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Beyond small perturbations during slow-rollin
ationLo
ally { around our world-line { slow-roll in
ation has boththe beginning and the end.Globally it has no beginning and no end in the most ofinteresting 
ases { in the sense that in
ating pat
hes alwaysexist somewhere in spa
e and time (but outside our past andfuture light 
ones).For suÆ
iently large N = ln �afa �, < h2 > be
omes larger than1. Loop 
orre
tions proportional to higher powers of h maybe
ome important in this regime only.Sto
hasti
 approa
h to in
ation ("sto
hasti
 in
ation"):R̂�� � 12Æ��R̂ = 8�GT̂ �� (ĝ��)- not as a fun
tion of < ĝ�� > !Leads to QFT in a sto
hasti
 ba
kground.



Sto
hasti
 in
ation:1) 
an deal with an arbitrary large (though suÆ
ientlysmooth) global inhomogeneity;2) takes ba
krea
tion of 
reated 
u
tuations into a

ount;3) goes beyond any �nite order of loop 
orre
tions.Fully developed in Starobinsky (1984,1986) though the �rstsimpli�ed appli
ation (but beyond the one-loop approximation)was already in Starobinsky (1982).The �rst main idea: splitting of the in
aton �eld � into alarge-s
ale and a small-s
ale parts with respe
t to H. Moreexa
tly, the border is assumed to lie at k = �aH withexp��H2j _Hj�� �� 1.Appli
ability 
onditions { the standard slow-roll ones:V 02 � 48�GV 2; jV "j � 8�GV =3 :



Langevin equation for the large-s
ale �eldThe se
ond main idea: a non-
ommutative part of thelarge-s
ale �eld is very small (it is 
omposed from de
ayingmodes), so we may negle
t it. Then the remaining part isequivalent (not equal!) to a sto
hasti
 
-number (
lassi
al)�eld with some distribution fun
tion.d�d� (n) = � 13Hn+1 dVd� (n) + f ;< f (� (n)1 ) f (� (n)2 ) >= H3�n4�2 Æ(� (n)1 � � (n)2 ) :The Gaussian white noise f des
ribes the 
ow of small-s
alelinear �eld modes through the border k = �aH to thelarge-s
ale region in the 
ourse of the universe expansion.



The time-like variables: � (n) = R Hn(t; r) dt, whereH2 = 8�GV (�)=3.This is not a time reparametrization t ! f (t) in GR.Di�erent � (n) des
ribe di�erent sto
hasti
 pro
esses and evenhave di�erent dimensionality.Di�erent "
lo
ks" are needed to measure them:1) n = 0: phase of a wave fun
tion of a massive parti
le(m� H);2) n = 1: s
alar metri
 perturbations (ÆN formalism);3) n = 3: dispersion of a light s
alar �eld generated duringin
ation < �2 >= 14�2 < Z H3 dt >= < � (3) >4�2 :See F. Finelli et al., Phys. Rev. D 79, 044007 (2009) for moredetails.



Einstein-Smoluhovsky (Fokker-Plan
k) equation���� = ��� � V 03Hn+1 �� + 18�2 �2��2 �H3�n�� :Probability 
onservation: R � d� = 1.Remarks.I More generally, the last term 
an be written the form18�2 ��� �H(3�n)� ��� �H(3�n)(1��)���with 0 � � � 1.� = 0 { Ito 
al
ulus.� = 1=2 { Stratonovi
h 
al
ulus.However, keeping terms expli
itly depending on � ex
eedsthe a

ura
y of the sto
hasti
 approa
h. Thus, � mayput 0.



I All results are independent of the form of a 
uto� in themomentum spa
e as far as it o

urs for k � aH (�� 1).I Ba
krea
tion is taken into a

ount: ÆT �� = (V �V
las) Æ��.I No ne
essity in any infrared 
uto�. Problems with the so
alled "volume weighting" arise be
ause quantities likea3� are 
onsidered whi
h are not normalizable, thus, theymay not be 
onsidered as probabilities of anything fromthe mathemati
al point of view ("unitarity breaking").Their physi
al justi�
ation is also 
awed sin
e it based onthe wrong assumption that all Hubble physi
al volumes("observers") at given � are 
lones of ea
h other while itis not so.



I Another possible sour
e of apparent infrared divergen
es:use of "gauge invariant" (with respe
t to a ba
kgroundspa
e-time metri
) variables like �(r; t) whi
h are notgenerally 
ovariant with respe
t to the full metri
 and,therefore, not dire
tly observable. In 
ontrast, quantitieslike �(r; t)� �(0; t0) are generally 
ovariant andobservable though non-lo
al.I The a

ura
y of the sto
hasti
 approa
h is not suÆ
ientfor 
al
ulating quantities � H2 in < �2 > and � H4 inEMT average values be
ause of the omission of a
ontribution from the small-s
ale part (in
luding the
onformal anomaly). However, all larger quantities (ifexist) 
an be 
al
ulated quantitatively 
orre
tly.



Transition to predi
tions for the post-in
ationaryevolutionFrom �(�; �) during in
ation to the distribution w(�) over thetotal lo
al duration of in
ation:w(�) = lim�!�end j = lim�!�end jV 0j3Hn+1 �(�; �) :For the gra
eful exit to a post-in
ationary epo
h, thesto
hasti
 for
e should be mu
h less than the 
lassi
al oneduring last e-folds of in
ation.



