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Aims of this talk

• Theoretically analyse scale-dependence of
local non-Gaussianity

� Tools to further characterize properties of mechanism
responsible for generating fluctuations

� Examples in concrete models

� Improve ansätze to apply to simulations/observations

2

Aims of this talk

• Theoretically analyse scale-dependence of
local non-Gaussianity

� Tools to further characterize properties of mechanism
responsible for generating fluctuations

� Examples in concrete models

� Improve ansätze to apply to simulations/observations

2

Aims of this talk

• Theoretically analyse scale-dependence of
local non-Gaussianity

� Tools to further characterize properties of mechanism
responsible for generating fluctuations

� Examples in concrete models

� Improve ansätze to apply to simulations/observations

2

Aims of this talk

• Theoretically analyse scale-dependence of
local non-Gaussianity

� Tools to further characterize properties of mechanism
responsible for generating fluctuations

� Examples in concrete models

� Improve ansätze to apply to simulations/observations

2

Aims of this talk

• Theoretically analyse scale-dependence of
local non-Gaussianity

� Tools to further characterize properties of mechanism
responsible for generating fluctuations

� Examples in concrete models

� Improve ansätze to apply to simulations/observations

2

Aims of this talk

• Theoretically analyse scale-dependence of
local non-Gaussianity

� Tools to further characterize properties of mechanism
responsible for generating fluctuations

� Examples in concrete models

� Improve ansätze to apply to simulations/observations

2



Scale dependence of inflationary observables

• Two point function:

Power spectrum: �ζ�k1ζ�k2� = (2π)3 δ3(�k1 + �k2)
2π2P(k1)

k
3
1

Spectral index: nζ − 1 =
�
d lnPζ
d ln k

�

|k=aH

= 0.963± 0.012

• Three point function:

Bispectrum: �ζ�k1ζ�k2ζ�k3� = (2π)3 δ3(�k1 + �k2 + �k3)B(k1, k2, k3)

⇒
B(k1, k2, k3) = 6

5fNL(k1, k2, k3) [P (k1)P (k2) + perms]

Scale dependence: nfNL = d ln |fNL|/d ln k

– Vary all momenta by same amount: the result is independent on
the shape of the triangle

– If local fNL ∼ 50, then nfNL ∼ 0.1 might be detectable with Planck
[Sefusatti et al]

– nfNL at lower bound might be enough to get information on
mechanism generating primordial fluctuations.

Larger values might be needed in the future to reconcile LSS with
CMB measurements.

• Four point function: [Byrnes-Sasaki-Wands]

(cut and paste from our paper)

Analogous definitions for ngNL and nτNL; no available forecasts
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2.3 Four point function, gNL and τNL

The connected part of the four point correlator of ζ can be written in the form

〈ζk1ζk2ζk3ζk4〉 = (2π)3δ(
4

∑

i=1

ki)

[

τNL(k1, k2, k3, k4, k13)
(

P (k1)P (k2)P (|k1 + k3|) + 11 perm
)

(2.28)

+
54

25
gNL(k1, k2, k3, k4)

(

P (k1)P (k2)P (k3) + 3 perm
)

]

,

where we have defined kij ≡ |ki + kj |. The functions τNL and gNL are given by

τNL(k1, k2, k3, k4, k13) = 4
(k1k2k13)−3

∑

abcdef Pac(k1)Pbe(k2)Pdf (k13)fcd(k3)fef (k4) + 11 perm

(k1k2k13)−3 P(k1)P(k2)P(k13) + 11 perm
,(2.29)

gNL(k1, k2, k3, k4) =
25

9

(k1k2k3)−3
∑

abcdef Pad(k1)Pbe(k2)Pcf (k3)gdef (k4) + 3 perms

(k1k2k3)−3 P(k1)P(k2)P(k3) + 3 perm
. (2.30)

In the case of a square, k = ki (notice that τNL, but not gNL, is sensitive to the angles between
the vectors and different equilateral figures in general yield different results), the above expressions
reduce to

τNL(k) = 4
∑

abcdef

Pac(k)Pbe(k)Pdf (
√
2k)fcd(k)fef (k)

P(k)3
, (2.31)

gNL(k) =
25

9

∑

abcdef

Pad(k)Pbe(k)Pcf (k)gdef (k)

P(k)3
. (2.32)

The scale-dependence can be computed similarly to the analysis of the bispectrum above. Using
Eqs. (2.13), (2.14) and (2.19), we find

nτNL ≡
d ln |τNL(k)|

d ln k
=

1

τNL(kp)

∑

abcd

τabcdNL [(2nmulti,a − (nζ − 1)− 2εH)δbc − 2εbc + 2nf,abδbc] ,(2.33)

ngNL ≡
d ln |gNL(k)|

d ln k
=

1

gNL(kp)

∑

abc

gabcNL (3nmulti,a + ng,abc) , (2.34)

where εH = −Ḣ/H2, and [28, 11]

τabcdNL =
NaNabNcdNd

(
∑

e N
2
e )3

, τNL(kp) =
∑

abcd

τabcdNL δbc , (2.35)

gabcNL =
25

54

NaNbNcNabc

(
∑

dN
2
d )

3
, gNL(kp) =

∑

abc

gabcNL . (2.36)

The scale-dependencies are fully determined by the constant coefficients Na, Nab, Nabc in the δN
expression and by combinations of slow-roll parameters, which enter the results through Eqs. (A.7)
and (A.8). Although the expressions appear lengthy in their general form, considerable simplifications
typically occur when considering specific models. We will discuss examples in Sections 3 and 4.

