Entanglement of Purification in AdS/CFT

Koji Umemoto (YITP, Kyoto University)

Based on

[1] T. Takayanagi, KU, to appear in Nature Physics [arXiv:1708.09393].

[2] A. Bhattacharyya, T. Takayanagi, KU, [arXIv:1802.09545].

[2] -> Arpan's talk!

AdS/CFT and Quantum Information

Entanglement entropy

 $S_A \equiv S(\rho_A) = -\mathrm{Tr}\rho_A \log \rho_A.$ $(\rho_A \coloneqq \mathrm{Tr}_B[|\Psi\rangle\langle\Psi|_{AB}])$

It is a unique measure of entanglement for pure states $|\Psi\rangle_{AB}$. [Donald-Horodecki-Rudolph '02]

We can **not** use S_A as a measure of correlation.

e.g.) No correlation in $\rho_{AB} = \rho_A \otimes \rho_B$, but in general $S_A > 0$.

There are many good correlation measures for mixed states:

- Relative entropy of entanglement E_R ,
- Squashed entanglement E_{sq} ,
- Entanglement of Formation E_F ,
- ... etc.

Holographic counterparts of them?

Motivation

We want to investigate a new dual relationship between correlation measures for mixed states and spacetime geometry in AdS/CFT.

It will recover an information-theoretic understanding of holography for mixed states.

Entanglement Wedge Cross Section

What is a geometrical counterpart of "correlation"? Information of ρ_{AB} is included in **entanglement wedge** M_{AB} in AdS.

What is a geometrical counterpart of "correlation"? Information of ρ_{AB} is included in **entanglement wedge** M_{AB} in AdS.

Emerges from correlations

B

We define its minimal area by entanglement wedge cross section

as a measure of correlation between A and B in AdS side.

<u>Step 1</u>. Entanglement wedge M_{AB} dual to ρ_{AB} (and forget all the other regions)

<u>Step 2</u>. Regard ∂M_{AB} as a new boundary and divide it into two subsets $\tilde{\Gamma}_A$ and $\tilde{\Gamma}_B$ so that $A, B \subset \tilde{\Gamma}_{A,B}$, respectively.

<u>Step 3</u>. Find the **RT-surface** of $\tilde{\Gamma}_A$ (or equivalentally $\tilde{\Gamma}_B$)

<u>Step 4</u>. Minimize the area of the RT-surfaces over all possible divisions of ∂M_{AB}

<u>Step 5</u>. This **minimal area** (divided by $4G_N$) is defined as the **entanglement wedge cross section** of ρ_{AB} .

We prove the **geometric properties** of E_W .

e.g. • $E_W(A:B) = S_A$ for pure states.

• $E_W(A:BC) \ge E_W(A:B).$

Larger than a half of mutual information.

$$E_W(A:B) \ge \frac{I(A:B)}{2}.$$

Properties

- (1) E(A:B) = 0 iff $\rho_{AB} = \rho_A \otimes \rho_B$.
- (2) $E(A:B) = S_A$ for pure states $|\Psi\rangle_{AB}$.
- (3) $E(A:B) \leq \min[S_A, S_B].$
- (4) Never increasing upon discarding ancilla: $E(A:BC) \ge E(A:B).$
- (5) Larger than a half of mutual information: $E(A:B) \ge I(A:B)/2.$
- (6) $E(A:BC) \ge (I(A:B) + I(A:C))/2.$
- (7) Additivity (with a condition):

 $E(\rho_{AB}\otimes\sigma_{\tilde{A}\tilde{B}})=E(\rho_{AB})+E(\sigma_{\tilde{A}\tilde{B}})$

Properties

- (1) E(A:B) = 0 iff $\rho_{AB} = \rho_A \otimes \rho_B$.
- (2) $E(A:B) = S_A$ for pure states $|\Psi\rangle_{AB}$.
- (3) $E(A:B) \leq \min[S_A, S_B].$
- (4) Never increasing upon discarding ancilla: $E(A:BC) \ge E(A:B).$
- (5) Larger than a half of mutual information: $E(A:B) \ge I(A:B)/2.$
- (6) $E(A:BC) \ge (I(A:B) + I(A:C))/2.$
- (7) Additivity (with a condition):

 $E(\rho_{AB}\otimes\sigma_{\tilde{A}\tilde{B}})=E(\rho_{AB})+E(\sigma_{\tilde{A}\tilde{B}})$

