CMB bispectrum generated from primordial magnetic fields

Maresuke Shiraishi (Nagoya Univ.)

collaborators:

Daisuke Nitta, Shuichiro Yokoyama, Kiyotomo Ichiki, Keitaro Takahashi (Nagoya Univ.)

TOC

I. Introduction of the cosmological magnetic fields

- 2. Formulation of CMB bispectrum
- 3. CMB bispectrum induced from primordial magnetic fields

TOC

I. Introduction of the cosmological magnetic fields

- 2. Formulation of CMB bispectrum
- 3. CMB bispectrum induced from primordial magnetic fields

1km

6 10km

1kpc

1pc

1Mpc

size

1km

6 10km

- inflation - phase transition $(t < 10^{-10} sec)$

nucleosynthesis of light elements $(t \sim |sec)$

► H, He recombination $(t \sim 0.4 Myr)$

 \checkmark beginning of galaxy formation

Dresent

coupling between vector field & inflaton, electroweak or QCD phase transition?

 inflation
 phase transition (t < 10⁻¹⁰sec)

nucleosynthesis
 of light elements
 (t ~ I sec)

- H, He recombination (t ~ 0.4Myr)

beginning of galaxy formation

present

Martin & Yokoyama [0711.4304], Bamba & Sasaki [0611701], ...

from abundance of ⁴He, ²H, ⁷Li, ...

2nd order perturbation? Ichiki + [0603631], ...

BIMpc ~ 10⁻²⁰G

amplified by astrophysical processes (dynamo mechanism?)

 $B_{IMpc} \sim O(I\mu G)$

- inflation - phase transition $(t < 10^{-10} sec)$

nucleosynthesis of light elements $(t \sim |sec)$

► H, He recombination $(t \sim 0.4 Myr)$

beginning of galaxy formation

present

Bamba & Sasaki [0611701], ...

from abundance of ⁴He, ²H, ⁷Li, ...

2nd order perturbation? Ichiki + [0603631], ...

from CMB anisotropy

amplified by astrophysical processes (dynamo mechanism?)

 $B_{IMpc} \sim O(I \mu G)$

 $B_{IMpc} \sim 10^{-20}G$

- inflation - phase transition $(t < 10^{-10} sec)$

nucleosynthesis of light elements $(t \sim |sec)$

► H, He recombination $(t \sim 0.4 Myr)$

beginning of galaxy formation

present

from abundance of ⁴He, ²H, ⁷Li, ...

2nd order perturbation? Ichiki + [0603631], ...

 $B_{IMpc} \sim 10^{-20}G$

 $B_{IMpc} \sim O(I \mu G)$

amplified by

astrophysical processes

(dynamo mechanism?)

from CMB anisotropy

CMB fluctuation sourced from primordial magnetic fields (PMFs)

CMB fluctuation sourced from primordial magnetic fields (PMFs)

if PMF exists...

Current bounds on the primordial magnetic field

- using CMB power spectrum,
 - ▶ B_{IMpc} < 5.0nG, n_B < -0.12 (WMAP7+ACBAR+BICEP

+QUAD) : Paoletti + [1005.0148]

Susing CMB + matter power spectrum

▶ B_{IMpc} < 2.98nG, n_B < -0.25 (WMAP5+ACBAR+CBI

+Boomerang+2dFDR) : Yamazaki + [1001.2012]

BIMpc < 6.4nG (CMB+BAO+HST+BBN+SN), < 1.3nG (+SDSS Ly-α) : Shaw + [1006.4242]

 $B_{IMpc} < O(I)nG, n_B \sim -3$ (nearly scale invariant spectrum)

TOC

I. Introduction of the cosmological magnetic fields

- 2. Formulation of CMB bispectrum
- 3. CMB bispectrum induced from primordial magnetic fields

CMB anisotropy

expand with spin-weighted spherical harmonics:

$$a_{X,\ell m}^{(Z)} = 4\pi (-i)^{\ell} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \sum_{\lambda} [\operatorname{sgn}(\lambda)]^{\lambda+x} {}_{-\lambda} Y_{\ell m}^*(\hat{\mathbf{k}}) \xi^{(\lambda)}(\mathbf{k}) \mathcal{T}_{X,\ell}^{(Z)}(k)$$

►Z = S (: scalar), = V (: vector), = T (: tensor)
►X = I (: intensity), = E, B (: polarization)
►x = 0 (: X = I, E), = I (: X = B)

CMB anisotropy

expand with spin-weighted spherical harmonics:

$$a_{X,\ell m}^{(Z)} = 4\pi (-i)^{\ell} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \sum_{\lambda} [\operatorname{sgn}(\lambda)]^{\lambda+x} {}_{-\lambda} Y_{\ell m}^*(\hat{\mathbf{k}}) \underbrace{\xi^{(\lambda)}(\mathbf{k})}_{X,\ell} \mathcal{T}_{X,\ell}^{(Z)}(k)$$

►Z = S (: scalar), = V (: vector), = T (: tensor)
►X = I (: intensity), = E, B (: polarization)
►x = 0 (: X = I, E), = I (: X = B)

primordial perturbation

$$\xi^{(\lambda)}(\mathbf{k}) \equiv \sum_{\ell'm'} \xi^{(\lambda)}_{\ell'm'}(k)_{-\lambda} Y_{\ell'm'}(\hat{k})$$

CMB anisotropy

expand with spin-weighted spherical harmonics:

CMB Bispectrum

CMB Bispectrum

Only when primordial perturbations deviate from Gaussian statistics, F has non zero value.