Similarly to nfNL , we can again distinguish two physically different contributions in the expressions
for nτNL and ngNL . The parts proportional to nf,ab and ng,abc in Eqs. (2.33) and (2.34) respectively
arise from the non-linear evolution outside the horizon. The other contributions describe deviations
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Scale dependence of inflationary observables

• Two point function:

Power spectrum: �ζ�k1ζ�k2� = (2π)3 δ3(�k1 + �k2)
2π2P(k1)

k
3
1

Spectral index: nζ − 1 =
�
d lnPζ
d ln k

�

|k=aH

= 0.963± 0.012

• Three point function:

Bispectrum: �ζ�k1ζ�k2ζ�k3� = (2π)3 δ3(�k1 + �k2 + �k3)B(k1, k2, k3)

⇒
B(k1, k2, k3) = 6

5fNL(k1, k2, k3) [P (k1)P (k2) + perms]

Scale dependence: nfNL = d ln |fNL|/d ln k

– Vary all momenta by same amount: the result is independent on
the shape of the triangle

– If local fNL ∼ 50, then nfNL ∼ 0.1 might be detectable with Planck
[Sefusatti et al]

– nfNL at lower bound might be enough to get information on
mechanism generating primordial fluctuations.

Larger values might be needed in the future to reconcile LSS with
CMB measurements.

• Four point function: [Byrnes-Sasaki-Wands] Trispectrum

(cut and paste from our paper)

Analogous definitions for ngNL and nτNL; no available forecasts
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract values of connected n-point func-
tion.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields. At superhori-
zon scales →
time of horizon exit: k = a(tk)H(tk)tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2

�

ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
�
�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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from the local form due to the presence of multiple fields, similarly to what we discussed in the previous
section.

The results (2.33) and (2.34) hold not only for the special case of a square, but for any variations
where all the sides are scaled by the same constant factor, ki → αki. These variations preserve the
shape of the momentum space figure and change only its overall scale. We will prove this result in Sec.
5 where we also discuss generic variations that simultaneously change both the scale and the shape.

Having presenting our formalism and the general results, we will discuss in the next two sections
applications to specific cases.

3. General single field case

We start by discussing models where the primordial curvature perturbation effectively arises from a
single scalar field, which does not need to be the inflaton and we call σ. In this case, the functions
fσσ(k) and gσσσ(k) appearing in the expansion of ζ, Eq. (2.16), are up to numerical factors equal
to fNL(k) and gNL(k), evaluated for the equilateral configurations. This can be seen directly from
Eqs. (2.23) and (2.32). We can therefore rewrite Eq. (2.16) as

ζk = ζGk +
3

5
fNL(k)(ζ

G $ ζG)k +
9

25
gNL(k)(ζ

G $ ζG $ ζG)k + · · · . (3.1)

As we will discuss in Sec. 4, this result applies for example to the curvaton scenario and modulated
reheating in the limit where the inflaton perturbations are negligible. We therefore call all the models
where the curvature perturbation can be expressed in the form (3.1) as general single field models.

According to Eqs. (2.13) and (2.14), the non-linearity parameters fNL(k) and gNL(k) are now
given by

fNL(k) =
5

6

N ′′

N ′2

(

1 + nfNL ln
k

kp

)

, (3.2)

gNL(k) =
25

54

N ′′′

N ′3

(

1 + ngNL ln
k

kp

)

, (3.3)

where the primes denote derivatives with respect to σ and nfNL = nf,σσ, ngNL = ng,σσσ . Using the
explicit expressions (A.7) and (A.8) in the Appendix A, we obtain

nfNL =
N ′

N ′′

[√
2εσ(4εσ − 3ησσ) +

V ′′′

3H2

]

, (3.4)

ngNL = 3
N ′′2

N ′′′N ′
nfNL −

N ′

N ′′′

[

24ε2σ − 24εσησσ + 3η2σσ +
4
√
2εσ V ′′′

3H2
−

V ′′′′

3H2

]

. (3.5)

The same results can of course be directly obtained from Eqs. (2.24) and (2.34). If σ is an isocurvature
field during inflation, εσ = 0 in the above expressions.

For the general single field case Eq. (2.31) further yields

τNL(k) =

(

6fNL(k)

5

)2

, (3.6)

up to scale-independent slow roll corrections. Therefore, the scale-dependencies of τNL and fNL are
related by

nτNL = 2nfNL . (3.7)

This simple consistency relation is characteristic for general single field models. In multiple field
models, the relation (3.6) is in general violated and consequently the result (3.7) is no longer true.
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[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends
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– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =
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ab

NabNaNb�
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N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Starobinsky, Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2
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ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
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�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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from the local form due to the presence of multiple fields, similarly to what we discussed in the previous
section.

The results (2.33) and (2.34) hold not only for the special case of a square, but for any variations
where all the sides are scaled by the same constant factor, ki → αki. These variations preserve the
shape of the momentum space figure and change only its overall scale. We will prove this result in Sec.
5 where we also discuss generic variations that simultaneously change both the scale and the shape.

Having presenting our formalism and the general results, we will discuss in the next two sections
applications to specific cases.

