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• EE is a candidate of an entropy in Non-equilibrium physics.
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It is important to study the dynamical features of Entanglement.
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Our Motivation

Sudden Quenches 

Thermalizes

Is this unique behavior for sudden quenches?



Our Motivation
If the state is quenched gradually (smooth quenched), 

is subsystem thermalized?

and 

how does entanglement time-evolve?



What we have done

We have studied the time evolution of quantities 
(EE, LN, MI) in smooth quenches(ECP and CCP).

EE  for initial mass
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• ECP:

[Das-Galante-Myers, 14]

•CCP:

Changing a ratio,           , we have studied time 
evolution of  EE, LN and MI.



Smooth Quenches

• ECP:

[Das-Galante-Myers, 14]

•CCP:

We took two extreme limits:

Fast limit:

Slow limit:



Results(EE)

Late-time            in ECP

is proportional to subsystem size.

(Thermalized.)

Late-time            in fast-CCP (               )

is proportional to subsystem size.
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In fast limit, keeping      constant and,           decreases

decreases.   

In slow limit, keeping      constant and,           increases

decreases.



In fast limit, keeping      constant and,           decreases

decreases.   

In fast limit, keeping      constant and,           increases

decreases.

Consistent with a number operator in late time.
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Results in slow ECP 

Quasi-particles are created when 
the adiabaticity breaks down!

(Subsystems thermalize!)

Adiabatic

Quasi-particles are created at 

t=         and carry quantum 
entanglement.

Thermalize



Interpretation In  ECP and fast CCP

• Time Evolution of

Propagation of Entangled particles
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Results(EE) 
Entanglement Oscillation

The period of oscillation @ late time.

The periodicity of zero mode 
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is minimized

at            .
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Time evolution is characterized by                                   . 

Results(EE)



Result(LN, MI (work in progress))

Their time-evolution in ECP can be interpreted in terms 
of relativistic propagation of quasi-particles.

• If two subsystem are well-separated, 

Late-time MI in fast-ECP increases (logarithmically?).

• If two subsystem are well-separated, 

Late-time LN in fast-ECP decreases .
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Their time-evolution in ECP can be interpreted in terms 
of relativistic propagation of quasi-particles.

• If two subsystem are well-separated, 

Late-time MI in fast-ECP increases (logarithmically?).

• If two subsystem are well-separated, 

Late-time LN in fast-ECP decreases .

Late-time LN weakly depends on slow modes.

Explain later.



Result(LN, MI (work in progress))
Time evolution of LN and MI in CCP strongly depends on       . 

If                ,   LN and MI oscillate.

If                 , oscillation is suppressed. Their time evolution can

be interpreted in terms of relativistic propagation of quasi-
particle.



The Contents of Talk
• Introduction

• Motivation

• Results(EE)

• Results(LN, MI)

• Setup

• Method

• ECP(EE)

• CCP(EE)

• MI and LN (work in progress)

• Summary and Future directions



Setup



Smooth Quenches
• These quenches are more realistic.

• Hamiltonian is not changed suddenly but is changed smoothly.

• We can excite the state slowly or fast. 

• This is a kind of generalization of sudden quenches. 
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Our protocol (Smooth Quenches)

• ECP:

[Das-Galante-Myers, 14]

•CCP:

We have 
two tunable parameters.

States are excited 
slowly and rapidly.
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• Put it on the lattice but take the thermodynamic limit.

Mass profile:

At t =0, the theory is 
at critical point.
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Our setup

• Theory 2d Free scalar with time dependent mass m(t).

• Put it on the lattice but take the thermodynamic limit.

Mass profile:

t

Initial state: The Ground state 
for massive free scalar with mass          .  
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Mass profile: 

t

Very Early time: 
Observables can

be computed adiabatically .
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Slow Quenches

Mass profile: 

t

Very Early time: 
Observables can

be computed adiabatically .

Around critical point:

Observables can not
be computed adiabatically .
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Adiabatic Expansion 

Higher orders has higher derivative with respect to t.

Adiabaticity braeks down.

The time when adiabaticity breaks down is called Kibble-Zurek Time         . 