CMB bispectrum is a good tool for constraining on non Gaussianity!!

(e.g.) the primordial curvature perturbation

from theories

in all single-field inflation models $f_{\rm NL}^{\rm local} = \frac{5}{12}(1-n_s) \simeq 0.015$

Creminelli & Zaldarriaga [0407059]

on the other hand, large PNG can be induced from specific models (multifield inflation, cosmic string, ...)
$$\begin{split} \Phi(\mathbf{x}) &\equiv \Phi_{\mathrm{L}}(\mathbf{x}) + \Phi_{\mathrm{NL}}(\mathbf{x}) \\ \Phi_{\mathrm{NL}}(\mathbf{x}) &\equiv f_{\mathrm{NL}}[\Phi_{\mathrm{L}}(\mathbf{x})^2 - \langle \Phi_{\mathrm{L}}(\mathbf{x})^2 \rangle] \end{split}$$

we may obtain finer information on the early Universe!!

CMB bispectrum is a good tool for constraining on non Gaussianity!!

(e.g.) the primordial curvature perturbation

from theories

in all single-field inflation models $f_{\rm NL}^{\rm local} = \frac{5}{12}(1-n_s) \simeq 0.015$

Creminelli & Zaldarriaga [0407059]

on the other hand, large PNG can be induced from specific models (multifield inflation, cosmic string, ...)
$$\begin{split} \Phi(\mathbf{x}) &\equiv \Phi_{\mathrm{L}}(\mathbf{x}) + \Phi_{\mathrm{NL}}(\mathbf{x}) \\ \Phi_{\mathrm{NL}}(\mathbf{x}) &\equiv f_{\mathrm{NL}}[\Phi_{\mathrm{L}}(\mathbf{x})^2 - \langle \Phi_{\mathrm{L}}(\mathbf{x})^2 \rangle] \end{split}$$

we may obtain finer information on the early Universe!!

Magnetic fields also induce large non-Gaussianity due to $a_{lm} \propto (Gaussian B)^2$ Brown, Crittenden [0506570]

Previous bounds from CMB bispectrum

- BIMpc < 40nG (from f_{NL} < 100) : Seshadri + [0902.4066]
- ▶ B_{IMpc} < O(10)nG (from f_{NL} < 100) : Caprini + [0903.1420]
- ▶ B_{IMpc} < 2 4nG (from |f_{NL}| < 10) :Trivedi + [1009.2724]

"They neglect the complicated calculation (the angular dependence) or don't consider the vector- and tensor-mode contribution"

We aim to find the exact formulae, curves of the scalar, vector, and tensor CMB bispectrum and constraint on PMFs

TOC

I. Introduction of the cosmological magnetic fields

2. Formulation of CMB bispectrum

3. CMB bispectrum induced from primordial magnetic fields

Settings

metric (FLRW + perturbation):

 $ds^{2} = a(\tau)^{2} \left[-d\tau^{2} + 2h_{0b}d\tau dx^{b} + (\delta_{bc} + h_{bc})dx^{b}dx^{c} \right]$

scalar-vector-tensor decomposition:

$$\eta(\mathbf{k}) = \eta^{(0)}(\mathbf{k}),$$

$$\omega_a(\mathbf{k}) = \omega^{(0)}(\mathbf{k})O_a^{(0)} + \sum_{\lambda=\pm 1} \omega^{(\lambda)}(\mathbf{k})O_a^{(\lambda)} ,$$

$$\chi_{ab}(\mathbf{k}) = \chi^{(0)}(\mathbf{k})O_{ab}^{(0)} + \sum_{\lambda=\pm 1} \chi^{(\lambda)}(\mathbf{k})O_{ab}^{(\lambda)} + \sum_{\lambda=\pm 2} \chi^{(\lambda)}(\mathbf{k})O_{ab}^{(\lambda)}$$

assume rotational-invariant Gaussian PMF:

$$\langle B_a(\mathbf{k})B_b(\mathbf{p})\rangle = (2\pi)^3 \frac{P_B(k)}{2} P_{ab}(\hat{\mathbf{k}})\delta(\mathbf{k}+\mathbf{p})$$
$$P_{ab}(\hat{\mathbf{k}}) \equiv \sum_{\sigma=\pm 1} \epsilon_a^{(\sigma)} \epsilon_b^{(-\sigma)} = \delta_{ab} - \hat{k}_a \hat{k}_b$$
$$P_B(k) = \frac{(2\pi)^{n_B+5}}{\Gamma(n_B/2+3/2)k_{1\,\mathrm{Mpc}}^3} B_{1\,\mathrm{Mpc}}^2 \left(\frac{k}{k_{1\,\mathrm{Mpc}}}\right)^{n_B}$$

scaling relation of PMF: $B^b(\mathbf{x}, \tau) = B^b(\mathbf{x})/a^2$

energy momentum tensor (EMT) of PMF:

$$T_0^0 = -\rho_B = -\frac{1}{8\pi a^4} B^2(\mathbf{x}) \equiv -\rho_\gamma \Delta_B,$$

$$T_c^0 = T_0^b = 0,$$

$$T_c^b = \frac{1}{4\pi a^4} \left[\frac{B^2(\mathbf{x})}{2} \delta_c^b - B^b(\mathbf{x}) B_c(\mathbf{x}) \right]$$