3. General single field case

We start by discussing models where the primordial curvature perturbation effectively arises from a
single scalar field, which does not need to be the inflaton and we call σ. In this case, the functions
fσσ(k) and gσσσ(k) appearing in the expansion of ζ, Eq. (2.16), are up to numerical factors equal
to fNL(k) and gNL(k), evaluated for the equilateral configurations. This can be seen directly from
Eqs. (2.23) and (2.32). We can therefore rewrite Eq. (2.16) as

ζk = ζGk +
3

5
fNL(k)(ζ

G $ ζG)k +
9

25
gNL(k)(ζ

G $ ζG $ ζG)k + · · · . (3.1)

As we will discuss in Sec. 4, this result applies for example to the curvaton scenario and modulated
reheating in the limit where the inflaton perturbations are negligible. We therefore call all the models
where the curvature perturbation can be expressed in the form (3.1) as general single field models.

According to Eqs. (2.13) and (2.14), the non-linearity parameters fNL(k) and gNL(k) are now
given by

fNL(k) =
5

6

N ′′

N ′2

(

1 + nfNL ln
k

kp

)

, (3.2)

gNL(k) =
25

54

N ′′′

N ′3

(

1 + ngNL ln
k

kp

)

, (3.3)

where the primes denote derivatives with respect to σ and nfNL = nf,σσ, ngNL = ng,σσσ . Using the
explicit expressions (A.7) and (A.8) in the Appendix A, we obtain

nfNL =
N ′

N ′′

[√
2εσ(4εσ − 3ησσ) +

V ′′′

3H2

]

, (3.4)

ngNL = 3
N ′′2

N ′′′N ′
nfNL −

N ′

N ′′′

[

24ε2σ − 24εσησσ + 3η2σσ +
4
√
2εσ V ′′′

3H2
−

V ′′′′

3H2

]

. (3.5)

The same results can of course be directly obtained from Eqs. (2.24) and (2.34). If σ is an isocurvature
field during inflation, εσ = 0 in the above expressions.

For the general single field case Eq. (2.31) further yields

τNL(k) =

(

6fNL(k)

5

)2

, (3.6)

up to scale-independent slow roll corrections. Therefore, the scale-dependencies of τNL and fNL are
related by

nτNL = 2nfNL . (3.7)

This simple consistency relation is characteristic for general single field models. In multiple field
models, the relation (3.6) is in general violated and consequently the result (3.7) is no longer true.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields. At superhori-
zon scales →
time of horizon exit: k = a(tk)H(tk)tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit
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�k
(tk)+
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δφa(tk) � δφ

b(tk)
�
�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2

�

ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
�
�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Starobinsky, Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2

�

ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
�
�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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from the local form due to the presence of multiple fields, similarly to what we discussed in the previous
section.

The results (2.33) and (2.34) hold not only for the special case of a square, but for any variations
where all the sides are scaled by the same constant factor, ki → αki. These variations preserve the
shape of the momentum space figure and change only its overall scale. We will prove this result in Sec.
5 where we also discuss generic variations that simultaneously change both the scale and the shape.

Having presenting our formalism and the general results, we will discuss in the next two sections
applications to specific cases.

3. General single field case

We start by discussing models where the primordial curvature perturbation effectively arises from a
single scalar field, which does not need to be the inflaton and we call σ. In this case, the functions
fσσ(k) and gσσσ(k) appearing in the expansion of ζ, Eq. (2.16), are up to numerical factors equal
to fNL(k) and gNL(k), evaluated for the equilateral configurations. This can be seen directly from
Eqs. (2.23) and (2.32). We can therefore rewrite Eq. (2.16) as

ζk = ζGk +
3

5
fNL(k)(ζ

G $ ζG)k +
9

25
gNL(k)(ζ

G $ ζG $ ζG)k + · · · . (3.1)

As we will discuss in Sec. 4, this result applies for example to the curvaton scenario and modulated
reheating in the limit where the inflaton perturbations are negligible. We therefore call all the models
where the curvature perturbation can be expressed in the form (3.1) as general single field models.

According to Eqs. (2.13) and (2.14), the non-linearity parameters fNL(k) and gNL(k) are now
given by

fNL(k) =
5

6

N ′′

N ′2

(

1 + nfNL ln
k

kp

)

, (3.2)

gNL(k) =
25

54

N ′′′

N ′3

(

1 + ngNL ln
k

kp

)

, (3.3)

where the primes denote derivatives with respect to σ and nfNL = nf,σσ, ngNL = ng,σσσ . Using the
explicit expressions (A.7) and (A.8) in the Appendix A, we obtain

nfNL =
N ′

N ′′

[√
2εσ(4εσ − 3ησσ) +

V ′′′

3H2

]

, (3.4)

ngNL = 3
N ′′2

N ′′′N ′
nfNL −

N ′

N ′′′

[

24ε2σ − 24εσησσ + 3η2σσ +
4
√
2εσ V ′′′

3H2
−

V ′′′′

3H2

]

. (3.5)

The same results can of course be directly obtained from Eqs. (2.24) and (2.34). If σ is an isocurvature
field during inflation, εσ = 0 in the above expressions.

For the general single field case Eq. (2.31) further yields

τNL(k) =

(

6fNL(k)

5

)2

, (3.6)

up to scale-independent slow roll corrections. Therefore, the scale-dependencies of τNL and fNL are
related by

nτNL = 2nfNL . (3.7)

This simple consistency relation is characteristic for general single field models. In multiple field
models, the relation (3.6) is in general violated and consequently the result (3.7) is no longer true.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+
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– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
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Na(tf , tk) δφ
a

�k
(tk)+

1

2
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ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
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– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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from the local form due to the presence of multiple fields, similarly to what we discussed in the previous
section.

