a(t)P_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} P_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \left|\dot{f}_k(t)\right|^2 \cos\left(k \,|a-b|\right), \\ D_{ab}(t) &= \frac{1}{2} \left\langle \{X_a(t), P_b(t)\} \right\rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} D_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} Re\left[\dot{f}_k^*(t)f_k(t)\right] \cos\left(k \,|a-b|\right). \end{aligned}$$

In the late limit,

$$X_k, P_k \simeq \mathcal{C}_k^{x,p} + \mathcal{D}_k^{x,p} \cos\left(2\omega_0 t + \Theta_k^{x,p}\right),$$
$$D_k \simeq \mathcal{D}_k^d \cos\left(2\omega_0 t + \Theta_k^d\right), \ \omega_0 = \sqrt{k^2 + m^2}$$
Oscillation

$$\begin{aligned} X_{ab}(t) &= \langle X_a(t)X_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} X_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \,|f_k(t)|^2 \cos\left(k \,|a-b|\right), \\ P_{ab}(t) &= \langle P_a(t)P_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} P_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \left|\dot{f}_k(t)\right|^2 \cos\left(k \,|a-b|\right), \\ D_{ab}(t) &= \frac{1}{2} \left\langle \{X_a(t), P_b(t)\} \right\rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} D_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} Re\left[\dot{f}_k^*(t)f_k(t)\right] \cos\left(k \,|a-b|\right). \end{aligned}$$

In the late limit,

S

$$X_k, P_k \simeq \mathcal{C}_k^{x,p} + \mathcal{D}_k^{x,p} \cos\left(2\omega_0 t + \Theta_k^{x,p}\right),$$
$$D_k \simeq \mathcal{D}_k^d \cos\left(2\omega_0 t + \Theta_k^d\right), \ \omega_0 = \sqrt{k^2 + m^2}$$
$$\text{low mode (physical) = zero mode (k=0)}$$

Oscillation

$$\begin{aligned} X_{ab}(t) &= \langle X_a(t)X_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} X_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \,|f_k(t)|^2 \cos\left(k \,|a-b|\right), \\ P_{ab}(t) &= \langle P_a(t)P_b(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} P_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \,\left|\dot{f}_k(t)\right|^2 \cos\left(k \,|a-b|\right), \\ D_{ab}(t) &= \frac{1}{2} \left\langle \{X_a(t), P_b(t)\} \right\rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} D_k \cos\left(k \,|a-b|\right) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} Re\left[\dot{f}_k^*(t)f_k(t)\right] \cos\left(k \,|a-b|\right). \end{aligned}$$

In the late limit,

S

$$X_k, P_k \simeq \mathcal{C}_k^{x,p} + \mathcal{D}_k^{x,p} \cos\left(2\omega_0 t + \Theta_k^{x,p}\right),$$
$$D_k \simeq \mathcal{D}_k^d \cos\left(2\omega_0 t + \Theta_k^d\right), \quad \mathcal{U}_0 = \mathcal{M}$$
ow mode (physical) = zero mode (k=0)

Oscillation

$$X_{ab}(t) = \langle X_{a}(t)X_{b}(t) \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} X_{k} \cos(k |a-b|) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} |f_{k}(t)|^{2} \cos(k |a-b|),$$

$$P_{ab}(t) = \langle P_{t} \\ D_{ab}(t) = \frac{1}{2} \\ X_{0}, P_{0}, D_{0} \text{ oscillate with } \pi \xi .$$

$$D_{ab}(t) = \frac{1}{2} \\ X_{k}, T_{k} = \mathcal{O}_{k} + \mathcal{O}_{k} \text{ oscillate with } \pi \xi .$$

$$D_{k} \simeq \mathcal{D}_{k}^{d} \cos\left(2\omega_{0}t + \Theta_{k}^{d}\right), \quad \mathcal{O}_{0} = \mathcal{M}$$
slow mode (physical) = zero mode (k=0)

