Supersymmetry

g 7 —=VBOR ] D convention 1265,
Table I. Wess-Bagger & O #a%5&

Ours

Wess-Bagger

pt, xt, 0,

TIMV = 77;”/ - dla‘g(+17 _17 _]-7

ghvpo 80123 — +1
Vo, VP
g = 88 = jg,
EaB = 6@6 = iUQ
Ouwr Tu
al, A"
V5

Ouvy Opv

4
_1) —nt, —Nuv
same gH¥Pe

same 1)y, ¥°
same g8, £98
—E€aBy TE€u4
same Oy, Yu
R
15
200, 200,

same p’, ¥, 0,

thus, O, 0"0,,5"0,

—0, —o#d,, —5"0,

Standard spinor index position:

4-component Majorana ¥

Ya )
= _ « 7
(wa — ga5(¢ﬁ)*

2-component Weyl spinors

at right-end: Vo, P,
at left-end: v, Ya,
so that
qu = ¢a¢aa QZQ_S = @Edq_sdv
Voup =V (04) 050", V0.0 = 1a(5,) g,
djo—,uVQS = wa(o—,uu)aﬁ¢ﬁa @Za—uu& = i}d(a—uu)dﬁ'&ﬁ-
Formulas:

(7. = ee(0,),5 = (c0,eT) = (3,)7
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Yabs = —3ap(Vd) +Yads), U407 = 30 (D) + 99,
+

00’ = =3P (W6) + 07, dudy = 5245(00) + Yiady. (5)
Ordering change
Vo= ¢, Yo =gy,
wau& = —éﬁ;ﬂﬁ,
wau5u¢ = Qbo'ua';ﬂ/}y 155;1011(13 = Q;a-uo-,u'(za
¢UW¢ = —d)%zﬂﬂ, 1/_}5'u1/(r7_5 = _Cga'm/qu_)‘ (6)
hermitian conjugation
(o)t = ¢,
<¢Uu€5>T = ¢Uu1/77 (1/_’5u¢)T = (55-Hw7
(¥0,6,0)" = 65,0,
(¢Uuu¢) = $5uu¢ (7)

Fierz (4-components)

(01 0) (P30y) = (0119, (P51%5) + (F17504) (P35 0s)

+ (D" W) (T3, P2) — (1" v5P4) (Py,v5P2)
L1

+3

(010" W) (W50, W) |- (8)

This yields 2-component Fierz formulas:

(L’:ﬁszzsz)(@st%) = —%[ (@173?@4)(@3735%)
1 _ _
+ 1 (P20 0) (BP0, 02) } . 9)
(BP0 (F5P 1 0) = — 5| (B Py 0) (TP, 02) |. (10)

e.g.,

(06)(66) = (60)(80) = ~5[(60)(60) + (600 (G0,u0)] = ~5(00) (60),
(60,0)(8020) = —(00,9)(67:6) = +5(66)(9730,:0) = 5(89) (1,00 — iGT2,0)
00)56) = ~5(60"0)(90,1) = +5(60"6) (40,,0) (11)
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Vector multiplet field:

V=[C, x, M, N, V,, A, D]
= C +ilysx — %5(1\/ — 15 M — ysy*V,)0

—~i(00)075[A — 5"9ux] + 1(00)(86)[D — 50C]

= C + iy —ilx — 5(00)H — 5(00)H + (0570)V,

+i(00)0[\ — $5"9,x] — i(0)0]\ — Lo"3, %) + 5(66)(69)]

where

H=N—iM, H =N +ill.

Chiral multiplet field ¢: constrained by Dy¢ = 0

¢ = exp(—i0P0)[p + 0/ 29 + 06.F]
= @+ 0V2¢ + 00F + (00"0)(—id,p)
+i(00)0]—16"9,V2y] + £(00)(08)[~10]
= [p, —iV2Prt, —iF, —F, —id,p, 0, 0]

Anti-chiral multiplet field ¢:
6= [¢*, iV2PLY, iF, —F", idu¢", 0, 0]
(real) Linear multiplet field:

L: constrained by DDL=DDL =0
= C +ifx — ifx + (0o"0)V,

+i(09)0]£5"0,x] — i(00)0]£0"0,X] + 1(66)(89)[30¢]

= [Ca X, 0, 0, V,“W“ X DC]
with V), constrained by 0V = 0, which is solved as

vVpo
VE = e70,q,,,

8a,, = —ra0
uy — 2 /u/75X

D —1oc

(14)

(15)

(16)

(17)



Supersymmetry transformation law:

Vector multiplet: in 4-component notation

0C =iavysx;
ox = (=iv"V, — 0,09 + M + isN ),
IM = aX —way"o,x,
ON =iays\ + aysy'0,.x,
ov, = id%/\ + ad,x,
N =— 0"” 0.V, — 0, V) + i Dy,
0D = arysy" 0,

This reads, in 2-component notation,
0C = iayx —iay,
5 (X) B ( —io*(V, —1i0,C)a + i?—la)
x/) \—ic"(V, +i0,C)a—iHa )’
OH = —2ia\ — 2a5"0,X,

6H = 2ia) + 2a0"d, ¥,

6V, = (O‘Uu)‘ + ao,\) + (@dx + @d,X),
5()\)_( a“” (0., — 8V)+z’Da)

A\ ~Loma(d,V, —d,V,) —iDa)’

5D:aa“8 \ — agt O

Noting the embedding formula of chiral and antichiral into vector:

chiral anti-chiral
C=¢, C=y",
= —iv/21) X = +iv2y,

V, = —id,, V, = +i0,¢",

other compts. = 0 other compts. = 0,

the vector susy transformation law leads to

5o = V21, Sp* = V2a,
§p = —iv/2Ppa + V2Fa, 0 = —iV2Pp* o + V2F"a,
5F = —in/2ady, OF* = —ir/2ad,

(18)

(19)

(20)

(21)



Multiplication law:

Function of vector multiplet fields @(V;)

In 4-component notation,

Co = D(C;),

X = X'(C;),
M@ M/ 1 175
N@ = N/ — Z)Z, 1 X/ @(Cl),
V@u VI Y5

m
N+ 5N+ i M’ = 357"V, +idCx' = TN (¥X)| #(C)

Dy = {D %(N’N’ + MM+ V'V +0"C'0,C") — Ny + %x’i@x’

X (N + i M — sy Vi) X + 16(X’X’)()_(/X')}¢(C'¢) (22)

»Jklf—‘

In 2-component notation, this reads

Cq} = ¢<C)a
(- ()
Xo Xi
He = HiD; — %Xin@ij
Ho = H,P; — %Xﬁéj@ij
Vi = Viu®i + 5x:0,,%,Ps5
()\45) _ <)\z> b, 1 % (Hin —(V, — ?(%C)N“Xj) @,
)\gs i Hin + (VM + ZauC)iO'qu
1 (X (XGXx)
(),