The results (2.33) and (2.34) hold not only for the special case of a square, but for any variations
where all the sides are scaled by the same constant factor, ki → αki. These variations preserve the
shape of the momentum space figure and change only its overall scale. We will prove this result in Sec.
5 where we also discuss generic variations that simultaneously change both the scale and the shape.

Having presenting our formalism and the general results, we will discuss in the next two sections
applications to specific cases.

3. General single field case

We start by discussing models where the primordial curvature perturbation effectively arises from a
single scalar field, which does not need to be the inflaton and we call σ. In this case, the functions
fσσ(k) and gσσσ(k) appearing in the expansion of ζ, Eq. (2.16), are up to numerical factors equal
to fNL(k) and gNL(k), evaluated for the equilateral configurations. This can be seen directly from
Eqs. (2.23) and (2.32). We can therefore rewrite Eq. (2.16) as

ζk = ζGk +
3

5
fNL(k)(ζ

G $ ζG)k +
9

25
gNL(k)(ζ

G $ ζG $ ζG)k + · · · . (3.1)

As we will discuss in Sec. 4, this result applies for example to the curvaton scenario and modulated
reheating in the limit where the inflaton perturbations are negligible. We therefore call all the models
where the curvature perturbation can be expressed in the form (3.1) as general single field models.

According to Eqs. (2.13) and (2.14), the non-linearity parameters fNL(k) and gNL(k) are now
given by

fNL(k) =
5

6

N ′′

N ′2

(

1 + nfNL ln
k

kp

)

, (3.2)

gNL(k) =
25

54

N ′′′

N ′3

(

1 + ngNL ln
k

kp

)

, (3.3)

where the primes denote derivatives with respect to σ and nfNL = nf,σσ, ngNL = ng,σσσ . Using the
explicit expressions (A.7) and (A.8) in the Appendix A, we obtain

nfNL =
N ′

N ′′

[√
2εσ(4εσ − 3ησσ) +

V ′′′

3H2

]

, (3.4)

ngNL = 3
N ′′2

N ′′′N ′
nfNL −

N ′

N ′′′

[

24ε2σ − 24εσησσ + 3η2σσ +
4
√
2εσ V ′′′

3H2
−

V ′′′′

3H2

]

. (3.5)

The same results can of course be directly obtained from Eqs. (2.24) and (2.34). If σ is an isocurvature
field during inflation, εσ = 0 in the above expressions.

For the general single field case Eq. (2.31) further yields

τNL(k) =

(

6fNL(k)

5

)2

, (3.6)

up to scale-independent slow roll corrections. Therefore, the scale-dependencies of τNL and fNL are
related by

nτNL = 2nfNL . (3.7)

This simple consistency relation is characteristic for general single field models. In multiple field
models, the relation (3.6) is in general violated and consequently the result (3.7) is no longer true.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields. At superhori-
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time of horizon exit: k = a(tk)H(tk)tf after inflation ends
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– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =
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NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2

�

ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
�
�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2

�

ab

Nab(tf , tk)
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δφa(tk) � δφ

b(tk)
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�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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from the local form due to the presence of multiple fields, similarly to what we discussed in the previous
section.

The results (2.33) and (2.34) hold not only for the special case of a square, but for any variations
where all the sides are scaled by the same constant factor, ki → αki. These variations preserve the
shape of the momentum space figure and change only its overall scale. We will prove this result in Sec.
5 where we also discuss generic variations that simultaneously change both the scale and the shape.

Having presenting our formalism and the general results, we will discuss in the next two sections
applications to specific cases.

3. General single field case

We start by discussing models where the primordial curvature perturbation effectively arises from a
single scalar field, which does not need to be the inflaton and we call σ. In this case, the functions
fσσ(k) and gσσσ(k) appearing in the expansion of ζ, Eq. (2.16), are up to numerical factors equal
to fNL(k) and gNL(k), evaluated for the equilateral configurations. This can be seen directly from
Eqs. (2.23) and (2.32). We can therefore rewrite Eq. (2.16) as

ζk = ζGk +
3

5
fNL(k)(ζ

G $ ζG)k +
9

25
gNL(k)(ζ

G $ ζG $ ζG)k + · · · . (3.1)

As we will discuss in Sec. 4, this result applies for example to the curvaton scenario and modulated
reheating in the limit where the inflaton perturbations are negligible. We therefore call all the models
where the curvature perturbation can be expressed in the form (3.1) as general single field models.

According to Eqs. (2.13) and (2.14), the non-linearity parameters fNL(k) and gNL(k) are now
given by

fNL(k) =
5

6

N ′′

N ′2

(

1 + nfNL ln
k

kp

)

, (3.2)

gNL(k) =
25

54

N ′′′

N ′3

(

1 + ngNL ln
k

kp

)

, (3.3)

where the primes denote derivatives with respect to σ and nfNL = nf,σσ, ngNL = ng,σσσ . Using the
explicit expressions (A.7) and (A.8) in the Appendix A, we obtain

nfNL =
N ′

N ′′

[√
2εσ(4εσ − 3ησσ) +

V ′′′

3H2

]

, (3.4)

ngNL = 3
N ′′2

N ′′′N ′
nfNL −

N ′

N ′′′

[

24ε2σ − 24εσησσ + 3η2σσ +
4
√
2εσ V ′′′

3H2
−

V ′′′′

3H2

]

. (3.5)

The same results can of course be directly obtained from Eqs. (2.24) and (2.34). If σ is an isocurvature
field during inflation, εσ = 0 in the above expressions.