$$\equiv \rho_\gamma (\Delta_B \delta_c^b + \Pi_{Bc}^b),$$

projection operator:

$$\begin{split} O_a^{(0)} e^{i\mathbf{k}\cdot\mathbf{x}} &\equiv k^{-1} \nabla_a e^{i\mathbf{k}\cdot\mathbf{x}} = i\hat{k}_a e^{i\mathbf{k}\cdot\mathbf{x}} ,\\ O_{ab}^{(0)} e^{i\mathbf{k}\cdot\mathbf{x}} &\equiv \left(k^{-2} \nabla_a \nabla_b + \frac{\delta_{a,b}}{3}\right) e^{i\mathbf{k}\cdot\mathbf{x}} = \left(-\hat{k}_a \hat{k}_b + \frac{\delta_{a,b}}{3}\right) e^{i\mathbf{k}\cdot\mathbf{x}} ,\\ O_a^{(\pm 1)} e^{i\mathbf{k}\cdot\mathbf{x}} &\equiv -i\epsilon_a^{(\pm 1)}(\hat{\mathbf{k}}) e^{i\mathbf{k}\cdot\mathbf{x}} ,\\ O_{ab}^{(\pm 1)} e^{i\mathbf{k}\cdot\mathbf{x}} &\equiv k^{-1} \nabla_a O_b^{(\pm 1)} e^{i\mathbf{k}\cdot\mathbf{x}} = \hat{k}_a \epsilon_b^{(\pm 1)}(\hat{\mathbf{k}}) e^{i\mathbf{k}\cdot\mathbf{x}} ,\\ O_{ab}^{(\pm 2)} e^{i\mathbf{k}\cdot\mathbf{x}} &\equiv e_{ab}^{(\pm 2)}(\hat{\mathbf{k}}) e^{i\mathbf{k}\cdot\mathbf{x}} , \end{split}$$

If fix Gauge: $\partial_{\tau} \mathbf{h}^{(\mathbf{V})} = 0$ and introduce: $h_{0a}^{(V)} \equiv -A_a$

Gauge-invariant vector potential and vorticity are written:

$$\mathbf{V} \equiv \mathbf{A} - \partial_{\tau} \mathbf{h}^{(\mathbf{V})} = \mathbf{A}$$
$$\mathbf{\Omega} \equiv \mathbf{v} - \mathbf{A} = \mathbf{v} - \mathbf{V}$$

v: velocity perturbation

If fix Gauge: $\partial_{\tau} \mathbf{h}^{(\mathbf{V})} = 0$ and introduce: $h_{0a}^{(V)} \equiv -A_a$

Gauge-invariant vector potential and vorticity are written:

$$\mathbf{V} \equiv \mathbf{A} - \partial_{\tau} \mathbf{h}^{(\mathbf{V})} = \mathbf{A}$$
$$\mathbf{\Omega} \equiv \mathbf{v} - \mathbf{A} = \mathbf{v} - \mathbf{V}$$

v: velocity perturbation

Consider tight coupling limit: $v_{Y} \sim v_{b} \equiv v$, namely $\Omega_{Y} \sim \Omega_{b} \equiv \Omega$

Einstein eq.:

$$\mathbf{V}' + 2\frac{a'}{a}\mathbf{V} = -\frac{16\pi G\rho_{\gamma,0}(\mathbf{\Pi}_{\gamma}^{(\mathbf{V})} + \mathbf{\Pi}_{\nu}^{(\mathbf{V})} + \mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})})}{a^{2}k}$$

Euler eq. of photon and baryon:

$$(1+R)\mathbf{\Omega}' + R\frac{a'}{a}\mathbf{\Omega} = \frac{k\rho_{\gamma,0}\mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})}}{a^4(\rho_\gamma + p_\gamma)}$$

If fix Gauge: $\partial_{\tau} \mathbf{h}^{(\mathbf{V})} = 0$ and introduce: $h_{0a}^{(\mathbf{V})} \equiv -A_a$

Gauge-invariant vector potential and vorticity are written:

$$\mathbf{V} \equiv \mathbf{A} - \partial_{\tau} \mathbf{h}^{(\mathbf{V})} = \mathbf{A}$$
$$\mathbf{\Omega} \equiv \mathbf{v} - \mathbf{A} = \mathbf{v} - \mathbf{V}$$

v: velocity perturbation

Consider tight coupling limit: $v_{Y} \sim v_{b} \equiv v$, namely $\Omega_{Y} \sim \Omega_{b} \equiv \Omega$

Einstein eq.:

$$\mathbf{V}' + 2\frac{a'}{a}\mathbf{V} = -\frac{16\pi G\rho_{\gamma,0}(\mathbf{\Pi}_{\gamma}^{(\mathbf{V})} + \mathbf{\Pi}_{\nu}^{(\mathbf{V})} + \mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})})}{a^{2}k}$$

Euler eq. of photon and baryon:

$$(1+R)\mathbf{\Omega}' + R\frac{a'}{a}\mathbf{\Omega} = \underbrace{\frac{k\rho_{\gamma,0}\mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})}}{a^4(\rho_{\gamma} + p_{\gamma})}}_{\text{Lorentz force term: } \mathbf{L} = \mathbf{k}\Pi^{(\mathbf{V})}$$

If fix Gauge: $\partial_{\tau} \mathbf{h}^{(\mathbf{V})} = 0$ and introduce: $h_{0a}^{(V)} \equiv -A_a$

