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1.   Background 



Complexity in quantum circuits 

 In quantum circuits, the complexity is usually defined in the 
finite (discreet) Hilbert space. 

 Two states can be associated by an unitary operator    which 
could be simulated by a quantum circuit. 

 

 

 

 

 

 

 

 

 Complexity for one state to the other state is defined as the 
minimal required gates when we realized this operator by 
quantum circuits. 

Ô

Ô 

Quantum circuit to realize an operator 
C:=minimal required gates 

Quantum 

logic gates 



Complexity in holography 

 Daniel Harlow and Patrick Hayden first noted that the 

computational complexity may play role in black holes 

physics; 

 

 

 In 2014, Susskind proposed an idea that complexity is 

essential to understand the properties of black holes horizon. 

 

 

 In 2014 and 2016, Susskind proposed two different 

conjectures to compute complexity by holography. 
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Complexity: the foundation is still absent! 

 In 2016-2017, there are more than 100 papers involved 
the complexity in holography and black holes! 

 

 However, some foundations about complexity are still 
unclear! 

 

 How do we give the complexity a well-defined mathematical 

foundation? 

 What is the meaning of complexity in quantum field theory? 

 What can it tell us by using this conception? 

 ……. 



2.   Axiomatization of complexity 



Basic properties of complexity 





Cartesian product 

The fourth axiom : 

1 2

1 2 1 2
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C O O

C O I C I O 



Two assumptions for SU(n) grups 

 As  any quantum circuit can only realize a unitary 

transformation, it is enough to only consider the complexity 

for operators in SU(n) groups. 

 

 

 Assumption 1: for any generator H, the complexity of exp(He) 

depends on e smoothly if e≥0; 

 

 Assumption 2: complexity has path-reversal symmetry. 

 

 



Complexity and Finsler geometry 

 In fact, just by four axioms and two assumptions, we can 

prove following surprising result: 

 

 

 

 

 

    Here  H is defined as 

 

 

 In fact, it is enough for any quantum mechanics and quantum 

field theoeries.  

The complexity for SU(n) group can only be given by geodesic 
length of a bi-invariant Finsler geometry in SU(n) group with 
following Finsler structure: 

   † †( , ) Tr TrF c c HH cc  

In general it 

is not 

Riemannian 

1 1 or H cc c c 



Complexity is geodesic length 

 We define a cost for a curve/process by the curve length,  

 

 

 

 

 Thus, finding the complexity of operator is becomes finding 

the minimal cost curve to connect identity and this operator.  

 
1 1

†

0 0
[ ]: ( , )d Tr dL c F c c s cc s  

   ˆ ˆˆ: min [ ] ,  s.t., (0) , (1)C O L c c c I c O   

This means we need to find the geodesics in Finsler manifolds. 



Geodesic and complexity 

 Due to the bi-invariance, the geodesic can be easy obtained. In 

fact, we  have following theorem: [Journal of Basic and Applied 

Sciences 5, 607 (2011), Mathematical Sciences 7, 37 (2013) ] 

 

 

 

 With the condition                            , we can solve H  formally. 

Let’s define  

 

 Then we see  

 

the curve c(s) is a geodesic if and only if there is a 
constant generator H such that c(s)=exp(Hs) 

ˆ (1) exp( )O c H 

ˆ ˆln( ) : { | su( ),s.t.,exp( ) }iO H H n H O   

  † ˆ( ) min Tr ln( )C O HH H O  



3. Some applications 



Applications 

 We can prove the Schroding’s equation for isolated system is a 

consequence of minimal complexity principle:  

For an isolated system, the 

time evolution operator  will 

go along the curve such that 

the complexity in this process 

is locally minimal!  

Î

Ô

Curve generated 

by Schrödinger's 

equation  

The process to realize 

O with minimal 

complexity 



Applications 

 The complexity between two states is given by density 

matrixes such that: 

 

 

 For two pure states                   , we can prove this is just 

 

 

 In addition, if one of them is ground state and the other is field 

eigenstate,  it can be expressed as Euclidean path integral: 

 

 

 For classical limit, its leading term reads 
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Applications 

 The complexity between a thermofield double state and 

vacuum state is given  

 

 

 The complexity between  ground state and directly product 

state in coordinates representation in CFT is given by 

 

 

 Both these two results agree with CV and CA conjectures!!! 

 

 For a system with classical chaos, the complexity in classical 

limit will growth linear for large time 

1

1 2( , ) dVT  

1

1 2( , ) dV   

,  1 and 0Lt t 



Summary 

 Four axioms was abstracted to define complexity. They are 

suitable for discrete and continuous systems. 

 

 With two additional simple assumptions for continuous cases, 

the complexity for any operator in SU(n) group is determined 

uniquely up to a factor; 

 

 A complexity principle was proposed, which can replace 

Schrödinger's equation in isolated systems; 

 

  When it is applied into the detailed physical cases and quantum 

states, all good results become correct! 

For more details, Please read our paper arXiv: 1803.01797 


