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Evidence of cosmic acceleration

Riess & Turner (2004)

Type Ia supernova (SNIa)

The high-z type Ia supernova (SNIa) luminosity-distance relation, large-

scale structures and CMB observations suggest that the expansion rate 

of our universe is currently under acceleration.
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Λ equation of state:

Introduction of cosmological constant Λ
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to explain the late-time acceleration:



The nature of the agent causing the acceleration is

still unknown, and it is one of the fundamental

mysteries in the present day theoretical cosmology.

 dark energy



Many Dark Energy Models



f(R) gravity

Action:

Modified Einstein equations:

Trace:

 Differential equations for dynamics of modified gravity sector 

(We use the Planck unit 

with 8πG ≡ 1 ≡ c)
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Reviews: 

de Felice & Tsujikawa (2010) 
Sotiriou & Faraoni (2010) 

Nojiri & Odinsov (2010) 



Background evolutions

Collective energy density and pressure:

MRm  
MRm ppp 

or



Background evolutions

Hubble parameter: Ricci scalar:

Collective energy density and pressure:

MRm  
MRm ppp 

Energy density and pressure of modified gravity sector: μX and PX

(K=0)

or

Density parameters:



Motivations

Ricci scalar a correction term that drives 

the late-time acceleration

(Hu & Sawicki 2007)

(Starobinsky 2007)

Popular f(R) gravity models

[simple power-law form]

In all models, the second term fDE becomes extremely subdominant 

compared with R in the early radiation dominated era (RDE) so that 

the f(R) gravity effectively goes over into the Einstein gravity.

and so on (Appleby & Battye 2007; Tsujikawa 2008).



Motivations

Ricci scalar a correction term that drives 

the late-time acceleration

Since the quantity F≡df/dR becomes 

extremely close to unity in RDE, 

evolving a differential equation is 

sometimes not numerically feasible.

Popular f(R) gravity models

Li & Barrow (2007)

[simple power-law form]



Our f(R) gravity model

nqRRRf   1)(

exact scaling during 

the radiation and 

matter dominated eras

late time  

acceleration

Double power-law f(R) gravity model:

It is known that the first term R1+ε which is dominant in the early 

epoch allows the density of gravity sector to follow that of dominant 

fluid (scaling evolution). (Amendola et al. 2007; Tsujikawa 2007)

)01,0(  n



Our f(R) gravity model

Adopting the modified form with small positive ε together with 

appropriate initial conditions we can evade the numerical problem.

nqRRRf   1)(

exact scaling during 

the radiation and 

matter dominated eras

late time  

acceleration

Double power-law f(R) gravity model:

)01,0(  n

Considering this scaling evolution, we can investigate the effect of 

early subdominant modified gravity sector on the evolution of 

perturbation in baryon and photon densities.



Our f(R) gravity model

Scalar field analogy:

nqRRRf   1)(

exact scaling during 

the radiation and 

matter dominated eras

late time  

acceleration

Double power-law f(R) gravity model:

)01,0(  n

(Bassett et al. 2008; Park et al. 2009)
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Deriving initial conditions for scaling evolution

In the early era, let us consider a functional form

The gravity of pure power-law form allows scaling evolution in which the density of X-

component follows that of the dominant fluid, and the corresponding potential in the 

Einstein frame is a pure exponential potential.

(positive ε)^



Deriving initial conditions for scaling evolution

Here we put an ansatz that FμX evolves as the dominant ideal fluid with constant 

equation of state (w = pw/μw = δpw/δμw) as

In the early era, let us consider a functional form

We can derive

The gravity of pure power-law form allows scaling evolution in which the density of X-

component follows that of the dominant fluid, and the corresponding potential in the 

Einstein frame is a pure exponential potential.

(positive ε)
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- density parameter of w-fluid 

at the present epoch

The scaling behavior is possible for general constant w value of 

the dominant fluid.  

By specifying the form of f(R)=αR1+ε, we obtain

The density of X-component follows (scales) the dominant 

fluid component even for changing w value; for example, 

from radiation dominated era (w=1/3) to the matter dominated 

era (w=0).
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A system of equations for scalar-type perturbations
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Einstein equations

In gauge-ready form (Bardeen 1988, Hwang 1991)



Perturbed density, pressure, velocity, and anisotropic stress:

Contribution of modified gravity sector (X) to perturbed quantities:



Energy-momentum conservation equations (i=γ,ν,b,c)
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For dynamics of modified gravity sector:

※ Radiation is handled by using the Boltzmann hierarchy equations. 
(Hwang & Noh 2001)



Perturbation equations
We choose the CDM-comoving gauge (CCG) as the temporal gauge 

(hypersurface) condition.

