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Beyond small perturbations during slow-rollinationLoally { around our world-line { slow-roll ination has boththe beginning and the end.Globally it has no beginning and no end in the most ofinteresting ases { in the sense that inating pathes alwaysexist somewhere in spae and time (but outside our past andfuture light ones).For suÆiently large N = ln �afa �, < h2 > beomes larger than1. Loop orretions proportional to higher powers of h maybeome important in this regime only.Stohasti approah to ination ("stohasti ination"):R̂�� � 12Æ��R̂ = 8�GT̂ �� (ĝ��)- not as a funtion of < ĝ�� > !Leads to QFT in a stohasti bakground.



Stohasti ination:1) an deal with an arbitrary large (though suÆientlysmooth) global inhomogeneity;2) takes bakreation of reated utuations into aount;3) goes beyond any �nite order of loop orretions.Fully developed in Starobinsky (1984,1986) though the �rstsimpli�ed appliation (but beyond the one-loop approximation)was already in Starobinsky (1982).The �rst main idea: splitting of the inaton �eld � into alarge-sale and a small-sale parts with respet to H. Moreexatly, the border is assumed to lie at k = �aH withexp��H2j _Hj�� �� 1.Appliability onditions { the standard slow-roll ones:V 02 � 48�GV 2; jV "j � 8�GV =3 :



Langevin equation for the large-sale �eldThe seond main idea: a non-ommutative part of thelarge-sale �eld is very small (it is omposed from deayingmodes), so we may neglet it. Then the remaining part isequivalent (not equal!) to a stohasti -number (lassial)�eld with some distribution funtion.d�d� (n) = � 13Hn+1 dVd� (n) + f ;< f (� (n)1 ) f (� (n)2 ) >= H3�n4�2 Æ(� (n)1 � � (n)2 ) :The Gaussian white noise f desribes the ow of small-salelinear �eld modes through the border k = �aH to thelarge-sale region in the ourse of the universe expansion.



The time-like variables: � (n) = R Hn(t; r) dt, whereH2 = 8�GV (�)=3.This is not a time reparametrization t ! f (t) in GR.Di�erent � (n) desribe di�erent stohasti proesses and evenhave di�erent dimensionality.Di�erent "loks" are needed to measure them:1) n = 0: phase of a wave funtion of a massive partile(m� H);2) n = 1: salar metri perturbations (ÆN formalism);3) n = 3: dispersion of a light salar �eld generated duringination < �2 >= 14�2 < Z H3 dt >= < � (3) >4�2 :See F. Finelli et al., Phys. Rev. D 79, 044007 (2009) for moredetails.



Einstein-Smoluhovsky (Fokker-Plank) equation���� = ��� � V 03Hn+1 �� + 18�2 �2��2 �H3�n�� :Probability onservation: R � d� = 1.Remarks.I More generally, the last term an be written the form18�2 ��� �H(3�n)� ��� �H(3�n)(1��)���with 0 � � � 1.� = 0 { Ito alulus.� = 1=2 { Stratonovih alulus.However, keeping terms expliitly depending on � exeedsthe auray of the stohasti approah. Thus, � mayput 0.



I All results are independent of the form of a uto� in themomentum spae as far as it ours for k � aH (�� 1).I Bakreation is taken into aount: ÆT �� = (V �Vlas) Æ��.I No neessity in any infrared uto�. Problems with the soalled "volume weighting" arise beause quantities likea3� are onsidered whih are not normalizable, thus, theymay not be onsidered as probabilities of anything fromthe mathematial point of view ("unitarity breaking").Their physial justi�ation is also awed sine it based onthe wrong assumption that all Hubble physial volumes("observers") at given � are lones of eah other while itis not so.



I Another possible soure of apparent infrared divergenes:use of "gauge invariant" (with respet to a bakgroundspae-time metri) variables like �(r; t) whih are notgenerally ovariant with respet to the full metri and,therefore, not diretly observable. In ontrast, quantitieslike �(r; t)� �(0; t0) are generally ovariant andobservable though non-loal.I The auray of the stohasti approah is not suÆientfor alulating quantities � H2 in < �2 > and � H4 inEMT average values beause of the omission of aontribution from the small-sale part (inluding theonformal anomaly). However, all larger quantities (ifexist) an be alulated quantitatively orretly.



Transition to preditions for the post-inationaryevolutionFrom �(�; �) during ination to the distribution w(�) over thetotal loal duration of ination:w(�) = lim�!�end j = lim�!�end jV 0j3Hn+1 �(�; �) :For the graeful exit to a post-inationary epoh, thestohasti fore should be muh less than the lassial oneduring last e-folds of ination.



From ÆN- to N-formalismThe same way to obtain the joint distribution w(0; �1; jrj; �2)from the 2-point joint probability distribution�(�1; 0; �1;�2; jrj; �2) during ination.Let n = 1. Whends2 = dt2 � a2(t)e2�(r)dr2 + small termsafter ination and omplete thermalization where�(r) = N(r) � � (1)(r) :



QFT of a self-interating salar �eld in the deSitter bakgroundStarobinsky & Yokoyama (1994).The equilibrium (stati) solution for the 1-point distribution:�eq(�) = onst e�2v ; v = 4�2V (�)3H40 :Arbitrary Green funtions and n-point distributions an beonstruted, too, using solutions of the same Fokker-Plankequation.