Landau Criteria 



Slow Quenches

Mass profile: 

t

Very Early time: 
Observables can

be computed adiabatically .

Around critical point:

We assume that at                     ,  
adiabaticity breaks down.

(Around                   ,  time process becomes adiabatic again. )
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More precisely,  
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More precisely,  

t



If         is so small, the most of whole time evolution is adiabatic.

More precisely,  

t

In slow quenches, Kibble-Zurek time is 
small.



• ECP: •CCP:

Fast Quench limit:

Slow Quench limit:



• ECP : •CCP:

Parameters

• ECP : •CCP:



Method



Correlator method

• This is a method to compute            by using the correlation functions.

Conditions: 1. State is a Gaussian state. 

2. Local observables can be computed by Wick theorem.

Discretize

• We put our theory on the lattice so that we compute             by 

the correlator method. 
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Correlator Method

is determined by two point functions.

Two point 
functions
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・ has eigenvalues          .  



Correlator method
Entanglement Entropy:

・ has eigenvalues          .  

The subsystem size = l
2l ×2l  matrix



Correlator method
Entanglement Entropy:

・ has eigenvalues          .  

The subsystem size = l
2l ×2l  matrix

By evaluating       , we can compute       .
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Orange Curve: l=2000, Green Curve: l=1000, Pink Curve: l= 500,

Blue Curve: l=100,  Purple Curve: l=10, Red Curve: l=5

If t is sufficiently larger than l/2 (                    ),     

Thermalize
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Quasi-Particle Interpretation

• As in sudden quenches, around 
t=0, entangled quasi-particle are 
created everywhere.
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• Entangled pair is constructed two particles.

They propagate in the opposite directions with      :

If one of them is included in A and the other is out of A, 

Entangled pair can contribute to entanglement entropy.

A A A

Not Contribute Contribute



At l/2 > t > 1/m, the distance between entangled particles is given 2vt:



At l/2 > t > 1/m, the distance between entangled particles is given 2vt:

The particle created at the boundary at t=0 is at                    or                            .

l
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At l/2 > t > 1/m, the distance between entangled particles is given 2vt:

The entangled pairs in the blue region can contribute to       .

l

# of entangled pair t linearly grows with t 



At t=l/2v, the distance between quasi-particles is the subsystem size.

l



l

At t=l/2v, all entangled pairs in the region A can contribute to      . 



l

At t=l/2v, all entangled pairs in the region A can contribute to      . 

# of entangled pair l



l

At t=l/2v, all entangled pairs in the region A can contribute to      . 

# of entangled pair l

has volume law.
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Quasi-Particle Interpretation

• As in sudden quenches, around 
t=0, entangled quasi-particle are 
created everywhere.

• Their speed is given by the 
group velocity at t=0

,                                         .

Around t =l/2, the time evolution of
changes.

[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]



Quasi-Particle Interpretation

• As in sudden quenches, around 
t=0, entangled quasi-particle are 
created everywhere.

• Their speed is given by the 
group velocity at t=0

,                                         .

Slow mode ( ～ zero mode and large k mode)

Slowly increases in the late time 

[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]



Quasi-Particle Interpretation

• As in sudden quenches, around 
t=0, entangled quasi-particle are 
created everywhere.

• Their speed is given by the 
group velocity at t=0

,                                         .

Slow mode ( ～ zero mode and large k mode)

Slowly increases in the late time 

Lattice effect

[Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]
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Quasi-Particle Interpretation

,

,

Quasi-particles are created at                     . 

When adiabaticity breaks down, quasi-
particles are created. 



Proportionality Coefficient 

The proportionality coefficient of l or t is set by

an initial correlation length        in the fast limit,

a scale generated  when adiabaticity breaks down,             ,        
in the slow limit.
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• If             

Plot of EE in fast CCP
Orange Curve: l=2000, Green Curve: l=1000, Pink Curve: l= 500,

Blue Curve: l=100,  Purple Curve: l=10, Red Curve: l=5

Thermalized

Entangled particles are created around t=0. 
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Plot of EE in fast CCP
Orange Curve: l=2000, Green Curve: l=1000, Pink Curve: l= 500,

Blue Curve: l=100,  Purple Curve: l=10, Red Curve: l=5

• is oscillating

• Frequency is determined by           

final mass.         
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Minimum Value

• Around                ,            is constant.

