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Aims of this talk

e Theoretically analyse scale-dependence of local non-Gaussianity

> Tools to further characterize properties of mechanism
responsible for generating fluctuations

> Examples in concrete models

> Improve ansétze to apply to simulations/observations



Scale dependence of inflationary observables

e Three point function:
Bispectrum: ((: G, ) = (2m)2 63(ky + Ky + ks) B(ky, ko, k)
—>  B(ky, ko, k3) = ngLUﬁ,kQ,kg) [P(k1)P(ky) + perms]
Scale dependence: ny,, = dn|fyr|/dInk

— Vary all momenta by same amount: the result is independent on the shape of the triangle

— Iflocal fn1, ~ 50, then ny, ~ 0.1 might be detectable with Planck [Sefusatti et al]

~ M at lower bound might be _en_ol}gh to get information on mechanism generating primordial fluctuations.

Larger values might be needed in the future to reconcile LSS with CMB measurements.



Scale dependence of inflationary observables

e Four point function: Trispectrum [Byrnes-Sasaki-Wands]

4
(Ci Cko Ckes Ckes) = (27T)35(Z k;) | ™~L (K1, k2, ks, ka, k13) ( P(k1)P(k2)P (k1 + ks|) + 11 perm )

1=1

54
+ 57 8L (K1, b, ks, ka) (P (k1) P(k2)P(ks) + 3perm) |

Analogous definitions for ngy, = dIn|gyL|/dInk and nyy = dIn|7n|/dIn k.

No available forecasts



Local non-Gaussianity

e Local Ansatz: assume that ( is combination of Gaussian quantities:

9

e = 68+ S A * (Ot srant () * % e+

Then it’s particularly easy to extract connected n-point function.

e This Ansatz fits well with the results of 0 N-formalism. [Starobinsky, Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields. At superhorizon scales -

t ¢ after inflation ends Scalar fluctuations at horizon exit
T 7
C(ty) = ZN (ty,tr) OPH(t)+= ZNab tr,tr) (60 (tr) * 60" (tr))
1 \ l l

time of horizon exit: k = a(tx)H (t)
Derivatives of number of e-foldings:

depends on background evolution

— It tells how perturbations classically evolve after horizon crossing.

— Assume 0¢“ are Gaussian at horizon exit: non-Gaussianity has local form
with C ¢ x Ng 00
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Local non-Gaussianity

e Local Ansatz: assume that ( is combination of Gaussian quantities:

9

Gl = G 2 AL (B)(CE % €O+ e ann (R)(CE #CE Ot -+

Then it’s particularly easy to extract connected n-point function.

e This Ansatz fits well with the results of d/V-formalism. [Starobinsky, Sasaki-Stewart, Sasaki-Tanaka]

Consider a model of inflation with multiple scalar fields. At superhorizon scales -

t ¢ after inflation ends Scalar fluctuations at horizon exit

T /

Coty) = ZNa(tf,tk) 5gb%(tk)-|—%ZNab<tf7tk) (00" (ti) * 6" (t1,)) -
a i ab i/ i i

time of horizon exit: k = a(tx)H (t)
Derivatives of number of e-foldings:

depends on background evolution

Then [Lyth-Rodriguez] These quantities are explicitly calculable: depend on homogeneous
cosmological evolution.
f Zab N, ab N, a N, b This method apply to large class of models.
A (ZC NCQ)Q Assume slow-roll at horizon exit: the scale dependence ny, can then

be derived by the dependence of N, on t; at leading order in slow-roll.



Results

Consider a set-up in which the potential is W (¢,0) = U(¢) + V(o) (¢ is inflaton)
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INL = gfa gNL = ?ga
5 \/ﬁ V" 2 fiL I
n ~ n = n
JNL 6 fNL S 3 H2 gNL ONL JNL 54 gNL 677'2 PC

e Offer opportunities to test cubic (and quartic) self-interactions
not probed by properties P



Concrete scenarios

Curvaton:
During radiation era o-fluctuations converted into adiabatic curvature fluctuations

e In the pure curvaton limit, resulting observables depend on curvaton potential
and relative energy density at decay

e For quartic potential V(o) = %202 + Ao, we found np, oc V'/H? ~ 1072

e More general potentials need numerical treatment - [Byrnes, Takahashi, Enqvist]



Concrete scenarios

Modulated reheating:

o-fluctuations modulate decay rate of inflaton into radiation

e Results depend on efficiency of tranfer, functional dependence of decay rate
['(0), modulaton field potential V (o)

e Choose for definiteness V(o) = %04. Then [Suyama et al, Ichikawa et al]

Ao = 5(1 Moy _ 50/, 3FFUU+F2F0M
NL = T2 gNL = 3 r2 r3

g

while for the running

1A A3/ 23 A 100N
N = ° T o Mgy, = @anL—HLXlO_B ~ °
fNUPE /L 9N gnuPe g

One can get nyg, , ngy, ~ 0.1: valuable model!