MI and LN

Time evolution of MI and LN

Mutual Information:

size
$$\simeq l_a$$
 size $\simeq l_b$
 Δl

$$I_{A,B} = S_A + S_B - S_{A\cup B}$$

Logarithmic Negativity:

$$\mathcal{E} = \log ||\rho_{A\cup B}^{T_B}|| = \log \sum_{i} |\lambda_i|$$

$$\rho_{A\cup B} = \rho_{ij,kl} |i\rangle \langle j|_A \otimes |k\rangle \langle l|_B , \ \rho_{A\cup B}^{T_B} = \rho_{ij,lk} |i\rangle \langle j|_A \otimes |k\rangle \langle l|_B$$

Time evolution of MI and LN

Mutual Information:

size
$$\simeq l_a$$
 size $\simeq l_b$

Α

$$I_{A,B} = S_A + S_B - S_{A\cup B}$$

• Logarithmic Negativity:

$$\mathcal{E} = \log ||\rho_{A \cup B}^{T_B}|| = \log \sum_{i} |\lambda_i|$$

$$\rho_{A \cup B} = \rho_{ij,kl} |i\rangle \langle j|_A \otimes |k\rangle \langle l|_B , \ \rho_{A \cup B}^{T_B} = \rho_{ij,lk} |i\rangle \langle j|_A \otimes |k\rangle \langle l|_B$$

What we are studying

Change of MI and LN:

 $\Delta I_{A,B}(t) = I_{A,B}(t) - I_{A,B}(t_{in})$

 $\Delta \mathcal{E}(t) = \mathcal{E} - \mathcal{E}(t_{in})$

What we are studying

Change of MI and LN:

$$\begin{split} \Delta I_{A,B}(t) &= I_{A,B}(t) - \underbrace{I_{A,B}(t_{in})}_{\uparrow} \\ \Delta \mathcal{E}(t) &= \mathcal{E} - \underbrace{\mathcal{E}(t_{in})}_{\textit{for initial mass}} \\ \end{split}$$

Time evolution of MI and LN in Fast-ECP Parameter: $(\xi, \delta t, l_a, l_b) = (100, 5, 1000, 1000)$ $\Delta l = 0$: Red $\Delta l = 10$: Purple $\Delta l = 500$: Green $\Delta l = 100$: Blue $\Delta l = 1500$: Black $\Delta l = 800$: Pink $\Delta \mathcal{E}(t)$ $\Delta I_{A,B}(t)$ 2.0 2.5 2.0 1.5 1.0 0.5 2000 1000 1000 2000 3000

4000

Time evolution of MI and LN in Fast-ECP Parameter: $(\xi, \delta t, l_a, l_b) = (100, 5, 1000, 1000)$ $\Delta l = 0$: Red $\Delta l = 10$: Purple $\Delta l = 500$: Green $\Delta l = 100$: Blue $\Delta l = 1500$: Black $\Delta l = 800$: Pink $\Delta \mathcal{E}(t)$ $\Delta I_{A,B}(t)$ Increases (logarithmically) 2.0 2.5 Slightly decreases 2.0 1.5 0.5 1000 2000 4000 3000

 $\begin{array}{ll} {\rm Parameter}: \left({\xi ,\delta t,l_a,l_b } \right) = \left({200,5,600,600} \right) \\ {\Delta l = 0:} & {\it Red} & {\Delta l = 10:} & {\it Cyan} \\ {\Delta l = 100:} & {\it Brown} & {\Delta l = 500:} & {\it Magenta} \\ {\Delta l = 800:} {\it Black} & {\Delta l = 1500:} {\it Cray} \end{array}$

Summary and Future directions

Summary

• We study what makes quasi-particles.

In slow ECP, adiabaticity-breaking plays an important role.

• Scaling of EE depend on scales

when adiabaticity breaks down.

• Late time behavior depends on slow mode (zero mode).

Future directions

• Why does change of EE oscillate after $t=2\xi_{kz}$, $t=2\xi$?

- Interacting theories
- Holographic Dual

• Floquet type potential

Thank you for your attention