From ÆN- to N-formalismThe same way to obtain the joint distribution w(0; �1; jrj; �2)from the 2-point joint probability distribution�(�1; 0; �1;�2; jrj; �2) during in
ation.Let n = 1. Whends2 = dt2 � a2(t)e2�(r)dr2 + small termsafter in
ation and 
omplete thermalization where�(r) = N(r) � � (1)(r) :



QFT of a self-intera
ting s
alar �eld in the deSitter ba
kgroundStarobinsky & Yokoyama (1994).The equilibrium (stati
) solution for the 1-point distribution:�eq(�) = 
onst e�2v ; v = 4�2V (�)3H40 :Arbitrary Green fun
tions and n-point distributions 
an be
onstru
ted, too, using solutions of the same Fokker-Plan
kequation.



V (�) = V0 + 12m2�2 + 14��4 ; 0 < �� 1; H20 = 8�GV03 :Three regimes:1. Perturbative regime p�H20 � m2 � H20 .< �2 >= 3H408�m2 �1� 3� + 42916 �2 + :::� ; � = 3�H408�2m4 :Compare to the same result in the one-loop (Gaussian)approximation:< �2G >= 3H408�m2 �1� 3� + 18�2 + :::� :



2. Massless self-intera
ting regime jm2j � p�H20 .< �2 >=r 32�2 �(0:75)�(0:25) H20p� � 0:132 H20p�< �2G >= 1�p8 H20p� � 0:113 H20p�The s
ale m2 � �H20 proposed re
ently in arXiv:1005.3551 isnot 
riti
al at all!3. Symmetry breaking regime m2 < 0; p�H20 � jm2j � H20 .< �2 >= jm2j� + 3H4016�2jm2j +O �e�1=(4�)�The (modulus of) exponent is the a
tion for theHawking-Moss instanton.See also F. Finelli et al., Phys. Rev. D 82, 064020 (2010).



Probabilities to go to di�erent va
ua after in
ationLet in
ation may end in two va
ua: � = �1 and � = �2 withV (�1) = V (�2) = 0 (to 
onsider a larger number ofpost-in
ationary va
ua, � should have more thanone-dimensional internal spa
e).
φ1 φ2φ3 φ4 φ

V



Boundary 
onditions at the end of in
ation:�(�1; �) = �(�2; �) = 0.Method of 
al
ulation (Starobinsky (1984,1986)): 
onsider thequantities Qm(�) = Z 10 �m�(�; �) d�where � = 0 
orresponds to the lo
al beginning of in
ation.Qm(�1) = Qm(�2) = 0.By integrating the Fokker-Plan
k equation over � , we get form = 0:



Q0(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C0 � Z  �1 �0( 1) d 1� ;C0 = R �2�1 d� exp�� �GH2(�)� R ��1 �0( ) d R �2�1 d� exp�� �GH2(�)� :P1 = C0 { the absolute probability to go to the va
uum� = �1;P2 = 1� C0 { the absolute probability to go to the va
uum� = �2.No n dependen
e in C !



Lo
al duration of in
ationQ1(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C1 � Z  �1 Q0( 1) d 1� ;C1 = R �2�1 d� exp�� �GH2(�)� R ��1 Q0( ) d R �2�1 d� exp�� �GH2(�)� :< �1 >= C1C0 ; < �2 >= ~C11� C0 ;< � >tot= C0 < �1 > +(1� C0) < �2 >= Z �2�1 Q0(�) d� :~C1 is C1 with �1 and �2 inter
hanged.



Choi
e of an initial 
onditionI Stati
 solutions { not normalizable in the in
ationary (i.e.unstable) 
ase.I �0(�) = Æ(�� �0) { why?I "Eternal in
ation as an initial 
ondition": �0(�) / �E1(�){ the wave fun
tion of the lowest energy level of theS
hrodinger equation arising through the separation ofvariables in the Fokker-Plan
k equation (E0 = 0 due tohidden supersymmetry of the former).1) Not possible in the 
ontinuum spe
trum 
ase.2) In the dis
rete spe
trum 
ase, generi
ally E2 � E1 � E1{ not enough time for relaxation.As a whole, "eternal" in
ation seems not be eternalenough to �x the initial 
ondition uniquely.



However, if in
ation had o

urred at all, the dependen
e ofpredi
tions on �0(�) is 
omparatively weak: for almost all�0(�) ex
ept from the HH-like one �0(�) / exp� �GH2(�)�, themain 
ontribution 
omes from the highest maximum of V (�)without any ne
essity of a "tunneling" initial 
ondition.On the other hand, if �0(�) / exp� �GH2(�)�, there ispra
ti
ally no in
ation at all, and �nal probabilities P1 and P2are equal to the initial ones.



Other very re
ent attempts { not persuasive1. V.G. Gurzadyan and R. Penrose, arXiv:1011.3706 { thefeatures found may be well (in fa
t, even better) des
ribed bya standard one-parameter in
ationary model, seearXiv:1012.1268, arXiv:1012.1305, arXiv:1012.1656.2. S.M. Feeney et al., arXiv:1012.1995, arXiv:1012.3667,'
ollisions with other bubble universes produ
ed by eternalin
ation' { in fa
t, 3 
old and 1 hot spots were found only(two of them were known previously), no ring-likedis
ontinuities { may be des
ribed by standard in
ation, too(by large extrema of primordial s
alar metri
 perturbations).



Con
lusionsI No problems of prin
iple in predi
ting all joint probabilitydistributions during and after in
ation (N-formalism) inthe original (probability 
onserving) sto
hasti
 approa
h,on
e an initial 
ondition �0(�) is given. No ne
essity torefer to other universes outside our light 
one.I No satisfa
tory prin
iple to �x �0(�) uniquely.I Some dependen
e on �0(�) remains in �nal answers, so apossibility to get some knowledge on it from observationaldata does not seem hopeless. However, if in
ation hado

urred at all, the dependen
e of predi
tions on �0(�) isweak and mainly produ
ed by the region around thehighest maximum of V (�). For this, no spe
i�
"tunneling" initial 
ondition is needed.
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