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

2
G = G+ G
with ¢ inflaton, o responsible for generating fluctuations

e Loops give dominant contributions to non-G:

3

f AW
NL ™~ 5o 1
Pe

apply sharp cut-off to integrals from convolutions; choose L ~ 1/H  [Kumar et al]
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Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

3

f AW
NL ™~ 759 11
P

apply sharp cut-off to integrals from convolutions; choose L ~ 1/H  [Kumar et al]

1
Mhe YR

~ 0.2



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

apply sharp cut-off to integrals from convolutions; choose L ~ 1/H  [Kumar et al]

1
Mhe YR

~ 0.2



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

[Kumar et al]

anL ~ n il ~ 0.2



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

anL ~ n il ~ 0.2



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

1
Mhe YL

~ (.2



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

1
Mhe YL

~ (.2

e Are these loop contributions real?



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

1

™ g 0

e Are these loop contributions real?

— Cumulative effect of long wavelength modes, leaving the horizon earlier
than scale k£, that modify the background



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

1
Mhe YL

~ (.2

e Are these loop contributions real?

— Cumulative effect of long wavelength modes, leaving the horizon earlier
than scale k£, that modify the background

= See |Giddings-Sloth, Gertsenlauer-Hebecker-GT] for systematic treat-
ment of logs contributions, taking into account also tensor modes



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

1

™ g 0

e Are these loop contributions real?

— Cumulative effect of long wavelength modes, leaving the horizon earlier
than scale k£, that modify the background

= See |Giddings-Sloth, Gertsenlauer-Hebecker-GT] for systematic treat-
ment of logs contributions, taking into account also tensor modes

— These are gauge effects: might get reduced when more careful treatment is
applied |Urakawa, Tanakal



Concrete scenarios

Primordial fluctuations from loops!?

e With judicious choice of parameters (fine-tuning, symmetries) ¢ is [Boubekeur-Lyth, Suyama-Takahashi]

=G+ ¢

with ¢ inflaton, o responsible for generating fluctuations

1

™ g 0

e Are these loop contributions real?

— Cumulative effect of long wavelength modes, leaving the horizon earlier
than scale k£, that modify the background

= See |Giddings-Sloth, Gertsenlauer-Hebecker-GT] for systematic treat-
ment of logs contributions, taking into account also tensor modes

— These are gauge effects: might get reduced when more careful treatment is
applied |Urakawa, Tanakal

e To do: Clarify these issues in the multiple field case



Shape dependence

Suppose now to vary independently the momenta: how does fnr, change?

e For single field source (as pure curvaton or modulated reheating)

k3—|-anL _|_ k3—|-anL _|_ k?)—l—anL

__£Dp 1 2 3
I = I B+ k3 + k3

e Not of factorizable form fny, (klkgkg)”fNL/ > used by [Sefusatti et al] to get forecasts.

Nevertheless the bispectrum is combination of product separable terms

Be(k1, ko, k3) oc (k1ka)™ " *ka ™ + 2 perms

e In two-field inflation, different functional form: [Huterer et al



Summary

e | presented a new approach, based on 0N, to analyse scale-dep of local nonG.
If non-G is large, its scale dependence might be detectable with Planck

e Parameters controlling scale-dep of non-Gaussianity depend on properties of the
mechanism that generate primordial fluctuations (third and fourth derivatives
of the potential) that can’t be probed by other means

e Results usually depend by just one new parameter (e.g. ny, for fnr)

e | applied general results to concrete models: modulated reheating with quartic
potential for the modulon leads to potentially observable non-Gaussianity.

Outlook

e Can loop effects lead to large ny,, in two-field case? Still to get convinced!

e Generalize the formulae to a more general set-up, beyond slow-roll

e Apply a generalized Ansatz for scale dep fni, to simulations of LSS.



Inflation

Inflation solves basic problems of Standard Big-Bang Cosmology

> Short period of quasi-exponential expansion, driven by dynamics of a scalar field

It allows to understand CMB and LSS, providing a mechanism to generate
primordial density fluctuations from scalar perturbations.

scalar metric i density fluctuations of
fluctuations ; fluctuations baryon-photon plasma

Predictions

> Nearly scale invariant spectrum of curvature fluctuations with almost Gaussian distribution

> Small contribution of gravitational waves



Non-Gaussianity

How to get information about primordial non-Gaussianity?

> Connected n-point functions (n > 3) of curvature perturbation (.

Why primordial non-Gaussianity has received so much attention?

> Because offers new opportunities to distinguish models of inflation

> Because Planck satellite will improve present bounds of a factor 5

— It no non-Gaussianity: simplest models of inflation favored

— If non-Gaussianity detected, other options have to be considered

> If Planck detects non-Gaussianity, the task is to extract as much
information as possible from data.

— dubject at interface between theory and observations



Scale dependence of inflationary observables

e T'wo point function:

Power spectrum: (( ) = (21)* 83 (k1 + ko) P(ky) Pk = 2m? P (k1)

dlnpc
dlnk

Spectral index: ng — 1 = ( )Ik y 0.963 4= 0.012