Gauge-invariant vector potential and vorticity are written:

$$\mathbf{V} \equiv \mathbf{A} - \partial_{\tau} \mathbf{h}^{(\mathbf{V})} = \mathbf{A}$$
$$\mathbf{\Omega} \equiv \mathbf{v} - \mathbf{A} = \mathbf{v} - \mathbf{V}$$

v: velocity perturbation

Consider tight coupling limit: $v_{Y} \sim v_{b} \equiv v$, namely $\Omega_{Y} \sim \Omega_{b} \equiv \Omega$

Einstein eq.:

$$\mathbf{V}' + 2\frac{a'}{a}\mathbf{V} = -\frac{16\pi G\rho_{\gamma,0}(\mathbf{\Pi}_{\gamma}^{(\mathbf{V})} + \mathbf{\Pi}_{\nu}^{(\mathbf{V})} + \mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})})}{a^{2}k}$$

Euler eq. of photon and baryon:

$$(1+R)\mathbf{\Omega}' + R\frac{a'}{a}\mathbf{\Omega} = \underbrace{\frac{k\rho_{\gamma,0}\mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})}}{a^4(\rho_{\gamma} + p_{\gamma})}}_{\text{Lorentz force term: } \mathbf{L} = \mathbf{k}\Pi^{(\mathbf{V})}$$

Vorticity solution:

$$\begin{split} \Omega(\mathbf{k},\tau) &\simeq \beta(k,\tau) \mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})}(\mathbf{k}) \ , \\ \beta(k,\tau) &= \begin{cases} \frac{k\tau\rho_{\gamma,0}}{(1+R)(\rho_{\gamma,0}+p_{\gamma,0})} & \text{for } k < k_S \\ \frac{5\tau'_c\rho_{\gamma,0}}{k(\rho_{\gamma,0}+p_{\gamma,0})} & \text{for } k > k_S \end{cases} \end{split}$$

If fix Gauge: $\partial_{\tau} \mathbf{h}^{(\mathbf{V})} = 0$ and introduce: $h_{0a}^{(V)} \equiv -A_a$

Gauge-invariant vector potential and vorticity are written:

$$\mathbf{V} \equiv \mathbf{A} - \partial_{\tau} \mathbf{h}^{(\mathbf{V})} = \mathbf{A}$$
$$\mathbf{\Omega} \equiv \mathbf{v} - \mathbf{A} = \mathbf{v} - \mathbf{V}$$

v: velocity perturbation

Consider tight coupling limit: $v_{Y} \sim v_{b} \equiv v$, namely $\Omega_{Y} \sim \Omega_{b} \equiv \Omega$

Einstein eq.:

$$\mathbf{V}' + 2\frac{a'}{a}\mathbf{V} = -\frac{16\pi G\rho_{\gamma,0}(\mathbf{\Pi}_{\gamma}^{(\mathbf{V})} + \mathbf{\Pi}_{\nu}^{(\mathbf{V})} + \mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})})}{a^{2}k}$$

Euler eq. of photon and baryon:

$$(1+R)\mathbf{\Omega}' + R\frac{a'}{a}\mathbf{\Omega} = \frac{k\rho_{\gamma,0}\mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})}}{a^4(\rho_\gamma + p_\gamma)}$$

Vorticity solution: intial condition

$$\begin{aligned} \mathbf{\Omega}(\mathbf{k},\tau) &\simeq \beta(k,\tau) \mathbf{\Pi}_{\mathbf{B}}^{(\mathbf{V})}(\mathbf{k}) ,\\ \beta(k,\tau) &= \begin{cases} \frac{k\tau\rho_{\gamma,0}}{(1+R)(\rho_{\gamma,0}+p_{\gamma,0})} & \text{for } k < k_S \\ \frac{5\tau'_c\rho_{\gamma,0}}{k(\rho_{\gamma,0}+p_{\gamma,0})} & \text{for } k > k_S \end{cases} \end{aligned}$$

CMB intensity fluctuation of vector mode is sourced from $\boldsymbol{\Omega}$ at recombination epoch:

CMB intensity fluctuation of vector mode is sourced from $\boldsymbol{\Omega}$ at recombination epoch:

CMB intensity fluctuation of vector mode is sourced from $\boldsymbol{\Omega}$ at recombination epoch:

$$\begin{split} & \text{Doppler} \quad \text{ISW} \\ \Delta_{I}(\hat{\mathbf{n}}) &= -\mathbf{v}_{\gamma} \cdot \hat{\mathbf{n}}|_{\tau_{*}}^{\tau_{0}} + \int_{\tau_{*}}^{\tau_{0}} d\tau \mathbf{V}' \cdot \hat{\mathbf{n}} \\ &\simeq \Omega_{\tau_{*}} \cdot \hat{\mathbf{n}} \\ \end{split} \\ & \mathbf{n} \\ &\simeq \Omega_{\tau_{*}} \cdot \hat{\mathbf{n}} \\ \end{split} \\ & \text{Through the coordinate transformation and hard calculation:} \\ & \mathbf{n}_{\mathbf{B}}^{(\mathbf{V})}(\mathbf{k}) \cdot \hat{\mathbf{n}} \rightarrow -i\sqrt{\frac{1-\mu_{k,n}^{2}}{2}} \\ & \times \sum_{\lambda=\pm 1} \Pi_{Bv}^{(\lambda)}(\mathbf{k})e^{i\lambda\phi_{k,n}} , \\ & \mathbf{n}_{B''}^{(\mathbf{n})}(\mathbf{k})e^{i\lambda\phi_{k,n}} , \\ & \mathbf{n}_{A''}^{(\mathbf{n})} \rightarrow \sum_{\lambda=\pm 1} \Pi_{Bv'}^{(\lambda)}(\mathbf{k})e^{i\lambda\phi_{k,n}} , \\ & \mathbf{n}_{A''}^{(\mathbf{n})} \rightarrow \sum_{m'} D_{mm'}^{(\ell)}(S(\hat{\mathbf{k}}))Y_{\ell m'}^{*}(\Omega_{k,n}) \\ & d^{2}\hat{\mathbf{n}} \rightarrow d\Omega_{k,n} , \\ \end{split} \\ & a_{I,\ell m}^{(V)} &= 4\pi(-i)^{\ell} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{\lambda=\pm 1} \lambda_{-\lambda}Y_{\ell m}^{*}(\hat{k})\xi^{(\lambda)}(\mathbf{k})T_{I,\ell}^{(V)}(k) \\ & \xi^{(\pm 1)}(\mathbf{k}) \equiv \Pi_{Bv}^{(\pm 1)}(\mathbf{k}) \end{split}$$