Xi(Xij)
_ 1 1 / o Y] .
Dy = Dty + | § (HH; + (V* = id"C)i(V, +i0,C),)

5 — 1 Coh _ .5
—(Nixg + Aixy) + 3 (aidg + XiZ@Xj)] Dij

1, - — 1 _
T00xG) i — T(XX) He + §(Xi0'MXj)V;m} Diji

>

+-
+%(X2Xﬁ)(>_<k)_(l)@ijkl (23)



Function of chiral multiplet fields W (¢;)

Yw = W(SDZ')?
Yw = VW (p:) = W,
Fw = [J‘E, - %WW} W(p;) = FW' — %¢z‘¢jwij(<ﬂz‘)~ (24)

By the help of chiral-to-vector embedding formulas, the general function formula ®(V;)

for vector multiplets leads to the following formula for K(¢;, ¢’):
Cx = K(p,¢") =K,
XK = —iV2U,K7, Xk = +iV2' K,
M —2F K"+ pyap; K9
= —2F K, + PP K :
—Za#QOZKZ + zﬁﬂgo*ZKz + in"u'(ZjKJZ:

VR [(F + i K — S0 K )
—iv/2 [(1/_)’73' + e K] — %(%W)W@ﬂ

5Dk = (9000 + §(Wiic O + Pic O,,) + FF) K|

+5 (i(0 50)Dusps — (i) F™*) K

+3 (10" 00" — (G0 F) K

+5 (Way) (PO (25)



Super Yang-Mills
gauge transformation:

) -

- —oy AT oV
eV oV = il W mid 2V, 2

In Wess-Zumino gauge:

V = (00"8)V,, +i(00)0X — i(80)0X + 5(06)(08) D.

W, = -=DD(e? Dye ")

co| —

— e—w@é [Ma —0,D + %(guue)aFW + (99)(JuDu;\)a}’
WaWQ’ee = eiwaéQ(ee) [)\UDE\ — le(FWF“" + iFWﬁ’“’) + %Dﬂ

where
DP«S\ - ap,;\ - ?;[V,LU 5\]7
F,=0,V,-0,V,— i[VH, V,].
0™ | go ) =(00)(00) [D"* Dyup + ic" Dytp + F'F
+V2i[(¥N) g — ¢*(\)] + tot.der.]
where
D, =0,p—iVyp, D" =0,¢"+1i¢"V,
Dy = Db — iV,
Formula
(0"8)a(00"8) = +3(00)(0"5"0).
(070)a(0X) = —3(80)(0" )4
0 (OX)(058) = +1(06)(09)(0* N

/ . At
v _ e+1Ae2V€ iA )

(26)

(27)

(28)

(30)

(31)

(32)



Table II.

Kugo-Uehara & D#E X

Kugo-Uehara

Ours

Ty = (Tg, T4)

Om = (Ok, O4)
O0mOp, = 0
Omn
Ym = (V> Va)
YmOm = @
YmBm = B
Amn
Y5

Omn = (1/4)[Ym, Ynl

(2, it) — write 2* or —x,
(O, —i0;) — write 9, or —O*
—0,0t = -0
~ v
(—in®, 7%) — write — iy* or i,
—inhd), = —i)
—iy"(=Vy,) = +iy
10y,

5
(1/4)[=ir", —in"] = (i/2)a"

C, 2, H, K, B, A, D
A? PRXv F
Ty
(wR7¢L>7 (wlz)
P’ma AJ D7 Q

an7 Km7 S

B #V/i7

C, x, N, =M, =V,, \, D
w, V20, F
wb, (1)
P./i, Ali, D/i, (1/2)Q/i
—K,/i, —(1/2)S/i (negative signs!)

Ty — M Or —x,

8’/7”1/)’”"8

DEE M2 %7 5 space BEED I — I Tl
i~ (EBSH i)

super Z# parameter ¢

200

§1.

Superconformal group SU (2, 2|1)

4D Conformal Group: SO(4,2) = SU(2,2)

If the system has only massless particles, the energy momentum tensor @, can be chosen

to be symmetric and traceless:

9"0,, =0,

Oy = Oy OF =0 (33)

Then we can have the following conserved currents and charges:

My =2,0,, —

Ou: — PM:/d?’x@MO

/d3$./\/lw,0

2,0,,: — M,



D,=2"60,,: — D= /dngO
K = 22,270, — :UQQW = K, = /d%lCuo. (34)

(Note that this K, has opposite sign to that of van Nieuwenhuizen.) Or, in terms of the
differential operators, they can be expressed (by replacing 6,9 — i0,,) as

P, =10, M,, =i(z,0, — x,0,),

D =ix’0,, K, =i(2x,2°0, — 2%0,). (35)
Identifying
dat = (ia’ B, + i3e" Myoa" + ipD + iV’ K, )z", (36)
we find
Sat = —a" + e 2" — pat + (=20 x 2" + b'a?) (37)

The finite K, transformation is the translation in the inverted space:

M + bHa? 't gh
Iz w_— — == H
ot =z 52 2 £ 122 < e x2+b. (38)

They satisfy the following 4D conformal algebra:

[(Myws Myo] = —i(upMue — TupMpus — Nuo Mup + Mo Mp),
[Pps M) = i(Npp Ly — 1w Pu),

[Kpy My = i(pp Sy — 0o I$4),

[D, My = [Py, P)] = [Ky, K] =0,
[P,, D] =P, K, D] = —iK,

[

- 173 123

K,] = 2i(nuD — M,,). (39)

This 4D conformal group is in fact identical with the extended Lorentz group SO(4,2) in 6

dimensions with metric
Umy

Nab = —1 ) (40)
+1
for which the generators My, = —M,, (a,b=0,1,---,5) satisfy

[Maba Mcd] = _i(nachd - nbcMad - nadec + nbdMac)- (41)

This is easily seen if we identify the Lorentz generators in the extra dimensions labeled by 4
and 5 as

My =3P, ~ K,), Mys=21P,+K,), Ms=D. (42)

DO =

Nej



By considering the spinor representation, this algebra is also seen to be isomorphic with
SU(2,2). The generators I'® of the Clifford algebra for SO(4, 2), satisfying

rer® 4+ rere = o, (43)

can be represented, for instance, by the following 8 x 8 matrices:

0 1%
F#:7#®01:( Py>,

70
0 =1
F4=i75®01=(. 75);
s 0
0 1
r5:14®(—02):( | ”). (44)
—214 0
The “chirality” matrix (analogous to 75 in 4 dimension) is given by
0 1 2 3 d 5 s 0
I =T TI°T°° =1, ® o3 = 0 " (45)
—14