0CDM v 0
(equivalent to synchronous gauge without gauge modes)



Perturbation equations
We choose the CDM-comoving gauge (CCG) as the temporal gauge 

(hypersurface) condition.

0CDM v 0
(equivalent to synchronous gauge without gauge modes)
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k : the comoving wave number



Large-scale limit during early scaling era

Background-related coefficients:



Large-scale limit during early scaling era

In the large-scale limit 
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Background-related coefficients:

the perturbation equations become



Initial conditions of perturbed variables during scaling era

Assuming the form of solution as

we obtain quartic equation for n:



Initial conditions of perturbed variables during scaling era

Assuming the form of solution as

we obtain quartic equation for n:

Solutions obtained by MAPLE:

growing 

mode



where C is the initial amplitude.

Finally we obtain the initial conditions of perturbed variables 

in the CDM-comoving gauge condition,

Similar solutions have been already found by Carloni et al. (2008, PRD) 

in a different gauge condition.



Background 

evolution of our 

gravity models 

For fiducial ΛCDM model, 

we use cosmological 

parameters consistent with 

WMAP 7-year observations 

(WMAP7+BAO+H0).

274.00 M

)0456.0,2284.0( 00  bc

7278.00 

963.0704.0  snh

24.0K,725.2 He0  YT

087.0,04.3  N

nqRRRf   1)(



Background 

evolution of our 

gravity models 

nqRRRf   1)(
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Power spectra of f(R) gravity models for varying ε (with n=-10-7)

SDSS DR7 LRG

WMAP 7-year TT

f(R)/ΛCDM f(R)/ΛCDM

Unlike baryonic matter power spectrum (PS),  the CMB PS is not sensitive to ε.



SDSS DR7 LRG

WMAP 7-year TT

f(R)/ΛCDM f(R)/ΛCDM

The sensitivity of CMB PS to parameter n is weak compared to baryonic matter 

PS.

Power spectra of f(R) gravity models for varying n (with ε=10-7)



Perturbation growth in f(R) gravity models for varying ε (with n=-10-7)

Growth factor deviations 

from ΛCDM are particularly 

significant at small scale.

ΛCDM-motivated mock 

growth factor expected in 

the future X-ray and weak-

lensing observations (1% 

precision; 11 data points 

between z=0-2.

ag b /

Perturbation growth factor:

(normalized to unity at present)
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Perturbation growth factor:

(normalized to unity at present)

Growth factor deviations 

from ΛCDM are noticeable 

at all scales for smaller n.

For all cases, the deviation 

is significant at small scale.

Perturbation growth in f(R) gravity models for varying n (with ε=10-7)



Likelihood distribution of f(R) gravity parameters
We explore the (ε,n)-parameter space to estimate the likelihood using SNIa, 

matter PS, and perturbation growth factor data.

(Other cosmological parameters are fixed with WMAP 7-yr best-fit values.) 

ΛCDM-motivated mock 

growth factor

Data used:

SNIa (Union2)

Amanullah et al. 2010

Reid et al. arXiv:0907.1659v2

SDSS DR7 LRG PS (k<0.1h/Mpc)

(window-convolved)

at small-scale k=0.1 h/Mpc
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Likelihood distribution of f(R) gravity parameters
We explore the (ε,n)-parameter space to estimate the likelihood using SNIa, 

matter PS, and perturbation growth factor data.

(Other cosmological parameters are fixed with WMAP 7-yr best-fit values.) 

f(R) gravity parameters, ε

and n, are very sensitive to 

the growth factor at small 

scales, and are already 

tightly constrained by the 

current measurement of 

galaxy power spectrum.



Summary and Discussion

The value of ε can be more tightly constrained by the solar system test. 

For example, according to the criterion given by Lin, Gu, and Chen 

[arXiv:1009.3488], we expect

Our f(R) gravity parameters are very sensitive to the baryon 

perturbation growth and baryon density power spectrum. Our analysis 

suggests that only the parameter space extremely close to the ΛCDM 

model is allowed. 

We have studied a f(R)-gravity based dark energy model with early 

scaling era (mainly to avoid numerical problem in popular models).

We have presented initial conditions of background and perturbed 

variables during the early scaling evolution regime in the modified 

gravity with a pure power-law form f(R) =R1+ε in the early era. 

.
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