Tensor mode of alm L

Lewis [0406096], ...

After neutrino decoupling, Π_{ν} has finite value and compensates Π_{B}

Tensor mode of alm

Lewis [0406096], ...

After neutrino decoupling, Π_{ν} has finite value and compensates Π_B

decompose metric into helicity state: $h_{ab}(\mathbf{k},\tau) = \sum_{\lambda=\pm 2} \xi^{(\lambda)}(\mathbf{k},\tau) e_{ab}^{(\lambda)}(\hat{\mathbf{k}})$ $-\mathbf{R}_{Y} \sim 0.6$ $-\tau_{V}: neutrino decoupling time$ $-\mathbf{T}_{B}: PMF generation time$ $\mathbf{Einstein eq.:} \quad \xi^{(\pm 2)''}(\mathbf{k},\tau) + 2\frac{a'}{a}\xi^{(\pm 2)'}(\mathbf{k},\tau) + k^{2}\xi^{(\pm 2)}(\mathbf{k},\tau) \approx \begin{cases} 16\pi Ga^{2}\rho_{\gamma}\Pi_{Bt}^{(\pm 2)}(\mathbf{k}) & (\tau_{B} \lesssim \tau \lesssim \tau_{\nu}) \\ 0 & (\tau \ge \tau_{\mu}) \end{cases}$

Tensor mode of alm Lev

Lewis [0406096], ...

After neutrino decoupling, Π_{ν} has finite value and compensates Π_B

 $\begin{aligned} & \operatorname{decompose metric into helicity state:}_{h_{ab}(\mathbf{k},\tau) = \sum_{\lambda=\pm 2} \xi^{(\lambda)}(\mathbf{k},\tau) e_{ab}^{(\lambda)}(\hat{\mathbf{k}})} & -R_{Y} \sim 0.6 \\ & \neg \tau_{V}: \operatorname{neutrino decoupling time}_{-\tau_{B}: \operatorname{PMF generation time}} \\ & \neg \pi_{B}: \operatorname{PMF generation time} \end{aligned}$

Tensor mode of alm Lewis [0406096], ...

After neutrino decoupling, Π_{v} has finite value and compensates Π_{B}

 $\xi^{(\pm 2)}$ survives passively and generates CMB anisotropy through the ISW effect = "passive mode"

CMB intensity fluctuation of tensor mode is sourced from h' (ISW):

$$\begin{split} & \sum_{I \in \mathcal{W}} \left\{ \begin{array}{l} \sum_{I,\ell m} \left\{ = \int d^2 \hat{\mathbf{n}} \Delta_I^{(T)}(\hat{\mathbf{n}}) Y_{\ell m}^*(\hat{\mathbf{n}}) \\ & \simeq \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \int d^2 \hat{\mathbf{n}} \left[\frac{1}{2} \sum_{\lambda = \pm 2} \xi^{(\lambda)}(\mathbf{k}) e_{ab}^{(\lambda)}(\hat{\mathbf{k}}) \hat{n}_a \hat{n}_b \right] Y_{\ell m}^*(\hat{\mathbf{n}}) \\ & \simeq \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \int d^2 \hat{\mathbf{n}} \left[\frac{1}{2} \sum_{\lambda = \pm 2} \xi^{(\lambda)}(\mathbf{k}) e_{ab}^{(\lambda)}(\hat{\mathbf{k}}) \hat{n}_a \hat{n}_b \right] Y_{\ell m}^*(\hat{\mathbf{n}}) \\ & \qquad \times \int_0^{\tau_0} d\tau \alpha'(k, \tau) e^{-i\mu_{k,n}x} \\ & = 4\pi (-i)^\ell \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \sum_{\lambda = \pm 2} -\lambda Y_{\ell m}^*(\hat{k}) \xi^{(\lambda)}(\mathbf{k}) T_{I,\ell}^{(T)}(k) \\ & \qquad T_{I,\ell}^{(T)}(k) = -\left[\frac{(\ell+2)!}{(\ell-2)!} \right]^{1/2} \int_0^{\tau_0} d\tau \frac{\alpha'(k,\tau)}{2\sqrt{2}} \frac{j_\ell(x)}{x^2} \end{split}$$

CMB intensity fluctuation of tensor mode is sourced from h' (ISW):