For the general single field case Eq. (2.31) further yields

τNL(k) =

(

6fNL(k)

5

)2

, (3.6)

up to scale-independent slow roll corrections. Therefore, the scale-dependencies of τNL and fNL are
related by

nτNL = 2nfNL . (3.7)

This simple consistency relation is characteristic for general single field models. In multiple field
models, the relation (3.6) is in general violated and consequently the result (3.7) is no longer true.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit
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– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =
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c
N 2
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These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
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Na(tf , tk) δφ
a

�k
(tk)+

1

2
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ab

Nab(tf , tk)
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– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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Local non-Gaussianity

• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.

[Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields.

At superhorizon scales →
time of horizon exit: k = a(tk)H(tk) tf after inflation ends

Derivatives of number of e-foldings: depends on background evolution

Scalar fluctuations at horizon exit

ζ�k(tf) =
�

a

Na(tf , tk) δφ
a

�k
(tk)+

1

2

�

ab

Nab(tf , tk)
�
δφa(tk) � δφ

b(tk)
�
�k

– It tells how perturbations classically evolve after horizon crossing.

– Assume δφa are Gaussian at horizon exit: non-Gaussianity
develops at superhorizon scales.

Then [Lyth-Rodriguez]

fNL =

�
ab

NabNaNb�
c
N 2

c

These quantities are explicitly calculable: depend on homogeneous

cosmological evolution.

This method apply to large class of models.

Assume slow-roll at horizon exit: the scale dependence nfNL can then

be derived by the dependence of Na on tk at leading order in slow-roll.
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• Local Ansatz: assume that ζ is combination of Gaussian quantities:

(cut and paste 3.1)

Then it’s particularly easy to extract connected n-point function.

• This Ansatz fits well with the results of δN -formalism.
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Results
Consider a set-up in which the potential is W (φ, σ) = U(φ) + V (σ) (φ is inflaton)

copy 4.3

Important point:
presence of σ, characterized by non-G, isocurvature during inflation.

• If both φ and σ contribute to Pζ , we’ve mixed scenario.

• Here focus on single source limit: only σ contributes (e.g. curvaton)

Then, we get (vary all the k’s by the same amount)

fNL =
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fσ gNL =
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9
gσ
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rT
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���

3H2
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2f 2
NL
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• Offer opportunities to test cubic (and quartic) self-interactions
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4. Two field models of inflation

After considering single field models, in this section we discuss some scenarios in which more than
one field can play an important role in the inflationary process. We focus on a class of models that
contains the most important examples of inflationary set-ups characterized by large non-Gaussianity.

Many models of inflation that generate sizeable non-Gaussianity are characterized by the presence
of a field σ, with significant non-Gaussian perturbations, that is isocurvature during inflation. The
inflaton field φ also has its own perturbations, which for convenience can be considered as Gaussian.
When the inflaton perturbations provide non-negligible contributions to the curvature fluctuation
spectrum, the scenario is called a mixed scenario [39, 40, 41, 42]. In order to generate large non-
Gaussianity by means of the field σ, it is required that σ̇ ! φ̇, and hence εσ ! εφ [38]. From this
relation, it follows that the trajectory in field space while observable modes exit the horizon is nearly
straight. Therefore it is a good approximation to treat the fields as uncorrelated [50]. We also make
the common assumption that the potential is separable,

W (σ,φ) = U(φ) + V (σ) . (4.1)

Hence, the only potentially non-negligible slow roll parameters in such a scenario are the following

εH = εφ = −
Ḣ

H2
, ηφ =

U ′′

3H2
, ησ =

V ′′

3H2
, ξ2φ =

U ′′′U ′

9H4
, ξ2σ =

V ′′′U ′

9H4
. (4.2)

In this case, the curvature perturbation reads2

ζ(k) = ζG,φ
k + ζG,σ

k + fσ(k)
(

ζG,σ ' ζG,σ
)

k
+ gσ(k)(ζ

G,σ ' ζG,σ ' ζG,σ)k . (4.3)

Although the assumed form of ζ is simplified, in practice the vast majority of models in the literature,
characterized by large quasi-local non-Gaussianity, satisfy the above Ansatz to a good enough accuracy
for observational purposes. For this reason we will limit our attention to models with curvature
perturbation satisfying Eq. (4.3) in this section.

In the limit that fσ and gσ are independent of k, we recover the multivariate local model [14]. In
the case that ζG,φ = 0 we have the general single field model we have analyzed in section 3, but here
we assume this field was an isocurvature mode during horizon crossing. We will consider these two
cases in more detail later in this section.