Entanglement of Purification

Entanglement of Purification

Entanglement of purification

[Terhal-Horodecki-Leung-DiVincenzo '02]

Quantum entanglement between AA' and BB':

$$S_{AA'} = -\text{Tr}\rho_{AA'}\log\rho_{AA'} (\rho_{AA'} = \text{Tr}_{BB'}[|\Psi\rangle\langle\Psi|_{AA'BB'}])$$

----- Definition

 $E_P (A:B) \coloneqq \min_{\text{all purifications } |\Psi\rangle_{AA'BB'}} S_{AA'}$

Example

$$\rho_{AB} = \frac{1}{2} (|\uparrow\uparrow\rangle\rangle\langle\uparrow\uparrow|_{AB} + |\downarrow\downarrow\rangle\rangle\langle\downarrow\downarrow|_{AB})$$

$$\blacksquare Make a purification$$

$$|\Psi^{(1)}\rangle_{AA'BB'} = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\uparrow\uparrow\rangle_{AA'BB'} + |\downarrow\downarrow\downarrow\downarrow\rangle\rangle_{AA'BB'})$$

$$\blacksquare EE$$

$$S^{(1)}_{AA'} = \log 2$$

$$\blacksquare An upper bound$$

$$E_P(A:B) = \min S_{AA'} \leq S^{(1)}_{AA'} = \log 2.$$

To find E_P , we have to consider *all* purifications.

- *E_P* is a generalization of **entanglement entropy** for mixed states and measures both **quantum correlation** and **classical correlation** between *A* and *B*.
- Numerical results:
 - a pair of ½-spin system [Terhal-Horodecki-Leung-DiVincenzo '02]
 - Ising model with MPS ansatz

[Nguyen-Devakul-Halbasch-Zaletel-Swingle '17]

• Free scalar fields with Gaussian ansatz

[Bhattacharyya-Takayanagi-KU '18]

• The regularized EoP $E_{LOq}(\rho_{AB}) = \lim_{n\to\infty} E_P(\rho_{AB}^{\otimes n})/n$ is **the minimal number of EPR pairs** needed to create ρ_{AB} by local operations and almost zero communication (LOq). [Terhal-Horodecki-Leung-DiVincenzo '02]

Our conjecture

We propose a holographic dual relationship:

[Takayanagi-KU '17]

[Nguyen-Devakul-Halbasch-Zaletel-Swingle '17]

$$\underbrace{E_W(A:B) = E_P(A:B)}_{(AdS)}$$

- *E_W*: Entanglement wedge cross section.
- *E_P* : Entanglement of purification.

[Terhal-Horodecki-Leung-DiVincenzo '02]

Properties

- (1) E(A:B) = 0 iff $\rho_{AB} = \rho_A \otimes \rho_B$.
- (2) $E(A:B) = S_A$ for pure states $|\Psi\rangle_{AB}$.
- (3) $E(A:B) \leq \min[S_A, S_B].$
- (4) Never increasing upon discarding ancilla: $E(A:BC) \ge E(A:B).$
- (5) Larger than a half of mutual information: $E(A:B) \ge I(A:B)/2.$
- (6) $E(A:BC) \ge (I(A:B) + I(A:C))/2.$
- (7) Additivity (with a condition):

 $E(\rho_{AB}\otimes\sigma_{\tilde{A}\tilde{B}})=E(\rho_{AB})+E(\sigma_{\tilde{A}\tilde{B}})$

A heuristic derivation of $E_W = E_P$

The surface/state correspondence [Miyaji-Takayanagi '15] in tensor network description of AdS/CFT. [Swingle '09]

On any closed convex surfaces Σ , we can define a state $|\Psi(\Sigma)\rangle$. $|\Psi(\Sigma)\rangle \equiv U(\Sigma)|\Omega\rangle_{total}$, Unitary operator: $U^{\dagger}U = I$

$$\begin{split} \Sigma &\equiv A \cup B \cup \Gamma_{AB}, \\ \mathrm{Tr}_{\Gamma_{AB}}[|\Psi(\Sigma)\rangle\langle\Psi(\Sigma)|] \\ &= \mathrm{Tr}_{(AB)^c} [|\Omega\rangle\langle\Omega)|] = \rho_{AB}. \end{split}$$

 $\therefore |\Psi(\Sigma)\rangle_{AB\Gamma_{AB}}$ is a purification of ρ_{AB}

Once we assume "purified geometry", then

 \therefore One can derive $E_P = E_W$.