The Lorentz generators My, of SO(4,2) are then represented by

l 1 ( Oab 0
o= gin =3 (7).
Campp=v = Opw,  Opd = VuV5:  Ous = Yu»  Os4 =175

Oa=pp=v = Opvs  Opd = VY55 Ops = —Vu, Os4 = —175. (46)

-(2)

the invariant spinor inner-product is given by V@ = ¥TAd with a metric matrix

For the 8 component Dirac spinor

70

A:iFOF5F7:’}/0®].2:( 0
0 ~

), Al=A=A" (48)

Indeed, I, are hermitian under this metric, I' A = ATl,, so are the SO(4,2) generators My:
A_lMle =M, i.e., Voalbyo = Oab- (49)

Clearly the 4-component Weyl spinor ¢ (or ¢) gives an irreducible representation of the
Lorentz group SO(4,2), for which the Lorentz group element A = exp(%sabMab) is repre-
sented by

exp(1e0,). (50)

10



These 4 x 4 matrices belong to SU(2,2) since oy, are traceless and hermitian under the
metric a = 7y5 (which has two +1 and two —1 eigenvalues). Moreover, Since 6 x 5/2 = 15
oa exist and give a complete set for such traceless and hermitian 4 x 4 matrices, any SU (2, 2)
matrix is expressed in the form Eq. (50) (at least in the neighborhood of the identity) and
so we have the isomorphism of the algebra SO(4,2) ~ SU(2,2).

With this isomorphism SO(4,2) ~ SU(2,2), we thus find a simple 4 dimensional repre-

sentation for the 4D conformal group:

1

My = 50,
Pu=7%Pr,  (Pr=3(1+%))
K, =%P.,  (PL=3501-7))
D = 3is. (51)

We have seen that the 4D conformal algebra SO(4,2) ~ SU(2,2) can be represented
by traceless 4 x 4 matrices My, = %Uab acting on a 4-component spinor 1. Then it is
clear that it can be extended to the superconformal algebra SU(2,2|1) acting on a (4+1)-
component super-spinor (¢, ¢) by adding another single component ¢ (which should have
opposite statistics to the original component ). SU(2,2|1) is defined to be a supergroup

consisting of 5 x 5 matrices (of unimodular superdeterminant) which leave the innerproduct

M%% + 901902 (52)

invariant. Clearly, there are 24 independent generators as a whole, which we can take, for

1 Oab 0 1 14 0

M, = % A= _1 ,

’ 2(0 0) 4(0 4)
0, 0 _ 0, 0o

EQZQ(‘.‘ ) 2@:2(4 ) (53)
50 0 0

Note that a diagonal (supertraceless) matrix A appears here. This gives the defining repre-

instance,

sentation of SU(2,2|1) algebra. From this we can easily find the following albebra written

in 6 dimensional notation:

2, Ma) = 35002,  [Z, M) = 550
(2, Al =438, [£,A=-32  [M, Al=0,
(X, 2}y={%, 2} =0, (¥, 5} =0"M,, — 4A. (54)

(The U(1) charge A is defined to coincide with van Nieuwenhuizen and A = %R for Sohnius’s
charge R.) where, in confirming the last relation {¥, X} = 0%®M,, — 4A, we need the

11



completeness relation
1[50 (o) +0,98,1] = 6,'5, (55)
412 i \Yab/k i Y] — Y Y -

This shows that X is an SU(2,2) =~ SO(4,2) spinor generator and X charge is its conjugate,

so that they can be decomposed into two 2-component Weyl spinors in 4-dimension as follows:
Qoz = + a A

Y= 5@ ’ =X Yo = (S ’ Qd)' (56)

Clearly, these 154+4+4+1 = 24 matrices again span a complete set of 5x5 (supertraceless)

matrices and give the whole generators of SU(2, 2|1) superconformal algebra. The SU(2,2|1)

group acts on the 5 component super spinor as
expz'(%@“bMab +0A+eX + Z_'a) (¢> (57)
¥

(where ¥ is an SU(2,2) spinor field and ¢ a single component field and they should be
fermion and boson (or vice versa), respectively, since the spinor transformation parameter &

is Grassmann odd) with & = £77°, which leaves invariant the innerproduct with metric

Indeed, the generators in the exponent
_ 0 ¢
52—1—25:2( ) (59)
g 0

satisfies the hermitisity under this metric a:
(X 4+ Ze)la = a(eX + Le). (60)

Rewriting Eq. (54) into 4 dimensional notation, we find the following algebra in addition
to the SO(4,2) ~ SU(2,2) subalgebra:

(D)=t (9). ((9) =2 ().

sri—e o 1(s)=3(5)

[A7 M/w] = [A’ PM] = [A’ KM] = [A7 D] =0,
{Q, Q} = 2P, {8, S} = V'K,
{S, Q} =2iD + " M, + 474, ({Q, S} = —2iD + "M, — 4y A).
(61)

12



82. Yang-Mills theory of superalgebra
Consider a superalgebra whose generators (devided by ), X4 = T /i satisfying
[Xa, XB} = fa5" Xe. (62)

For definiteness, we here mean by X4 always an operator acting on any fields @, for which

the infinitesimal transformation is given by

i(e)® = e, e=eXy, (63)
where ¢ are the transformation parameters. Introduce the gauge field by
hy, = hf}X 4 (64)
The covariant derivative
D,®=(0,—h,)®=030,2—06(h,)P (65)
is defined by a property
3(e)(Du®) = e Du(Xa®) = Dy(8(2)9), (66)

(1F. W7 0, 2% T R \Wed 5%, ) from which follows the transformation law of gauge
field:

d(e)h, = Oue + [hvﬂ, el, — (5(5)hf} = GNEA + eBthoBA. (67)
This is because

3(e)(Du@) = 9,(5(e)P) — (3(e)hy )P — 8(e) (h®)
= 0,(e®) — (eh,)D — ch,,®
e4D,(X4®) = D, (6®) = 0,(2P) — h,e®
— (eh,)® = (0,8)®P + h,ed — h,®
— 8(e)hy = 0ue + [hy, €]
ie.6(e)hs = 8™ +ePh fop® (68)

where O means that O is neither transformed by 0, nor X 4.