V (�) = V0 + 12m2�2 + 14��4 ; 0 < �� 1; H20 = 8�GV03 :Three regimes:1. Perturbative regime p�H20 � m2 � H20 .< �2 >= 3H408�m2 �1� 3� + 42916 �2 + :::� ; � = 3�H408�2m4 :Compare to the same result in the one-loop (Gaussian)approximation:< �2G >= 3H408�m2 �1� 3� + 18�2 + :::� :



2. Massless self-interating regime jm2j � p�H20 .< �2 >=r 32�2 �(0:75)�(0:25) H20p� � 0:132 H20p�< �2G >= 1�p8 H20p� � 0:113 H20p�The sale m2 � �H20 proposed reently in arXiv:1005.3551 isnot ritial at all!3. Symmetry breaking regime m2 < 0; p�H20 � jm2j � H20 .< �2 >= jm2j� + 3H4016�2jm2j +O �e�1=(4�)�The (modulus of) exponent is the ation for theHawking-Moss instanton.See also F. Finelli et al., Phys. Rev. D 82, 064020 (2010).



Probabilities to go to di�erent vaua after inationLet ination may end in two vaua: � = �1 and � = �2 withV (�1) = V (�2) = 0 (to onsider a larger number ofpost-inationary vaua, � should have more thanone-dimensional internal spae).
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Boundary onditions at the end of ination:�(�1; �) = �(�2; �) = 0.Method of alulation (Starobinsky (1984,1986)): onsider thequantities Qm(�) = Z 10 �m�(�; �) d�where � = 0 orresponds to the loal beginning of ination.Qm(�1) = Qm(�2) = 0.By integrating the Fokker-Plank equation over � , we get form = 0:



Q0(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C0 � Z  �1 �0( 1) d 1� ;C0 = R �2�1 d� exp�� �GH2(�)� R ��1 �0( ) d R �2�1 d� exp�� �GH2(�)� :P1 = C0 { the absolute probability to go to the vauum� = �1;P2 = 1� C0 { the absolute probability to go to the vauum� = �2.No n dependene in C !



Loal duration of inationQ1(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C1 � Z  �1 Q0( 1) d 1� ;C1 = R �2�1 d� exp�� �GH2(�)� R ��1 Q0( ) d R �2�1 d� exp�� �GH2(�)� :< �1 >= C1C0 ; < �2 >= ~C11� C0 ;< � >tot= C0 < �1 > +(1� C0) < �2 >= Z �2�1 Q0(�) d� :~C1 is C1 with �1 and �2 interhanged.



Choie of an initial onditionI Stati solutions { not normalizable in the inationary (i.e.unstable) ase.I �0(�) = Æ(�� �0) { why?I "Eternal ination as an initial ondition": �0(�) / �E1(�){ the wave funtion of the lowest energy level of theShrodinger equation arising through the separation ofvariables in the Fokker-Plank equation (E0 = 0 due tohidden supersymmetry of the former).1) Not possible in the ontinuum spetrum ase.2) In the disrete spetrum ase, generially E2 � E1 � E1{ not enough time for relaxation.As a whole, "eternal" ination seems not be eternalenough to �x the initial ondition uniquely.



However, if ination had ourred at all, the dependene ofpreditions on �0(�) is omparatively weak: for almost all�0(�) exept from the HH-like one �0(�) / exp� �GH2(�)�, themain ontribution omes from the highest maximum of V (�)without any neessity of a "tunneling" initial ondition.On the other hand, if �0(�) / exp� �GH2(�)�, there ispratially no ination at all, and �nal probabilities P1 and P2are equal to the initial ones.



Other very reent attempts { not persuasive1. V.G. Gurzadyan and R. Penrose, arXiv:1011.3706 { thefeatures found may be well (in fat, even better) desribed bya standard one-parameter inationary model, seearXiv:1012.1268, arXiv:1012.1305, arXiv:1012.1656.2. S.M. Feeney et al., arXiv:1012.1995, arXiv:1012.3667,'ollisions with other bubble universes produed by eternalination' { in fat, 3 old and 1 hot spots were found only(two of them were known previously), no ring-likedisontinuities { may be desribed by standard ination, too(by large extrema of primordial salar metri perturbations).



ConlusionsI No problems of priniple in prediting all joint probabilitydistributions during and after ination (N-formalism) inthe original (probability onserving) stohasti approah,one an initial ondition �0(�) is given. No neessity torefer to other universes outside our light one.I No satisfatory priniple to �x �0(�) uniquely.I Some dependene on �0(�) remains in �nal answers, so apossibility to get some knowledge on it from observationaldata does not seem hopeless. However, if ination hadourred at all, the dependene of preditions on �0(�) isweak and mainly produed by the region around thehighest maximum of V (�). For this, no spei�"tunneling" initial ondition is needed.
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