At            , the blue region of 

the subsystem A is entangled with 

the complemental region.

The plot for l-dependence of             at

l

,                  is constant (<0).

related with a distance between entangled pair. 

Entangled particle picture
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• Around                ,            is constant.

At            , the blue region of 

the subsystem A is entangled with 

the complemental region.

The plot for l-dependence of             at

l

,                  is constant (<0).

Entangled particle picture
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Plot of EE in Slow CCP

After              ,  

starts to oscillate.

Similar to the results in fast quenches.

Green Curve: l=3000, Orange Curve: l=2500, Black Curve: l= 1000,

Blue Curve: l=500,Purple Curve: l=100, Red Curve: l=10



Plot of EE in Slow CCP

Periodicity of            at late time

～

Green Curve: l=3000, Orange Curve: l=2500, Black Curve: l= 1000,

Blue Curve: l=500,Purple Curve: l=100, Red Curve: l=10

Periodicity of zero mode
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Entangled particles are created.
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Adiabaticity breaks down. 
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Volume law in Fast and slow limits
• In the fast limit ,  Fitting function:

・In the slow limit, Fitting function:

If          increases (       is fixed),
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If         decreases (        is fixed),

decreases.

N is the number operator/ Volume at late time.



Volume law in Fast and slow limits
• In the fast limit ,  Fitting function:

・In the slow limit, Fitting function:

If          increases (       is fixed),
decreases.

If         decreases (        is fixed),

decreases.

N is the number operator/ Volume at late time.

The behavior of entanglement entropy at late time
is consistent with the behavior of number operator at late time. 
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Oscillation (naive) 
• In the late time, the mass profile slowly changes.

• Physical quantities can be computed 

adiabatically.

・As in ECP, in the late time, slow mode 

(zero mode) contribute to .

Slowly Changes

zero mode:
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Oscillation

In the late limit, 

Left moving mode + Right moving mode
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Oscillation

In the late limit, 

slow mode (physical) = zero mode (k=0)

,      ,        oscillate with        .

oscillate with      .



Oscillation 
• In the late time, the mass profile slowly changes.

• Physical quantities can be computed 

adiabatically.

・As in ECP, in the late time, slow mode 

(zero mode) contribute to .

Slowly Changes

zero mode:

Frequency of zero mode Frequency of
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Time evolution of MI and LN

•Mutual Information:

•Logarithmic Negativity:
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A B



Time evolution of MI and LN

•Mutual Information:

•Logarithmic Negativity:

, 

Eigenvalues of 

A B



What we are studying

Change of MI and LN:



What we are studying

Change of MI and LN:

MI and LN 
for initial mass
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Time evolution of MI and LN in Fast-ECP
Parameter :

Red Purple

Blue Green 

Pink Black

Slightly decreases

Increases (logarithmically)

Slow mode contributes to late-time behavior.



Time evolution of MI and LN in Fast-ECP
Parameter :

Red Purple

Blue Green 

Pink Black

Slightly decreases

Increases (logarithmically)

LN  is independent of slow mode.



Time evolution of MI and LN in Fast-ECP
Parameter :

and                    for                  increase after              .

The width of wavelet  is    
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AB
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Time evolution of MI and LN in Fast-CCP

Periodicity =
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Red Cyan 

Brown Magenta

Black Cray

Time evolution of MI and LN in Fast-CCP

, oscillation vanishes.



Parameter :

Red Cyan 

Brown Magenta

Black Cray

Time evolution of MI and LN in Fast-CCP

OscillationShort-range entanglement
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Summary 

• We study what makes quasi-particles.

• Scaling of EE depend on scales 

when adiabaticity breaks down.

• Late time behavior depends on slow mode (zero mode).

In slow ECP, adiabaticity-breaking plays an important role.



Future directions

• Why does change of EE oscillate after                  ,                 ?

• Interacting theories

• Holographic Dual  

• Floquet type potential



Thank you for your attention