The power spectrum is given by

Pζ(k) = Pφ(k) + Pσ(k) = Pφ(k)(1− wσ(k))
−1 , (4.4)

where we have introduced the ratio

wσ(k) =
Pσ

Pζ
. (4.5)

Note that neglecting all the slow-roll corrections, and hence also the scale dependence, wσ = N2
σ/(N

2
φ+

N2
σ). To lowest order in slow roll, the spectral index nζ − 1 and tensor-to-scalar ratio rT satisfy the

2We have used a simplified notation for this section compared to the rest of the paper. Since all cross terms such
as Pφσ are negligibly small in this scenario we use only a single index φ or σ where appropriate, e.g. for ησ ≡ ησσ and
gσ ≡ gσσσ.
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When the inflaton perturbations provide non-negligible contributions to the curvature fluctuation
spectrum, the scenario is called a mixed scenario [39, 40, 41, 42]. In order to generate large non-
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)
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+ gσ(k)(ζ

G,σ ' ζG,σ ' ζG,σ)k . (4.3)

Although the assumed form of ζ is simplified, in practice the vast majority of models in the literature,
characterized by large quasi-local non-Gaussianity, satisfy the above Ansatz to a good enough accuracy
for observational purposes. For this reason we will limit our attention to models with curvature
perturbation satisfying Eq. (4.3) in this section.

In the limit that fσ and gσ are independent of k, we recover the multivariate local model [14]. In
the case that ζG,φ = 0 we have the general single field model we have analyzed in section 3, but here
we assume this field was an isocurvature mode during horizon crossing. We will consider these two
cases in more detail later in this section.

The power spectrum is given by

Pζ(k) = Pφ(k) + Pσ(k) = Pφ(k)(1− wσ(k))
−1 , (4.4)

where we have introduced the ratio

wσ(k) =
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as Pφσ are negligibly small in this scenario we use only a single index φ or σ where appropriate, e.g. for ησ ≡ ησσ and
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In the limit that fσ and gσ are independent of k, we recover the multivariate local model [14]. In
the case that ζG,φ = 0 we have the general single field model we have analyzed in section 3, but here
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4. Two field models of inflation

After considering single field models, in this section we discuss some scenarios in which more than
one field can play an important role in the inflationary process. We focus on a class of models that
contains the most important examples of inflationary set-ups characterized by large non-Gaussianity.

Many models of inflation that generate sizeable non-Gaussianity are characterized by the presence
of a field σ, with significant non-Gaussian perturbations, that is isocurvature during inflation. The
inflaton field φ also has its own perturbations, which for convenience can be considered as Gaussian.
When the inflaton perturbations provide non-negligible contributions to the curvature fluctuation
spectrum, the scenario is called a mixed scenario [39, 40, 41, 42]. In order to generate large non-
Gaussianity by means of the field σ, it is required that σ̇ ! φ̇, and hence εσ ! εφ [38]. From this
relation, it follows that the trajectory in field space while observable modes exit the horizon is nearly
straight. Therefore it is a good approximation to treat the fields as uncorrelated [50]. We also make
the common assumption that the potential is separable,

W (σ,φ) = U(φ) + V (σ) . (4.1)

Hence, the only potentially non-negligible slow roll parameters in such a scenario are the following

εH = εφ = −
Ḣ

H2
, ηφ =

U ′′

3H2
, ησ =

V ′′

3H2
, ξ2φ =

U ′′′U ′

9H4
, ξ2σ =

V ′′′U ′

9H4
. (4.2)

In this case, the curvature perturbation reads2

ζ(k) = ζG,φ
k + ζG,σ

k + fσ(k)
(

ζG,σ ' ζG,σ
)

k
+ gσ(k)(ζ

G,σ ' ζG,σ ' ζG,σ)k . (4.3)

Although the assumed form of ζ is simplified, in practice the vast majority of models in the literature,
characterized by large quasi-local non-Gaussianity, satisfy the above Ansatz to a good enough accuracy
for observational purposes. For this reason we will limit our attention to models with curvature
perturbation satisfying Eq. (4.3) in this section.

In the limit that fσ and gσ are independent of k, we recover the multivariate local model [14]. In
the case that ζG,φ = 0 we have the general single field model we have analyzed in section 3, but here
we assume this field was an isocurvature mode during horizon crossing. We will consider these two
cases in more detail later in this section.

The power spectrum is given by

Pζ(k) = Pφ(k) + Pσ(k) = Pφ(k)(1− wσ(k))
−1 , (4.4)

where we have introduced the ratio

wσ(k) =
Pσ

Pζ
. (4.5)

Note that neglecting all the slow-roll corrections, and hence also the scale dependence, wσ = N2
σ/(N

2
φ+

N2
σ). To lowest order in slow roll, the spectral index nζ − 1 and tensor-to-scalar ratio rT satisfy the

2We have used a simplified notation for this section compared to the rest of the paper. Since all cross terms such
as Pφσ are negligibly small in this scenario we use only a single index φ or σ where appropriate, e.g. for ησ ≡ ησσ and
gσ ≡ gσσσ.
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Concrete scenarios

Curvaton:
During radiation era σ-fluctuations converted into adiabatic curvature fluctuations

• In the pure curvaton limit, resulting observables depend on curvaton potential

and relative energy density at decay

• For quartic potential V (σ) = m2

2 σ2 + λσ4, we found nfNL ∝ V
��
/H

2 ∼ 10−2

• More general potentials need numerical treatment [Byrnes et al]

Modulated reheating:
σ-fluctuations modulate decay rate of inflaton into radiation

• Results depend on efficiency of tranfer, functional dependence of decay rate

Γ(σ), modulaton field potential V (σ)

• Choose for definiteness V (σ) = λ
4! σ

4.

