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A single parameter (A) can fit the data perfectly;
and 1t 1s already part of the theory!




The Story of
A

Why 1s got that tiny value?

This problem lead to many interesting alternatives
(predictions/understandings):

Such as: quintessence, k-essence, inhomogeneous cosmologies,
chameleons, quintom, phantom fields, frustrated domain walls,
string landscape, LTB, f(R), DGP, cosmological casimir effect,
chaplygin gas, holographic dark energy, XCDM, quartessence...



Early universe

We know 1nflationary models fit the data, but also
have certain problems...

Use same philosophy to study alternatives to
inflation...

Consider, 1n particular, bouncing cosmologies



Bouncing
models

Big Crunch/

Contracting Big Bang
h
- Expanding
AVAV, phase

Two flavours: singular & non-singular



Bouncing
models

e Consider singular models

« Assume spectrum of scale invariant perturbations
* Need to understand how these perturbations go
through the singularity

What do we know?
* GR breaks down near the singularity

* Quantum gravity should give an answer
(e.g. string/M theory)



Toy
model

e Cannot solve the problem in general

Study a simple model
3
ds® = a?(t) | —dt* + ) (da')?
=

a(t) = [t]'/?



Toy
model

Higher dimensional motivation

3
5d ds® = —dt* + t*df> + ) (dx*)?
=
Milne Universe
KK reduction
\
4d ds® =

3
t | —dt® + ) (da')?
=1



Toy
model

Higher dimensional motivation

3
ds® = —dt* + t*df> + ) (dx*)?
=1

Milne Universe

If 6 ¢ (—oo, OO) flat space in unusual coordinates

If 0 € [0,27) there indeed a conical singularity



4d Obsever

ds? = |t|(—dt® + (dF)?)

Relevant for
Ekpyrotic/Cyclic
(Khoury et al)

ds® = —dt® + t°d6> + ) (dz')?



Scalar field in 5d (near singularity)
ds® = —dt” + t*d6” + » (dz')
Get Bessel equation, and in the long-wavelength limit
6(t) = A+ Bln(t)

Diverges at t=0

However, can match across using analytic
continuation of Bessel functions (Tolley & Turok, 2006)



String/M-theory
analysis

Can we do better with string/M-theory?

Heterotic string effective action

5 /dmx\/—ge_%5 (R + 4(0¢)* + O(a’))
(Gross & Sloan, 1987)

/

O(O/) = %(RabcdRade = 4RabRab + Rz)‘l‘

Gauss-Bonnet



String/M-theory

analysis
Backgroune GN & Turok, 2007
ot =alt) caall O(t) = ¢o(t) + ' P1(t) + ...
0" order ag(t) =t ¢o(t) = Aln(t) + B

o' 0/2
ISt, 2™ order az(t) =1 (]_ = 8? Y, (t_6>)

305, Oél2
§(t) = Aln(t) + B - == — O (t—6>

Singularity is reached sooner, so theory breaks down!



String/M-theory
analysis

Are we missing something?

5d Bk i

0-modes

Membranes Strings
(IIA, Het)

Relevant for

= cosmological
perturbations

(Turok, Perry & Steinhardt, 2002) (Include graviton
& dilaton)



Classical
evolution

Solutions are regular across the singularity

H™ ~ [t]

I Va

GN & Turok, 2006



Loop
quantisation

In the case of circular loops, Copeland, GN & Turok, 2010

the Hamiltonian constraint is:

H-— 5 = B 0

Ty — z@t

WRZiaR

]

HY = (82 — 0% +t>R*) ¥ ~ 0

String wave function _ .
U (¢, R) c.f. Harmonic oscillator
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Particle
production

Hermite polynomials

for large [t|: A(t) — et2H B, ~ /(2n+ 1)t

So can send IN vacuum (positive frequency mode) and read
the OUT state in terms harmonic oscillator states.

|‘Ijn>0ut = Z anm|\Ij;7|_f;,> oz /Gnm|qj;7,>
m Particle production:

Bogoliubov coeffs. (Np) =Y |Buml?



Particle
production

XX pR=+0.4

Finite Particle Production
(decays exponentially with occupation number)



Unitary

Unitarity is preserved if: Z .



conclusions

e Classical string (winding membranes) are regular
across a Milne 5d singularity, featuring

- String travels at the speed of light at =0
— Higher oscillation modes resolve the singularity
— Ultralocal behaviour (string bits)

e Circular loops can be quantised and there 1s finite
particle production

e Unitarity 1s preserved

e Can be extended to more complicated singularities
(Kasner metrics, maybe to FRWL and some BH's)



Winding membranes (strings): Nambu-Goto action

S = —/,LQ/dga\/—Det(aAXMaBXNQMN)

Winding membranes

S=—

/

p26o|t

Efective Tension

11d Milne

field independent of: 0

dza\/ —Det (8 X105 X V1)



Two equivalent descriptions

e String living on flat e String living on FRWL
spacetime e

e Tension: (1 = p2bplt| e Fixed tension: p1 = p20olts]

 Tensionless at =0 » Speed of light at =0

e Like harmonic oscillator - e« Better to study classical
with a time-dependent behaviour
frequency (quantum)



DyNamics

Bare in mind...

Quantum corrections:

e String interactions are suppressed (gs = [t/t
e o'-corrections are under control g & Turok

Small perturbations (ripples on the orbifolds) lead to 11d
Kasner backgrounds:

9
ds® = —dt” + |0pt|*"1°d6” + )~ |0ot|*P (da’)?

10 0
,* Zp%, =1= an



Classical
evolution

String breaks into bits!!
Like ultra-locality
iIn BKL analysis

Consider Hamiltonian for winding membrane

Arbitrary Interaction term,
function coupling ~ 1/a/
e |[t>1 o expansion
o |t|<<I 1/a’ expansion

Perry, Steinhardt and Turok, 2004



String
Spectrum

-mover decomposition:

+C>o1

< v v =
: 3 geae
1=—00
: +00 1
x5 Z Sane’
1=—00

i —)2 —)2 . d_1
Constraint Xe=1=X;  » curvesinS
Kibble & Turok, 1982

String's massless bosonic sector: ¢, h,,,, B

spin.__ ) ) 1



String
Spectrum

£t

)ZL — X = :
dilaton

Constraint mode only!

Kibble & Turok, 1982

String's massless bosonic secto M2 B my

spin: 2 1



Circular Antisymmetric
loop 1) tensor's analogue
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Heterotic string

5 /dlozc = (R+ 4(09)* + O(Of'))

(Gross & Sloan, 1987)

Oé,

O(a’) — —(Ra,bcdRade = 4R&bRab = R2)+ terms involving
8 the dilaton

Gauss-Bonnet



g . _ o’ O/Q
1%, 2™ order a (t)—t(l——8t3—0(—t6 ))
#(t) = 2 In(t) - =
e £

Note that a2 (t) = 6%/3




eSingularity is reached sooner

eCorrections become important around



Tensor modes

{5 — a(t)g( — dt? + (655 + h,,;j)d:c”:da:j)
hij (t, f) — eik-mﬁij (t)
hij (t) = h,LOJ (t) £ Od,h,}j (t) -+ .

0" order Bessel's equation. Consider k easd)

h?j (t) — Af,;j —+ Bf,;j lﬂ(t)

,Bi . IZB?: .
1°* 2™ order b A B nl) a6t33 9, (oz j)



Scalar perturbations + gauge choice = tensor perts.
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