13



The curvature tensor (field strength) is defined by

[D,., D))® = R, X4® on V&
— R, =0,k — 0,hit — WIS fop® = 0,hi — Dby
or Ry, = d,h, — 0.h, — [hu, h)

') [Dy, D,)® = 0,D,® — 5(h,)D, D — (u > v)
= 9,0,® — 0,(h,®) — D, (h, D) — (1 > v)
= 0,0,9 — (0,h,)P — 0,(h, @) — 0, (h,®P) + hyh,® — (11 4> V)
= —(0,h)P + hyh, @ — (u > v)
= (Qyhy — 0P + [hy, hy|® (69)

The curvature tensor is covariant as usual:

5(5)RMV = [R;“”g] - 6(€>R;‘y - 6BR§nyBA

Note) When the transformation by X, is linearly realized on the fields &, then it is
possible to use the representation matrix t4 instead of the active operators X 4 as adopted
above. We should, however, note that the operator X 4 is represented by a transposed matrix
or by right multiplication:

Xad' = (t3) ;07 = P (ta);' (70)

in order for the same structure constant appears as above:
(X4, Xp} = fasXe < [ta,ts} = fa%tc (71)
This is because
XaXpd' = Xa(tp) ;' = (15); Xa® = (t5)";(t5) 10" = (t5t5) xd"
[(Xa, Xp}d' = (XaXp — (-1)"PXpXa)® = (thth — (—1)*"Phth)id = ([t ) o7
= ([ta.ts}")" ;¥ = sz&j([tA,tB})ji
=& fa5°(te);" = fapC(tE) ;97 = fap© Xcd' (72)

Or, this is simply owing to the fact that the right multiplication of matrix preserves the

multiplication order of the operator actions:

X Xp®' = Xa0%(tp)r! = D (ta);"(tp)' = & (tatp),’ (73)

14



Superconformal Algebra:

[Bps Myw) = i(Npp Ly — MpuPu),

[P, D] =iP,,  {Q, Q} =2"P,

(M, Mps| = —i(MupMuo — MupMpuo — Mo Mup + 1o M),

[Py Ku] = 2i(nu D — My,),

{S, Q} = 2iD + 0" M,, + 44, ({Q, S} = =2iD + 6" M, — 475A).
(Ko, M) = i(npuky — np Kp),

K, D] = z'K,“ {S, S} =24"K,,,

Q. M) =50,Q, (10, Mu) = —5Q0.,).

[Q, D] = 262, @, A] = msQ [S, Pu] = 7@,

([Q. D) =i3Q,  [Q, Al=3Qv, [S, Bl=-Q).
[S, M,,] = IUWS ([57 M| = _%SUuV)a

(S, D) = —i5S,  [S, A= =995, [Q, K =5,
(1S, D) = —i3S,  [8, Al =38y,  [Q, K, =—57.).

Superconformal (anti-hermitian) generators and trf parameters and gauge fields:

X4=iYPn, Q, My, D, A, S, K,
= (P, Q. M,.., D, A S, K,),
X4 = E"Pyy +EQ + AN M + pD + 0A + (S + EP K,
WAX4 =" P+ 0,Q + 20, M, + b,D + A A+ 3,8 + [T K.,

From the SC algebra table (74), let us calculate
(o, ] = [WEX s, B Xc] = W) fpc Xa.
Note that

[6(c1), 6(e2)] = [e7 X, €5 X¢] = €57 [Xp, Xc}

= 52 € chAXA = 5(53 = 52 € fBC )-

(74)

(75)

(76)

(77)

In the following, all the gauge fields are understood not transformed by X4, though the

check symbol O is omitted:

le- P, w M +bD] = (e,w"™ + €"b) P,
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[¢1Q Q%] ( 2i1/717m¢2)

[ wi-M, W2 M| = (W{nlwm W?l%zm)ana

[e-P, f-K]=2e-fD — 5[2(™ f" — &" ™) M o,

[0Q, S¢] = —20pD + 3(—2ip0™"0) My + 4ithy50A,
([@S sz = +23UD + 3(—2ip0™" ) M, — 4iPrs0A),
[f- K, 3w-M +bD] = (f,"™ — f"b) K

[p1S, 5802] = (=2ip17" o) K,
[vQ

VQ, 50w M +bD + AA] = (-~ %a-w—{— 10— 3ip4)Q,
(Fw-M +bD + AA, QU] = Q(~to-w — Lo+ 3ins 4)y),
28, e-P] = —ig7me™Q,  ([e-P, S ]Z—Zvae ¢),
(@S w-M—l—bD—i—AA] P(—go-w— lb—i- 1i1754)S,
( sw-M +bD + AA, Sp| = S(—j0-w+ b @75A)g0),

Q. f-K] =~y f"S, ([f-K, QY] = —iSyn [T),
(78)

Curvatures: Ri, = 20,h4+hBh fop? (LOFERD SHAD & BUFOFRNIE hERS fopt

R DY
Fv7,)

with

ERFENRHD XS 72, TN T, Kugo-Uehara & 1E&E > TWAD7ZAH, % convention

) = 20,€", — 2w, ey, + 2b,e", + 2ith,y™ Yy,

(M) = 20,0, = 2w, w, " + 4( e, = fhe) + 4i), ™ p,,,

(D) Qaubu + 4fnyenu + 41211/90;1

(A) =204, — 82'@1,75@#

Wm(K) =20, f" = 2w,"™" [ — 26, ' + 200,70,

R (Q) = Dw% + b, — Z'Ayzﬁ“% + 2i@, Ve,

R;LV(S) - VSD/L - bl/(;pu 52.141/@“75 + 2“75V’7mf727 (79)

D;}@Eu = &/@Zu - ﬁ%m"?/jMUmn,
Dyt = Oty + 50, Ot (80)

(and the same for ¢,,) where antisymmetrization w.r.t. u <> v like

R/,LI/<A) = (zauA,u - 8i&u7590y)anti—symm
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= auA,u - auAV - 4i(775u’7590u - @Eu75(pu)

(81)
MR 6(e)hdt = 8,6 + PR fop?
56"; =0, + )\mlelu — wumnfn — pe"}t +0,8™ — 21y,
Sw, ™™ = PN 4 20w [ — 2(ERke", — Ee™) + 2(f " — [ E™)
—2iec™"p,, — 22’%07""(,
by = Opp — 265l + 217,60 — 280, + 20,C
0A, = 0,0 + 4igysp, — 41'15#75C
5 f ™ = OulR AN oy — w0, Cren 4 pf T — bubR — 200" 0y,
0y = D& + AN, 000 — 300, + 3b,E + 310075 — 3iA,Es
—ime", + 10 mE™),
(69 = D% — EN™0,00, — 2pv, + 2bue + 3i0y50, — 3id, e
+ie" YmC — i YmPu),
0B = DEC + NG00 + 595, — 35,8 — 205,75 + 2iA,Crs
—i&mn [+ 1y
(60 = D¢ — AN™0n0y + 590 — 50, — 310,75 + 314,75
i mE = R Ym ). (82)
For inverse vierbein,
de t = —ete, (0e"))
= —el0,&" — el“)\lm 4w, M+ pe, ' — by F 4 2iEy . (83)

Curvature @ group 2240 §R7, 1%, LD gauge HDZEHA 6h T, 9, 2T, 2TD
hil % RP, CEESHA TR,

§3. Deformation of the SU (2, 2|1) algebra

dcc(EMh = 0,8 by + 0\,
= Dy(Eh3) + EXOrhyy — Dyhy)
= [Du(&-n)* + Ry,
=0(&-h) by + R, (84)

v
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The last equality is because

6(e)hyy = (Dye)”

§(&-h)h, = 0,(&-h™Y) + (£-h) PR fc™. (85)

Note that

O(&h) = 0p(E™) + D da(-h"),

A/(#P)
5 6/\6 A
& = hy =€"hyy (86)
Therefore, we have a key relation:
Sp(E™)h; = dac(& Z g (&-hP )R —E R, (87)
= 05(E™M)hy,

Now, we deform the SU(2,2|1) algebra by making a replacement
Sp(€™) — d5(6™) = dac(€ 253, £-n?). (88)

First we note that, among the commutators [04/, dp/| for A, B’ # P, the only one yielding
dp in the RHS is [dg(e2), dg(e1)] = dp(—2i€17™e2). So we require first that

[60(e2), dg(e1)] = 05(€™), with ™ = —2ig17™e,, (89)

holds on any independent gauge fields, and find constraints necessary for that.