Then [Suyama et al, Ichikawa et al]

fNL = 5

�
1− ΓΓσσ

Γ2
σ

�
gNL =

50

3

�
2− 3

ΓΓσσ

Γ2
σ

+
Γ2Γσσσ

Γ3
σ

�

while for the running

nfNL � 0.1λ
3
4

fNLP
1
2
ζ

∼ 600λ3/4

fNL
ngNL � 2f 2

NL

gNL
nfNL+4×10

−3 λ

gNLPζ
∼ 106 λ

gNL

One can get nfNL, ngNL ∼ 0.1: valuable model!

• Worth exploring in string set-ups: calculable potentials [Cicoli et al]
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Primordial fluctuations from loops!?

• With judicious choice of parameters (fine-tuning, symmetries) ζ is

[Boubekeur-Lyth, Suyama-Takahashi]

ζ = ζφ + ζ2σ

with φ inflaton, σ responsible for generating fluctuations

• Loops provide dominant contributions to inflationary observables:

fNL ∼
P3

ζσ

P2
ζ

ln kL

apply sharp cut-off to integrals from convolutions; choose L ∼ 1/H

[Kumar et al]

nfNL ∼ 1

ln kL
∼ 0.2

Conceptually simple way to get large scale dependent non-Gaussianity!

• Are these loop contributions real?

– Cumulative effect of long wavelength modes, leaving the horizon earlier
than scale k, that modify the background

⇒ See [Giddings-Sloth, Gertsenlauer et al] for systematic treatment of logs
contributions, taking into account also tensor contributions

– These are (at least partially) gauge effects: might get reduced when when
more careful treatment is applied [Urakawa, Tanaka]

• To do: Clarify these issues in the multiple field case
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Shape dependence
Suppose now to vary independently the momenta: how does fNL change?

• For single field source (as pure curvaton or modulated reheating)

fNL = f p
NL

k
3+nfNL
1 + k

3+nfNL
2 + k

3+nfNL
3

k31 + k32 + k33
Suppose to change size of only one momentum

• Not of factorizable form fNL ∝ (k1k2k3)nfNL
/3

used by [Sefusatti et al] to get

forecasts.

Nevertheless the bispectrum is combination of product separable terms copy
5.4

• In two-field inflation, different functional form: [Huterer et al]
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We start by studying these issues for the parameter fNL, generalizing the arguments developed in
Sec. 2.2, and using the same quantities introduced there. Expanding Eq. (2.22), around a pivot scale
kp using Eq. (2.13), we obtain

fNL(k1, k2, k3) =
∑

ab

fab
NL

(

1 +
k33

(

nmulti,a ln
k1k2

k2
p

+ nf,ab ln
k3

kp

)

+ 2perms

k31 + k32 + k33

)

. (5.1)

As in the previous sections, the result is given to first order in ln(ki/kp) and both the scale-dependent
and scale-independent parts are given to leading order in slow roll.

In this approximation, setting for simplicity kp = 1, equation (5.1) can be re-expressed in a more
elegant way as

fNL(k1, k2, k3) =
∑

ab

fab
NL

(k1k2)
nmulti,a k

3+nf,ab

3 + 2perms

k31 + k32 + k33
. (5.2)

Indeed, since both nmulti,a and nf,ab, for each a, b, are proportional to slow-roll parameters, an expan-
sion of Eq. (5.2) at first order in slow-roll provides Eq. (5.1). For general single field models, it reduces
to

fNL(k1, k2, k3) = fp
NL

k
3+nfNL

1 + k
3+nfNL

2 + k
3+nfNL

3

k31 + k32 + k33
, (5.3)

where fp
NL denotes 5fσσ/3 evaluated at the pivot scale and nfNL = nf,σσ. These simple ways of

expressing the parameter fNL are particularly suitable to analyze how the triangle shape affects the
scale dependence. The single field expression (5.3) is equivalent to the analogous result given in Section
3.3 of [14], as one can easily check using Appendix B. Eq. (5.3) however takes a much simpler form
than the result in [14] as a consequence of cancellations that occur when explicitly writing out the
results in terms of slow roll parameters.

We note that, although (5.3) is not of the form fNL ∝ (k1k2k3)nfNL
/3 which [16] used in order

to make observational forecasts for nfNL , the bispectrum is a sum of three simple, product separable
terms

Bζ(k1, k2, k3) ∝ (k1k2)
nζ−4k

nfNL
3 + 2 perms , (5.4)

and that it only depends on one new parameter nfNL . In the multiple field case the bispectrum will
typically depend on more parameters than just nfNL , see (5.2). An exception is the two-field local
model discussed in Sec. 4.2, in which case (we also use Eq. (4.12))

Bζ(k1, k2, k3) ∝ (k1k2)
nζ+(nfNL

/2)−4 + 2 perms . (5.5)

Notice that it therefore follows from (5.4) and (5.5) that models with the same fNL and nfNL can
have different bispectral shapes which generalise in different ways the local shape. It is possible that
observations may distinguish between these shapes and that we could therefore learn whether nfNL

arises due to single or multi-field effects (or a combination of the two)4.
In Sec. 2, we limited our considerations to the scale dependence of fNL for equilateral triangles.