Also in scalar mode, "passive mode" dominates

$$a_{X,\ell m}^{(Z)} \propto 4\pi (-i)^{\ell} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \sum_{\lambda} \operatorname{sgn}(\lambda)^{\lambda+x} {}_{-\lambda} Y_{\ell m}^*(\hat{k}) \Pi_{Bz}^{(\lambda)}(\mathbf{k}) \mathcal{T}_{X,\ell}^{(Z)}(k)$$

CMB intensity fluctuation of tensor mode is sourced from h' (ISW):

Also in scalar mode, "passive mode" dominates

$$a_{X,\ell m}^{(Z)} \propto 4\pi (-i)^{\ell} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \sum_{\lambda} \operatorname{sgn}(\lambda)^{\lambda+x} {}_{-\lambda} Y_{\ell m}^*(\hat{k}) \Pi_{Bz}^{(\lambda)}(\mathbf{k}) \mathcal{T}_{X,\ell}^{(Z)}(k)$$

need the statistics of initial anisotropic stress of PMF Π_{Bz}

Bispectrum of magnetic anisotropic stress

Because B is Gaussian, bispectrum of Π_B ($\propto B^6$) is finite value:

$$\langle \Pi_{Bab}(\mathbf{k_1}) \Pi_{Bcd}(\mathbf{k_2}) \Pi_{Bef}(\mathbf{k_3}) \rangle = (-4\pi\rho_{\gamma,0})^{-3} \left[\prod_{n=1}^3 \int_0^{k_D} k_n'^2 dk_n' P_B(k_n') \int d^2 \hat{\mathbf{k_n'}} \right]$$
$$\times \delta(\mathbf{k_1} - \mathbf{k_1'} + \mathbf{k_3'}) \delta(\mathbf{k_2} - \mathbf{k_2'} + \mathbf{k_1'}) \delta(\mathbf{k_3} - \mathbf{k_3'} + \mathbf{k_2'})$$
$$\times \frac{1}{8} [P_{ad}(\hat{\mathbf{k_1'}}) P_{be}(\hat{\mathbf{k_3'}}) P_{cf}(\hat{\mathbf{k_2'}}) + \{a \leftrightarrow b \text{ or } c \leftrightarrow d \text{ or } e \leftrightarrow f\}]$$

the symmetric 7 terms under the permutations of indices

scalar, vector and tensor parts of
$$\Pi_{B}$$
:

$$\left\langle \prod_{n=1}^{3} \Pi_{Bs}^{(0)}(\mathbf{k}_{n}) \right\rangle = \left\langle \Pi_{Bab}(\mathbf{k}_{1})\Pi_{Bcd}(\mathbf{k}_{2})\Pi_{Bef}(\mathbf{k}_{3}) \right\rangle$$

$$\times \frac{27}{8} (-\hat{k}_{1a}\hat{k}_{1b} + \frac{1}{3}\delta_{a,b})(-\hat{k}_{2c}\hat{k}_{2d} + \frac{1}{3}\delta_{c,d})(-\hat{k}_{3e}\hat{k}_{3f} + \frac{1}{3}\delta_{e,f})$$

$$\left\langle \prod_{n=1}^{3} \Pi_{Bv}^{(\lambda_{n})}(\mathbf{k}_{n}) \right\rangle = \left\langle \Pi_{Bab}(\mathbf{k}_{1})\Pi_{Bcd}(\mathbf{k}_{2})\Pi_{Bef}(\mathbf{k}_{3}) \right\rangle$$

$$\times \hat{k}_{1a}\epsilon_{b}^{(-\lambda_{1})}(\hat{\mathbf{k}}_{1})\hat{k}_{2c}\epsilon_{d}^{(-\lambda_{2})}(\hat{\mathbf{k}}_{2})\hat{k}_{3e}\epsilon_{f}^{(-\lambda_{3})}(\hat{\mathbf{k}}_{3}) \text{ (for } \lambda_{n} = \pm 1)$$

$$\left\langle \prod_{n=1}^{3} \Pi_{Bt}^{(\lambda_{n})}(\mathbf{k}_{n}) \right\rangle = \left\langle \Pi_{Bab}(\mathbf{k}_{1})\Pi_{Bcd}(\mathbf{k}_{2})\Pi_{Bef}(\mathbf{k}_{3}) \right\rangle$$

$$\times \frac{1}{8}e_{ab}^{(-\lambda_{1})}(\hat{\mathbf{k}}_{1})e_{cd}^{(-\lambda_{2})}(\hat{\mathbf{k}}_{2})e_{ef}^{(-\lambda_{3})}(\hat{\mathbf{k}}_{3}) \text{ (for } \lambda_{n} = \pm 2)$$