3.1. On em
On e™

.,» we originary have

[Bo(e2), dg(er)]e”, = dp(€™)e",,
= 0p(E™)e", — €' R\ (P). (90)

So it is necessary and sufficient to impose the constraint:

0=R,"(P)|=20," — 2w, e, + 2b,e™, + 2ith, /™, (91)

iz

This can be solved by the M gauge field w,™" and yields
wpmn = wﬂmn(e’ 7% b)7 (92)

18



so that w, ™ is no longer an independent gauge field. However, since the constraint R,"(P) =
0 is invariant under M,,,, D, A, S, K, w,™" still keeps the same transformation law as the
original group transformation under M,,,, D, A, S, K,, transformations. On the other hand,
the constraint R,"(P) = 0 is not invariant under () transformation, the () transformation

of w,™ becomes different from the original group transformation law:
dg(e)w, ™ (e.1h,b) = 6§ (€)w,™™ 4 dg ()w, ™. (93)

The difference can be easily found by noting that the constraint R,)"(P) = 0 is of course an

identity and @-invariant if w ™" there is replaced by w,™ (e, 1, b), so that we have

0=205""(e)R,,"(P)+dg(e)w,”, — dp(e)w,™

v Vo
= —2iEY" R, (Q) + g (e)w,™, — dg(e)w,™,. (94)

(Note that we are anticipating that e”, 4,0, will remain to be independent gauge fields
and receive no changes in the @Q-transformation laws.) Solving this (in a similar way to solve

Christoffel symbol in terms of g,, ), we find
0 (E)Wumn = 1€(VuRnn(Q) + Y Run(Q) — 1 Rum(Q)) = €R umn(Q).- (95)

3.2. On 1,

Noting
00Vt = (D + 20,y + 3b, — Sins A, )e (96)

and that w,™" now receives an extra () transformation dg(€) in addition to the original group

transformation 0" (¢), we find that the [dg, dq] commutator on 1, now reads

[0q(e2), dq(en)]vn = (657" (e2), 05 (€1)]¥u + L (do(2)wuroer — (1 > 2))
= 0p(E) Y — " Ry (Q) + i(dé}(@)wuﬂgl — (1 2)). (97)

So we see that the condition

((i&2Rymn (@) 01 — (1 ¢+ 2)) = —2i(617™"e2) Rum(Q) (98)

s

is necessary and sufficient for the [dg, dg] algebra Eq. (89) hold on . Applying Fierz,
and noting then that only (£;7°¢9) and (£,077¢,) terms appear by the antisymmetry under
1 + 2, we find the LHS to be

(£10°7£2)0™" T Royun (Q)] (99)

DO —

2
4.4 [(517p52)0mn%7—‘)'umn<@) +
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so that the condition is rewritten into

""" Rymn(Q) = 160 R, (Q)
0" 00 Rymn(Q) = 0.

(100)

Multiplying the first equation by 7* and using v?¢™"v, = 0, we immediately find a constraint

'VPRW)(C» =0.

Once this holds, various identities for R, (Q) follows:

1. g™y, Res(Q) =0
4. 0" 0 eV Bmn (@) = 0
Proof)
Lo g™y, o™ = ™" — (™Y — ™)

2. Rumn(Q) = ’YuRmn<Q> + ’YmRun(Q> - ’YnRum<Q)
= 29, Rinn(Q) = 27 Run(Q) (by identity 1.)

3. 0" YR (Q) = (=17"Y") Y Y B (Q) = —iy" (=27,) Rnyu(Q)

= +2i'7n(7n)Rup(Q) = +8iRup(Q)

4. 0,57, = linear combi. of v, (7 = p, o, n) and V57,

while 0™"y. R;n(Q) =0

(101)

(106)

Now by the identities 2. — 4., both the conditions in Eq. (100) are seen to be satisfied, so
that the constraint v*R,,,(Q) = 0 in Eq. (101) alone is necessary and sufficient condition for
the [dg, dg| algebra Eq. (89) hold on t,. By the identity 2., the extra @ transformation for

mn

" now takes a simple form:

w

00 (8)Wumn = 2087, Rinn(Q) | (= —2i Ry (Q) 7€)

The constraint (101), v R,,,(Q) = 0, is solved by the S-gauge field ¢,:

(107)

) 1 . .
0 =" Ru(Q) = 1[0 + fwp-0 + 5b, — SinsA) 0, — (1 2)] — iV (Yus — W)

= SO,LL = %D,U«(e?wal% A)

20
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So ¢, now become dependent gauge field. Since the constraint v*R,,,(Q) = 0is M, D, A, S, K,,

invariant but not invariant under @), the Q-transformation of ¢, is modified:

0= d0(2) (V" Ry (@) = "00™" () By (@) + (Og(e) )™ Hin(Q)
+17" [0 ()w, ™) Tmnthy — (1 > V)] — (48] — 7*7,)05()pu (109)

where

0, ( et = 2i 57“wm
65" ()R (Q) = (1R (M)-0 + 5 R (D) — §ir5 R (A))e (110)

Using Eq. (107), we find (u < v) term (95 (e)w,™ )y*0mnth, vanishes by the identity:
"N (Vey, Rinn(Q)) = 0. (111)

Indeed,

ER n Q) (@0 5,) = —~ [ S GG ) (o1 0™ Ty R Q)] (112)

»lklr—‘

whereas Iy = 1, 75 terms vanish by v#o™"y, = 0, I'x = 7,, 7,7 terms vanish by the
identity 3. in Eq. (105) since 40" 7,7, Rmn(Q) = ¥* - 8iR,,,(Q) = 0, and [’y = 0,, term
vanish by the identity 4.