On the other hand, by means of Eq. (5.2) one can observe that, considering a common rescaling for
all the three vectors, say ki → αki, our previous results remains valid regardless of the triangle shape.
Namely,

∂ ln fNL(αk1,αk2,αk3)

∂ lnα

∣

∣

∣

α=1
=

∑

ab

fab
NL (2nmulti,a + nf,ab) . (5.6)

4CB thanks Sarah Shandera for pointing this out.
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Summary

• I presented a new approach, based on δN , to analyse scale-dep of local nonG.
If non-G is large, its scale dependence might be detectable with Planck

• Parameters controlling scale-dep of non-Gaussianity depend on properties of the
mechanism that generate primordial fluctuations (third and fourth derivatives
of the potential) that can’t be probed by other means

• Results usually depend by just one new parameter (e.g. nfNL for fNL)

• I applied general results to concrete models: modulated reheating with quartic
potential for the modulon leads to potentially observable non-Gaussianity.

Outlook

• Can loop effects lead to large nfNL in two-field case? Still to get convinced!

• Generalize the formulae to a more general set-up, beyond slow-roll

• Apply a generalized Ansatz for scale dep fNL to simulations of LSS.
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Inflation

Inflation solves basic problems of Standard Big-Bang Cosmology

� Short period of quasi-exponential expansion, driven by
dynamics of a scalar field: universe size increases of e60 factor

It allows to understand CMB and LSS, providing a mechanism to
generate
primordial density fluctuations from scalar perturbations.

scalar fluctuations ⇒ metric fluctuations ⇒ density fluctuations of
baryon-photon plasma
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SLIDE 1

Predictions
I’m Gianmassimo Tasinato, I’m going to give a general talk about inflation and

primordial non-Gaussianity. In the first part of the seminar I will give a general

overview of primordial cosmological perturbations from inflation. Then I will

pass to present a couple of works of mine in this subject.

SLIDE 2

The inflationary paradigm solves the basic problems of standard BB cosmology,

namely horizon, flatness and monopole problems. In its simplest realization, it

consists of a short period of quasi-exponential expansion of the universe, driven

by the dynamics of a scalar field. In a fraction of second, the size of the Universe

increases of at least e60
times, and this allows to solve these problems.

What makes inflation particularly interesting, however, is the fact it natu-

rally provides a mechanism to generate the primordial fluctuations that seed

the formation of LSS that we observe today in the sky. The fluctuations of the

scalar field that drives inflation, indeed, get converted into metric fluctuations

(that is, fluctuations of the geometry). Metric fluctuations, after inflation ends,

get converted into fluctuations of the energy density produced by the decay of

the inflation field – namely radiation, and later baryon-photon plasma. These

fluctuations get imprinted in the CMB radiation, spectacularly measured in re-

cent years, for example by WMAP satellite. Later, these density fluctuations

seed the LSS of the universe.

SLIDE 3

Assume that the universe, at the homogeneous level, is well described by a metric

of FRW form. Accelerated inflation during inflation requires that the Hubble

parameter is almost a constant. Then the scale factor increases exponentially.

This condition is normally achieved by requiring that two parameters, called

slow-roll parameters � and η are small. These conditions are normally achieved

by requiring that a scalar field slowly rolls on a potential. jump to next slide.
Given these conditions on the homogenous solution, the dynamics of field

fluctuations can be determined. Inflation predicts the generation of a nearly

scale-invariant, and nearly Gaussian spectrum of curvature fluctuations. At

the same time, it also predicts the production of a background of gravitational

waves, with amplitude smaller than the one of scalar curvature perturbations.

The first predictions has been confirmed by observations of CMB; if we’re lucky

(that is if the amplitude of tensor fluctuations isn’t too small) also the second

prediction might be confirmed in the next few years.

SLIDE 4

The dynamics of a scalar coupled to gravity is ruled by an action. To determine

homogeneous configurations, focus, as i said before, on FRW metric. Then the

1
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Non-Gaussianity

How to get information about primordial non-Gaussianity?

� Connected n-point functions (n ≥ 3) of curvature perturbation ζ .

Why primordial non-Gaussianity has received so much attention?

� Because offers new opportunities to distinguish models of inflation

� Because Planck satellite will improve present bounds of a factor 5

– If no non-Gaussianity: simplest models of inflation favored

– If non-Gaussianity detected, other options have to be considered

� If Planck detects non-Gaussianity, the task is to extract as much
information as possible from data.

– Subject at interface between theory and observations
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Scale dependence of inflationary observables

• Two point function:

Power spectrum: �ζ�k1ζ�k2� = (2π)3 δ3(�k1 + �k2)
2π2P(k1)

k
3
1

Spectral index: nζ − 1 =
�
d lnPζ
d ln k

�

|k=aH

= 0.963± 0.012

• Three point function:

Bispectrum: �ζ�k1ζ�k2ζ�k3� = (2π)3 δ3(�k1 + �k2 + �k3)B(k1, k2, k3)

⇒
B(k1, k2, k3) = 6

5fNL(k1, k2, k3) [P (k1)P (k2) + perms]

Scale dependence: nfNL = d ln |fNL|/d ln k

– Vary all momenta by same amount: the result is independent on
the shape of the triangle

– If local fNL ∼ 50, then nfNL ∼ 0.1 might be detectable with Planck
[Sefusatti et al]

– nfNL at lower bound might be enough to get information on
mechanism generating primordial fluctuations.

Larger values might be needed in the future to reconcile LSS with
CMB measurements.

• Four point function: [Byrnes-Sasaki-Wands]

(cut and paste from our paper)

Analogous definitions for ngNL and nτNL; no available forecasts
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