CMB Bispectrum from PMF

$$B_{X_{1}X_{2}X_{3},\ell_{1},\ell_{2},\ell_{3}}^{(Z_{1}Z_{2}Z_{3})} = \left[\prod_{n=1}^{3} 4\pi (-i)^{\ell_{n}} \int_{0}^{\infty} \frac{k_{n}^{2} dk_{n}}{(2\pi)^{3}} \mathcal{T}_{X_{n},\ell_{n}}^{(Z_{n})}(k_{n}) \sum_{\lambda_{n}} [\operatorname{sgn}(\lambda_{n})]^{\lambda_{n}+x_{n}} \right] \times (2\pi)^{3} \mathcal{F}_{\ell_{1}\ell_{2}\ell_{3}}^{\lambda_{1}\lambda_{2}\lambda_{3}}(k_{1},k_{2},k_{3}) .$$
$$\mathcal{F}_{\ell_{1}\ell_{2}\ell_{3}}^{\lambda_{1}\lambda_{2}\lambda_{3}}(k_{1},k_{2},k_{3}) = \sum_{m_{1}m_{2}m_{3}} \left(\begin{array}{c} \ell_{1} & \ell_{2} & \ell_{3} \\ m_{1} & m_{2} & m_{3} \end{array} \right) \left[\prod_{n=1}^{3} \int d^{2}\hat{\mathbf{k}}_{\mathbf{n}-\lambda_{n}} Y_{\ell_{n}m_{n}}^{*}(\hat{\mathbf{k}}_{\mathbf{n}}) \right] \left\langle \prod_{n=1}^{3} \xi^{(\lambda_{n})}(\mathbf{k}_{\mathbf{n}}) \right\rangle / (2\pi)^{3} .$$

1. expand all angular dependencies with sylm

$$\begin{split} \Pi_{Bz}^{(\lambda)}(\mathbf{k}) &= \sum_{\ell'm'} \Pi_{Bz,\ell'm'}^{(\lambda)}(k)_{-\lambda} Y_{\ell'm'}(\hat{\mathbf{k}}) \\ \epsilon_{a}^{(\pm 1)}(\hat{\mathbf{k}}) &= \mp \sum_{m} \alpha_{a}^{m} \pm 1 Y_{1m}(\hat{\mathbf{k}}) \\ e_{ab}^{(\pm 2)}(\hat{\mathbf{k}}) &= \frac{3}{\sqrt{2\pi}} \sum_{Mm_{a}m_{b}} \pm 2 Y_{2M}^{*}(\hat{\mathbf{k}}) \alpha_{a}^{m_{a}} \alpha_{b}^{m_{b}} \begin{pmatrix} 2 & 1 & 1 \\ M & m_{a} & m_{b} \end{pmatrix} \\ \alpha_{a}^{m} \alpha_{a}^{m'} &= \frac{4\pi}{3} (-1)^{m} \delta_{m,-m'} \\ \delta\left(\sum_{i=1}^{3} \mathbf{k}_{i}\right) &= 8 \int_{0}^{\infty} y^{2} dy \left[\prod_{i=1}^{3} \sum_{L_{i}M_{i}} (-1)^{L_{i}/2} j_{L_{i}}(k_{i}y) Y_{L_{i}M_{i}}^{*}(\hat{\mathbf{k}}_{i})\right] I_{L_{1}L_{2}L_{3}}^{0 \ 0 \ 0 \ M_{1}} \begin{pmatrix} L_{1} & L_{2} & L_{3} \\ M_{1} & M_{2} & M_{3} \end{pmatrix} \end{split}$$

2. express their integrals with the Wigner symbols

$$\int d^2 \hat{\mathbf{k}} \prod_{i=1}^4 {}_{s_i} Y_{l_i m_i}(\hat{\mathbf{k}}) = \sum_{l_5 m_5 s_5} I_{l_1 l_2 l_5}^{-s_1 - s_2 s_5} I_{l_3 l_4 l_5}^{-s_3 - s_4 - s_5} \left(\begin{array}{ccc} l_1 & l_2 & l_5 \\ m_1 & m_2 & m_5 \end{array}\right) \left(\begin{array}{ccc} l_3 & l_4 & l_5 \\ m_3 & m_4 & m_5 \end{array}\right)$$

3. sum up them over multipoles

$$\sum_{\substack{m_4 m_5 m_6 \\ m_7 m_8 m_9}} \begin{pmatrix} l_4 & l_5 & l_6 \\ m_4 & m_5 & m_6 \end{pmatrix} \begin{pmatrix} l_7 & l_8 & l_9 \\ m_7 & m_8 & m_9 \end{pmatrix} \begin{pmatrix} l_4 & l_7 & l_1 \\ m_4 & m_7 & m_1 \end{pmatrix} \begin{pmatrix} l_5 & l_8 & l_2 \\ m_5 & m_8 & m_2 \end{pmatrix} \begin{pmatrix} l_6 & l_9 & l_3 \\ m_6 & m_9 & m_3 \end{pmatrix}$$
$$= \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \begin{cases} l_1 & l_2 & l_3 \\ l_4 & l_5 & l_6 \\ l_7 & l_8 & l_9 \end{cases} ,$$
$$\sum_{m_4 m_5 m_6} (-1)^{\sum_{i=4}^6 l_i - m_i} \begin{pmatrix} l_5 & l_1 & l_6 \\ m_5 & -m_1 & -m_6 \end{pmatrix} \begin{pmatrix} l_6 & l_2 & l_4 \\ m_6 & -m_2 & -m_4 \end{pmatrix} \begin{pmatrix} l_4 & l_3 & l_5 \\ m_4 & -m_3 & -m_5 \end{pmatrix}$$
$$= \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \begin{cases} l_1 & l_2 & l_3 \\ l_4 & l_5 & l_6 \end{cases} \}$$

2. express their integrals with the Wigner symbols

$$\int d^2 \hat{\mathbf{k}} \prod_{i=1}^4 {}^{s_i} Y_{l_i m_i}(\hat{\mathbf{k}}) = \sum_{l_5 m_5 s_5} I_{l_1 l_2 l_5}^{-s_1 - s_2 s_5} I_{l_3 l_4 l_5}^{-s_3 - s_4 - s_5} \left(\begin{array}{ccc} l_1 & l_2 & l_5 \\ m_1 & m_2 & m_5 \end{array} \right) \left(\begin{array}{ccc} l_3 & l_4 & l_5 \\ m_3 & m_4 & m_5 \end{array} \right)$$