By Fierzing similarly, we find

L7 0 t) (Fp(2),™) = 17 Tt ) (2R )
T i <1E#Umn7#¢) (ERw mn)
1

A ™ e o)
A

= 1—16 (Y 0™ %R mn ) (EVYD) + (U 0™ Y15 R ) (V577 9)]
—— —— N— ——
— 16iR,(Q) ~16i73 R, p(Q)
= i[(07"7°€) (Y Rup(Q)) — (97 ¥58) (15 R (Q))] (113)

(07" R (Q))(0g(e)e,t) = (07" R (Q)) (2ia7" ) = —2i(d7™ Ry (Q)) (b€
= —[(""e) Wm 7 Ruw(Q)) + (07 157°€) (m ¥*7p V5 Ruw(Q))
—
= 7" 7] =20, — 20
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+5(07"0") (b 30w, Byw(Q))
[V, aas] = 2i(08 v — 0y Va)
= i[(%mv”s)(@m Rp(Q)) + (67" 757°€) (Ym5 R (Q))
+5(07" 7)Y (1 Rar (Q) = Ya R (Q))]

7o Ran(Q)
—1 [(qg,ym,ypg) (”(Zm VP(Q)) - (Q;’meypf}%g) (djmf%Rup(Q))}
——(mm ) (Pm Yy Rab(Q)) (114)

The first two terms just cancel the 4(¢V*0,mnt,)(06(e)w,™) in Eq. (113), we thus find
Eq. (109) leads to

(48 — 7" 9)00(e)pu = 170" Ryrun(M) + 57" Ry (D) = 517352 Ry (A)
1 _
_§7l‘o-m"€<¢“f}/yRmn(Q)) (115)

In the last term, the factor 1,7, Ry, (Q) can be replaced by 1,7, Rinn(Q) — Uy Runn(Q)
owing to the identity Eq. (111), v*o™"Vn(Vey,Rmn(Q)) = 0. Then, defining covariantized
R, (M) by

Ry (M) = R,,™(M) + 2i (4,1 B™(Q) — ¥, R™(Q)), (116)

the last term can be absorbed into the R, (M) term and we obtain:

i1, i .
0o(e)en = =5 (0 = g1 IRve = —5 Ry — 57 R)e
Ry = 59"0™ e R (M) + 579" R,0(D) — Sin"y5e Ry (A). (117)

This quantity (R, — 6%7-72)5 can be much simplified if we use the Bianchi identity.
The Bianchi identity is

0 =" [D,, R,y] = """ (0yRps — [hys Rpo))-
— " (0, R, — hi RS, fpdt) = 0. (118)

w oo

This reads for A = P,

0 = etvre (a/RpUm(P) -w," R (P) + enVRPUmn(M)

v n*tpo

+ b, R, (P) — €, Rys(D) 4 2ih, 7" Ry (Q)). (119)

Again, the last term can be absorbed into the R;"™"(M) term, and using the constraint

R,"(P) = 0, we have an identity

et (RS (M) + €, Ryo(D)) = 0, (120)

po v
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or, equivalently,
emP? Reo ™ (M) = —2RM(D). (121)

po v

where tilde is generally defined by

RM = %EMVp“RpJ, (note that R* = —RM) (122)
Writing Eq. (120) into the form
Ry (M) + (cyclic in rsn) + Rys(D)nmy + (cyclic in rsn) = 0, (123)

and adding the same form term with the indices s, m interchanged, we have

[Cv?;,nm] (M) + Rf:r\;,ns} (M> = (R(D)n)rs mn+sn mr—+rm sn+mn sr+2nr ms (124)
with
romm) (M) = Bolin (M) = Ry (M) (125)

Then adding to Eq. (124) the same identity with indices r, s, n replaced by n,r, s and sub-
tracting the one replaced by by s, n,r, we find

o (M) = nrmRsn(D) - nstrn(D) - nrnRsm(D) + nsner(D) (126)

[rs,mn]

arsm

Contracting by & and using the identity Eq. (121), we obtain

en™ Riio(M) = =2Ryn (D). (127)
Contraction with "™ gives yet another identity
COV. J— 1 COV. COV.
RW (M)|antisymm. part = §(Ruu (M> - Rup (M)> = _RMV(D>’ (128)
where
R (M) = R (M)e,, e (129)

Using these identities Eqgs. (121), (127) and (128), as well as
V' omn = 10 = 05Ym) — €y V55 (130)
we can compute (R, — %%7-73)5 into the following form
(Ry — 57 R)e = 7" (= 1gem R (M) + 3Ry (M) + 1Ry (4)
+iy"v5e %Rum(A) (131)
Thus the extra @) transformation dg,(¢)y,, is given by

?

1
Oo()pn = —5(Ru— gy Re
7 m 1 cov. 1 peov. 15
= =5 [7"e (= Temu (M)} + 3 Ry (M) + 7R (A))
tir 95 LR (A)] (132)
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3.3. On A, and b,
Noting

do(e)A, = 4igvysp,
0q(e)b, = —28p,, (133)

and that ¢, now receives an extra () transformation dg(¢) in addition to the original group

transformation 05" (), we find that the [0, dg] commutator on A, and b, now reads

[Bo(e2), dg(en)]Au = 657 (e2), 057 (e1)] Ay + 4i(E175(05 (52)0u) — (1 4 2))
= 05(6) Ay — £ Ry (A) + 41 ((—3) (217517 7522) § Ry (A) — (1 4 2))
= 05(6) Ay — £ Rum(A) + 4i(= 5)§™ 5 Rym(A) = 5(€) A, OK!
0o (e2), do(e1)]by = [0 (e2), 05" (e1)]by — 2(E1(0g(e2)pu) — (1 ¢ 2))
= 05(§)by — £" Ry (D)
~2(=3) x 2&7"e) ( — Ty R (MY} + 5 R (M) + 1R (A))
= 0p(§)by — " Ry (D)
—€" (= aem B (M) + R0 (M) + § Rym(A)) (134)
Thus, the [dg, dg] commutator on A, requires no constraint but that on b, requires a con-
dition
— g5 R (M)S + SRE (M) + § Ry (A) = =By (D) (135)

which leads, by separating the symmetric and antisymmetric parts and using Eq. (128), to

RZ%(M)lsymm. part — 07
~5Run(D) + 1 Ryn(4) = ~Ryon(D). (136)

The latter condition is rewritten into

15 1
Run(D) = =5Rum(A) or =  Rym(D) = +5Rum(A). (137)
If Eq. (128) is used, these two conditions can be rewritten into a constraint
COV. 1 D
Ry (M) + 5 R, (A) = 0. (138)

This is the necessary and sufficient condition for the [dg, dg] algebra Eq. (89) to hold on b,,.
Then the extra @ transformation Eq. (132) of ¢, is simplified into

! Z m D - .om 1
o (&) en = = (V"€ 5 Ry (A) + i7" v5 5 Rum(A)]

Shleen = 7" (R (4) + 7Ry (4)) = (139)

24



The constraint Eq. (138) can be solved by the K, gauge field f,, which now becomes a
dependent field:

[ = 1e .0, A). (140)
Since the constraint Eq. (138) is not Q-invariant and so J7; also receives an extra Q-

transformation, which can be derived in the same way as above:

! m i— mv Cov. my cov.
doe)fh = —55(0 R(S) +e™ R (S)) (141)

3.4. Resultant modified SU(2,2|1) algebra

Now that the M, S and K, gauge fields w,™", ¢, and f", have become dependent
fields, there no longer remain other independent gauge fields. Thus the desired [0, d¢]
algebra (89)

[0q(e2), dg(er)] = 0p(6™), with ™ = —2ig17"ey (142)
already holds on all the independent gauge fields e, 1, A, and b,,.