 $= E_{W}(A:B).$

Remark: We also assumed that an optimal purification has a classical gravity dual.

We proposed a dual relation between entanglement wedge cross section and entanglement of purification:

$$\boldsymbol{E}_{\boldsymbol{W}} = \boldsymbol{E}_{\boldsymbol{P}}$$

Based on

- (1) coincidence of the properties
- (2) a heuristic derivation by tensor network.
- Purifications in QFTs/holography
- Calculate E_P in holographic CFTs and compare to E_W
- Holographic LOCC/LOq and EPR pairs
- Holographic mixed/multipartite entanglement
 A generalization of this relation is given in [Bao-Halpern '17].

Thank you for your attention.

Appendices

Strong superadditivity

Definition:

 $E_{\#}(\rho_{(A\tilde{A})(B\tilde{B})}) \geq E_{\#}(\rho_{AB}) + E_{\#}(\rho_{\tilde{A}\tilde{B}}).$

It is a feature of measures of **quantum entanglement**. cf. distillable entanglement, squashed entanglement

E_W satisfies the strong superadditivity. [Takayanagi-KU '17]

$E_W(\rho_{(A\tilde{A})(B\tilde{B})}) \ge E_W(\rho_{AB}) + E_W(\rho_{\tilde{A}\tilde{B}}).$

Examples

E_P does *not* always satisfies the strong superadditivity.

Is it a contradiction?

No! This give us a constraint (or a necessary condition) on the class of holographic states:

Holographic states is the ones for which E_P satisfies the strong superadditivity.

- Cf. Other similar constraints:
 - Monogamy of mutual information [Hayden-Headrick-Maloney '11]
 - Entropy cones [Bao-Nezami-Ooguri-Stoica-Sully-Walter '15]

No crossing bridge

If M_{AB} is connected, then $M_{\tilde{A}\tilde{B}}$ is disconnected (and vice versa).

Proof: If M_{AB} is connected, a + b < c + d should hold. Then, for $M_{\tilde{A}\tilde{B}}$ at least the disconnected wedge $M'_{\tilde{A}} \cup M'_{\tilde{B}}$ is preferred.

Origin of the monogamy of M.I.

• "Squashed entanglement":

$$E_{sq}(\rho_{AB}) \coloneqq \frac{1}{2} \min_{\operatorname{Tr}_{C}\rho_{ABC}=\rho_{AB}} I(A:B|C)$$
$$= \frac{1}{2} \min_{\operatorname{Tr}_{C}\rho_{ABC}=\rho_{AB}} [S_{AC} + S_{BC} - S_{ABC} - S_{C}].$$

- *E*_{sq} is the most promising measure of entanglement for mixed states, and known to be always monogamous.
- In our picture $E_{sq} = \frac{I}{2}$ in holography.
- This is discussed in [Hayden-Headrick-Maloney '11].

"Regularized" E_P

"The minimal number of EPR pairs which is needed to produce ρ_{AB} using only local operations and vanishing communications."

$$E_{LOq}(\rho_{AB}) \coloneqq \prod_{r \in LOq} \left[\inf_{\Lambda \in LOq} D_{tr} \left(\rho_{AB}^{\otimes n}, \Lambda(\Phi_{2}^{+}n) \right) \right] = 0 \right\}.$$

$$\underline{\text{Thm}}. E_{LOq}(\rho_{AB}) = \lim_{n \to \infty} \frac{E_{P}(\rho_{AB}^{\otimes n})}{n}.$$

$$\underline{\text{Thm}}. E_{LOq}(\rho_{AB}) = \lim_{n \to \infty} \frac{E_{P}(\rho_{AB}^{\otimes n})}{n}.$$

 \therefore When it's additive, $E_{LOq} = E_P$.

Time-dependent case

- Replacing the "minimal surface Σ_{AB}^{\min} " \rightarrow "extremal surface Σ_{AB}^{ext} " following HRT formula. [Hubeny-Rangamani-Takayanagi '07]
- All properties are proven by using of the "maximin surfaces" prescription discussed by A.Wall in [Class. Quant. Grav. 31 (2014) no.22, 225007]

Relative entropy of entanglement

$$E_{R}(\rho_{AB}) \coloneqq \min_{\sigma_{AB} \in \text{Seprable states}} R(\rho_{AB} || \sigma_{AB}).$$

where $R(\rho_{AB} || \sigma_{AB})$ is relative entropy.

• However... It must be less than I(A:B):

$$E_R(\rho_{AB}) \leq I(A:B).$$