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Density matrix and Entropy

Density matrix

However, in many situations, it is more convenient to consider 
quantum mechanics of a subsystem.

In a finite temperature system which contacts with heat bath,

we ignore the part of heat bath and consider a physical state 
given by a statistical average (Mixed state).

A physical observable

In quantum mechanics, a physical state is described by a vector which 
belongs to the Hilbert space of the total system.



The definition of (Renyi) entanglement entropy

We decompose the total Hilbert space into subsystems A and B. 

BAtot HHH 

We trace out the degrees of freedom of B and consider 
the reduced density matrix of A.

totBA Tr  

EE is defined as von Neumann entropy. 

AAAA trS  log: 
The Renyi entropy is the generalization of EE and  defined as 
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✓ When the total system is a pure state, 

The entanglement entropy represents the strength of 
quantum entanglement.

✓ When the total system is a mixed state, 

The entanglement entropy includes thermodynamic 
entropy.

Entanglement entropy

Any application to particle phenomenology or cosmology ??



Decoupling in the Universe

Particles A are no longer in thermal contact with particles B
when the interaction rate is smaller than the Hubble expansion rate.

Decoupled subsystems are 
treated separately.

e.g. neutrino decoupling

Neutrino temperature drops 
independently from photon 
temperature.

Thermodynamic entropy is expected to be conserved in each subsystem.



Decoupling in the Universe

However, this paradigm assumes that thermal equilibrium is maintained 
in the subsystems during and after the decoupling.

Thermodynamic entropy is generalized to entanglement entropy!

Trace out the information of 
the other subsystem.

Can we refine the argument of decoupling?

Nishioka, Ryu, Takayanagi (2009)



Entanglement entropy
Before decoupling, the total system is in thermal equilibrium 
and the density matrix is given by a grand canonical ensemble.

After decoupling, in terms of the subsystem A,
the system B can be seen as an environment and be traced out.

Entanglement entropy

A unitary evolution :

The entanglement entropy is conserved due to the nature of the trace!



Research background

✓ Entanglement entropy has been extensively discussed for 
the case of a spatial decomposition. 

✓ Instead, in this work, we analyze EE between two QFTs which 
live in a common spacetime and  interacting with each other. 
other works 
e.g.  A. Mollabashi, NS, T. Takayanagi, (2014),C. Xu, (2011)  

✓ A general formulation of perturbation theory is still lacking.

We formulate perturbation theory and present Feynman rules.

We discuss its applications to cosmology.

A
B

QFT_1 QFT_2



Path integral formulation

We consider two interacting fields : 

The total system is in thermal equilibrium.

The partition function of the total system :

The fields are (anti-)periodic in imaginary time 

The usual finite-temperature field theory



Path integral formulation

The reduced density matrix :

Trace out the density matrix over the Hilbert space of B.

NOT the form of a grand canonical ensemble in general.

The entanglement entropy is defined as the von Neumann entropy.



Path integral formulation

It is not easy to evaluate the trace of 

We first calculate the Renyi entropy and take the limit



Path integral formulation

𝝓𝑨 has periodicity of 𝒏𝜷.

𝝓𝑩
(𝒋)

has periodicity of 𝜷.

Identified



Path integral formulation

The thermodynamic entropy 
of a free field

Non-interacting part Quantum correction



Zeroth-order contributions

Neutral scalar field

The result of the functional integration : See e.g. Kapusta, Gale (2011).



Perturbative expansion

Consider a scalar-scalar system in d+1 dimensions.

Preserve two independent parities :

Formulate perturbation theory and present Feynman rules !

(i)(ii)



Perturbative expansion

The term (i)

The usual finite temperature perturbation theory.

Averaged over the 
unperturbed ensemble.

Propagator :



Feynman rules (Position space)

Kapusta, Gale (2011).

Draw all topologically 
inequivalent diagrams 
at a given order.

Only connected
diagrams contribute.

The term (i)



Feynman rules (Momentum space)

Energy and momentum are conserved at each vertex.



Perturbative expansion

The term (ii)

We can consider this action as the theory of (n+1) scalar fields.



Feynman rules (Position space)

There exists a line for 

each 𝝓𝑩
(𝒋)

. 

Lines with different 𝒋s 
do not directly connect 
with each other.

Only connected 
diagrams contribute.

The term (ii)



Feynman rules (Momentum space)

Energy is not necessarily conserved at a vertex.



Feynman rules (Momentum space)
The term (ii)



The coupled 𝜙4 theory
Calculate the leading order correction to the thermodynamic entropy.

Divergence is renormalized by counter terms of the usual zero-
temperature field theory.



The leading order diagrams

High temperature limit

The correction terms are important when the couplings are 
sufficiently strong.

Counter terms



Decoupling may proceed much faster than the time scale of cosmic 
expansion and the time scale of interactions in a subsystem.

Instantaneous decoupling

Thermal equilibrium cannot be maintained during the decoupling.

Thermodynamic entropy is
no longer a good fiducial quantity.

Entanglement entropy is evaluated at 
the time just before the decoupling.

The form of the reduced density 
matrix is preserved before and 
after the decoupling.



Summary

✓ Formulation of perturbation theory to derive the entanglement 
entropy of coupled quantum fields and Feynman rules.

✓ The correction may be important in circumstances of 
instantaneous decoupling.

✓ Thermodynamic entropy is generalized to entanglement 
entropy!