This implies that

Proposition: For all the transformations other than P, transformation, (which we
denote by primed index X' henceforth, X' € {Q, My, D, A, S, K;,}), the commutators

By ("), 8x:(eX)] =D de (X fyo) (143)
c

of the same form as the original SU(2,2|1) algebra, still hold. Note that when P,, appears
in the C' sum, it is always understood to stand for B,.

Proof) For the case X' = @ and Y’ = @), we have already seen that [dg(e2), dg(e1)] =
05(€™) holds and so the Proposition holds. So it is enough to prove it for the other cases in
which either X’ or Y is not equal to ). We assume X' # ) without loss of generality.

Since the M,,,, D, A, S, K,, transformations are the same as the original group trans-

foramtions even for the dependent gauge fields, we clearly have

[y ("), oxi(EXNRG = 8N frn MG +0F D NG W frip (144)
c Z'=M,S,K

on any independent gauge fields hf The second extra @) transformation terms may exist only

when Y’ = @ and only for the dependent gauge fields hf' with Z" € {M, S, K}. However

we show that this term is in fact absent. Consider the Weyl weights of the generators.

The generator G for the independent gauge fields is one of P, ), D, A carrying weights

1, 1/2, 0, 0, respectively. The sum of the weights of the generators X’ and 7', w(X') +

w(Z"), should be w(G) in order for the structure constant fy., to be non-zero. But, since
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w(G) > 0, w(X’) <0 (recall X’ # Q) and w(Z') < 0, the only possibility satisfying this
condition is w(G) = w(X’') = w(Z') = 0, which corresponds to the cases G € {D, A},
X" e {M, D, A} and Z' = M. But, the commutators [X’, Z’| for such cases can yield only
M since [{M, D, A}, M] o< M, so that fy,,% =0 for G € {D, A}. Therefore the group
law holds. q.e.d.

Proposition:

65(6™), 6a(e™)] = 65" fap ) +05 D m (€MLY )R (145)

B all B'=M,S,K

Proof) Straightforward calculation using
05(&™) = dac(&t = Z g (&-hP) (146)
leads to the above result. First, using
dac(€)hiy = 0u8™hy + €0y, (147)
we derive, for field-independent & case,
[Bac(€), dar(e™)] = —6a (£ 0re™). (148)

For the field-dependent case, we derive

[Bac(Er =€me,)), 6a(e™)] = —64/(£20xe™) — dac (§m0a(eY e, ) (149)
where
S (Ve = —e e (S (e™)en) = = HE fae et (150)
Next we have
[0 (£"hE), dar(e™)] 250 'EhP fap) 4 0p (Em0u ()R (151)

where

/

Oa(e)nE = 6 (e™) (e, )
= —"hS fae T RE + 65 0™ + M0 fac® 4+ 050, )RE L (152)

Using these we can show the Proposition. q.e.d.

Proposition:

[65(60), 0p(&)] = D 0al€lG Rp) + D m (0p(E-v)ea-h™ = 65(&-v)éa-h")

B'=M,S,K

(153)
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or, equivalently,

[65(61), 05(&)] =Y _ da(€l & R ™) (154)

Proof) Straightforward calculation. First show, for field-independent £* case,
[bcc(&8), dac(&))] = dac((£1-0)&) — (&-0)&7) (155)

65 (ERE), dac(€))] = 0p ((£1-0€5")RE) (156)

Next, for the field-dependent case, we derive
Bac(&e,), dac(€le,)] = bac (&€ (One, — Ome,)) (157)
[65/(&5 00 ), dco(&r-e)] = 0p ((61-0€5 )R ) Zéec (&a-h") (&R ) fpomel)  (158)
Using these, we derive
[65(52), dac(&r-e)] = dac (&7'€5 (One, — Ome,)) — Z Op ((1-085" )Ry, )
+BZCaec(@g-hB’)(&~hcff3/cpne$) (159)

Using the previous Proposition, we have

[65(8), Y op (&)= > dc((&-h")E fupC) Z O (€50 (& ) hE)
—

B',C(all) =M,S,K

263/ Erop(E)hy) (160)
where
E'0p(E)hy = &' (&2 O)hy, — & ZéAf &-hA )2
= &7 (&o-O)hyy + AX/;{ (o h™)(Eh) fae™ ) — 85 (1-0) (&2 1)

—(&-h™)(&1-h) fac® = 6565(&-h* )R ). (161)

Using these we can show the Proposition. q.e.d.

Also note

RS A = R, — (65 (Wn)hin — 66 (Wm) i) (162)
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84. NN = 1 Superconformal Tensor Calculus

4.1. Matter multiplets

The general, or so-called vector, (complex, unconstrained) superconformal multiplet V

corresponding to the superfield

V(2,0) = C+if752 — 20N — insM — 457"V,)0
~i(00)075[A — 249, 2] + 1(00)(80)[D — 50C] (163)
in the rigid supersymmetry case, is now denoted by V = [C, Z, N, M, V,,, A, D]. (Real vector
multiplet is denoted as V' = [C, Z, N, M, V,,, A, D], by using the corresponding roman letters.)

The basic quantum numbers of the superconformal matter multiplet are Weyl weight w and

chiral weight n, which are defined through the transformation law of the first component C:
[60(p) + 8a(0)] C(x) = (wp + 5inb) C(x). (164)

This vector multiplet V exists for any Weyl and chiral weights w, n (and even V4 with arbi-
trary external Lorentz index A = (aq, -+, ap; Bl, cee ﬂm) On the contrary, the constrained
type multiplets can exist only for particular values of (w, n) (and for particular external
Lorentz indices A). For instance, the chiral multiplets exist only when they carry the same
values of Weyl and chiral weights, w = n (and only with purely undotted spinor indices
A= (ag, - ,0p)).

Here we do not give the transformation laws for the vector multiplet 1V, but give those
for the chiral multiplet ¢ = [z, x, h] possessing no external Lorentz index, which is embedded

into the vector multiplet as follows:
V(¢) =1z, —ixr, —h, ih, iD;,z, 0, 0]. (165)
The chiral multiplet transforms under ), S, D and A as
Sospaz = (6g(€) +35(C) + 0p(p) +64(0)) 2 = 3erXR + (wp + Fiwh)z
dospa Xr = Pz - er, + her + 2wzlg + [(w + %)p + 2(%@0 - %)Q]XR
Sospah = 3e.D\r + (1 — w)Crxr + [(w + 1)p +i(3w — 2)]h, (166)

and inert under K, where Dy, denotes conformal covariant derivative:

D; z = (O, — why, — %z’wAm)z — %’(/_JRXR
c w 1 .1
Dxw = (D% = (w+ 5)bm — i(5w = $)Aum) xn
—(D°2 - Yrm + hPrm) — 2wW2PRM (167)

with local Lorentz covariant derivative D .
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4.2. Invariant action formula

F-term formula: applicable to chiral multiplet with weight w = n = 3, ¢p=n=3
= [2=3(A+iB), xr, h=3(F+iG)]

Ir = /d4l’ [¢(w:n:3):|F = /d433€ [h + %@Lm’YmXR + Ym0 ™2 Y1, + hec.
= /d4x e [F + %&mvmx + %zﬁmam”(z‘l — iy5B)y, (168)

The full superconformal invariance of this action can be confirmed by checking only the S-
invariance , since the GC(P) and LL(M) invariance together with D, A and K invariances
are manifest; the non-trivial @-invariance automatically follows from (the commutator of)
GC and S invariances.

The next action formula can be derived from this. Since the chiral projection (analogue
of DDV) of real vector multiplet V with Weyl weight w = 2 gives a chiral multiplet ITV

with weight w =n = 3:

IV = [3(H —iK), i)°Zy, + A, —3(D +0°C +iD:,B™)] (169)

D=

We can apply the above F-term formula to this chiral multiplet 17V and obtain
D-term formula: applicable to real vector multiplet V = [C, Z, H, K, B,,, A, D| with
weight w =2 n =0:

Ip = /d4$ [V(w=2,n=0)}D = /d4x [_HV]F

= /d%e[D — %?Zm’}/mi’}/g))\ — OmY Y54 + %C’ (R + eilﬁuR“)
—|—lezgmnkl’lj)m'7nwk (Bl — AlC — %leZ>} (170)
where
R=R,,"(M)e,el, R = e y57y, D3, (171)

4.3. N =1 SUGRA Lagrangian

One may have wondered in the above why we consider such a superconformal frame-
work possessing rather large local symmetry while we want supergravity which has only
local Poincaré invariance. We can now answer to this question. All the possible theories of
Poincaré supergravity can be obtained from our superconformal framework simply fixing the
gauges for the extraneous gauge symmetries, dilatation D, chiral A, conformal supersym-

metry S and special conformal K, symmetries. Then, we need special matter multiplet(s)
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called compensator, whose component fields are used to fix those extraneous gauges. Choos-
ing different type of multiplet as the compensator yields a different formulation of Poincaré
supergravity: namely, chiral multiplet compensator leads to (old) minimal formulation, (real)
linear multiplet compensator to new-minimal formulation and complex linear multiplet com-
pensator to Breitenlohner formulation. One of the virtue of the superconformal framework
is that all those different formulations of Poincaré supergravity can be dreived in a unified
way from this unique framework. There is another and more important advantage in the
superconformal tensor calculus actually, which we explain shortly.

We explain only the (old) minimal formulation of Poincaré supergravity. Pure (Poincaré)

supergravity Lagrangian is given by

‘Cpure SUGRA — [EE}D (172)

where X' is a chiral multiplet with weight w = n = 1, the compensator of the (old) min-
imal formulation. Denoting the components of this compensator as X = [A, ¢, F|, the

extraneous D, A, S, K,, gauges are fixed by the following conditions:

D: Red=+3, A: ImA=0,
S: Yr=0, Kpn: b,=0, (173)

where the last b, is the Weyl (D) gauge field. Then, writing F = \%(S —iP) and A, =
—%AZ“X, XX takes the form

U5 =3, 0, —28, 2P, —2A%%, 0, —5(S? + P — AZ*?)] (174)

Substituting this components expression into Eq. (172) and applying the D-term formula,

we actually obtain the following action of pure supergravity:
Loue sucra = €[R+ e ', R* — £(S? + P? — AZ2)]. (175)

S, P and Aj™ constitute the well-known minimal set of auxiliarly fields, hence the name of
minimal Poincaré supergravity.

If one considers more general matter coupled system, the Lagrangian would take the form

L=[220(,0)],+ [Z*W(e)], . (176)

omitting the possible gauge fields. Here ¢ denotes a set of matter multiplets { ¢; }. Now we

can explain another virtue of our superconformal tensor calculus, as promised above.
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First, we note that we can eliminate the superpotential term by redefining the com-
pensator as W1/3(¢)Y — X, and rewrite the Lagrangian into the following form using
=)W

L=[XX0(,9)],+ 2%, (177)

In this matter coupled system, the multiplet XX &(¢, ¢) = V in the D-term has the following

first two components:

C(V) = |A]? &(z,2%)
%Z(V) = i | AP (®;xi — Bxpi) + id (A, — A*YR) | (178)

with notation @' = 09(z, z*)/0z;, ®; = 0P(z,2*)/0z*". Therefore, to obtain the canonical
form of Einstein-Hilbert as well as Rarita-Schwinger action R + e_lzﬁﬂR", it would be best

to take the gauge conditions for the extraneous gauges D, A, S, K,, as’

D: ReA=+30"12 A: ImA=0,
S: Yr=-AP '®'\p;, K,: b,=0. (179)

Indeed, in this superconformal gauge, we have C'(V) = 3 and Z(V') = 0, yielding the desired
canonical Einstein-Hilbert and Rarita-Schwinger action R+ e‘lizuR“ from the beginning, as
is seen from the D-term action formula. Note that this is really the power of superconformal
tensor calculus. In the Poincaré tensor calculus, there is no freedom of choosing those gauges!
From the superconformal viewpoint, the Poincaré tensor calculus is just the tensor calculus
obtained from the superconformal one by choosing the Poincaré gauge fixing conditions
Eq. (173). Tt is a good gauge conditions for pure supergravity system, but is ridiculous
one for the matter coupled system. There is, however, no other way in the Poincaré tensor
calculus, since there are no extraneous gauge freedom. Compare this simplification with
the big calculation performed by Cremmer, Ferrara, Girardello and Van Proeyen?® using the
Poincaré tensor calculus. The first thing the latter authors had to do was 1) Weyl rescaling
of the vierbein and other fields, 2) chiral rotations of the fermion fields, and 3) recombination
of @ and the superpotential W into the Kéhler potential %K = In(®/ |W|2/3). The first and
second tasks are simply bypassed here by the above D and A gauge conditions and the third
was the task performed in one line already in Eq. (177).
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