3. sum up them over multipoles

$$\sum_{\substack{m_4m_5m_6\\m_7m_8m_9}} \begin{pmatrix} l_4 & l_5 & l_6\\m_4 & m_5 & m_6 \end{pmatrix} \begin{pmatrix} l_7 & l_8 & l_9\\m_7 & m_8 & m_9 \end{pmatrix} \begin{pmatrix} l_4 & l_7 & l_1\\m_4 & m_7 & m_1 \end{pmatrix} \begin{pmatrix} l_5 & l_8 & l_2\\m_5 & m_8 & m_2 \end{pmatrix} \begin{pmatrix} l_6 & l_9 & l_3\\m_6 & m_9 & m_3 \end{pmatrix}$$
$$= \begin{pmatrix} l_1 & l_2 & l_3\\m_1 & m_2 & m_3 \end{pmatrix} \begin{cases} l_1 & l_2 & l_3\\l_4 & l_5 & l_6\\l_7 & l_8 & l_9 \end{cases},$$
$$\sum_{m_4m_5m_6} (-1)^{\sum_{i=4}^6 l_i - m_i} \begin{pmatrix} l_5 & l_1 & l_6\\m_5 & -m_1 & -m_6 \end{pmatrix} \begin{pmatrix} l_6 & l_2 & l_4\\m_6 & -m_2 & -m_4 \end{pmatrix} \begin{pmatrix} l_4 & l_3 & l_5\\m_4 & -m_3 & -m_5 \end{pmatrix}$$
$$= \begin{pmatrix} l_1 & l_2 & l_3\\m_1 & m_2 & m_3 \end{pmatrix} \begin{cases} l_1 & l_2 & l_3\\l_4 & l_5 & l_6 \end{cases}$$

$$= (-8\pi^{2}\rho_{\gamma,0})^{-3} \left[\prod_{n=1}^{3} \int_{0}^{k_{D}} k_{n}^{\prime 2} dk_{n}^{\prime} P_{B}(k_{n}^{\prime}) \right] \\ \times \sum_{LL^{\prime}L^{\prime\prime}} \sum_{S,S^{\prime},S^{\prime\prime}=\pm 1} \left\{ \begin{array}{cc} \ell_{1} & \ell_{2} & \ell_{3} \\ L^{\prime} & L^{\prime\prime} & L \end{array} \right\} f_{L^{\prime\prime}L\ell_{1}}^{S^{\prime\prime}S\lambda_{1}}(k_{3}^{\prime},k_{1}^{\prime},k_{1}) f_{LL^{\prime}\ell_{2}}^{SS^{\prime}\lambda_{2}}(k_{1}^{\prime},k_{2}^{\prime},k_{2}) f_{L^{\prime}L^{\prime\prime}\ell_{3}}^{S^{\prime}S^{\prime\prime}\lambda_{3}}(k_{2}^{\prime},k_{3}^{\prime},k_{3})$$

2. express their integrals with the Wigner symbols

$$\int d^2 \hat{\mathbf{k}} \prod_{i=1}^4 {}^{s_i} Y_{l_i m_i}(\hat{\mathbf{k}}) = \sum_{l_5 m_5 s_5} I_{l_1 l_2 l_5}^{-s_1 - s_2 s_5} I_{l_3 l_4 l_5}^{-s_3 - s_4 - s_5} \left(\begin{array}{ccc} l_1 & l_2 & l_5 \\ m_1 & m_2 & m_5 \end{array} \right) \left(\begin{array}{ccc} l_3 & l_4 & l_5 \\ m_3 & m_4 & m_5 \end{array} \right)$$

3. sum up them over multipoles

$$\sum_{\substack{m_4m_5m_6\\m_7m_8m_9}} \begin{pmatrix} l_4 & l_5 & l_6\\m_4 & m_5 & m_6 \end{pmatrix} \begin{pmatrix} l_7 & l_8 & l_9\\m_7 & m_8 & m_9 \end{pmatrix} \begin{pmatrix} l_4 & l_7 & l_1\\m_4 & m_7 & m_1 \end{pmatrix} \begin{pmatrix} l_5 & l_8 & l_2\\m_5 & m_8 & m_2 \end{pmatrix} \begin{pmatrix} l_6 & l_9 & l_3\\m_6 & m_9 & m_3 \end{pmatrix}$$
$$= \begin{pmatrix} l_1 & l_2 & l_3\\m_1 & m_2 & m_3 \end{pmatrix} \begin{cases} l_1 & l_2 & l_3\\l_4 & l_5 & l_6\\l_7 & l_8 & l_9 \end{cases},$$
$$\sum_{\substack{m_4m_5m_6}} (-1)^{\sum_{i=4}^6 l_i - m_i} \begin{pmatrix} l_5 & l_1 & l_6\\m_5 & -m_1 & -m_6 \end{pmatrix} \begin{pmatrix} l_6 & l_2 & l_4\\m_6 & -m_2 & -m_4 \end{pmatrix} \begin{pmatrix} l_4 & l_3 & l_5\\m_4 & -m_3 & -m_5 \end{pmatrix}$$
$$= \begin{pmatrix} l_1 & l_2 & l_3\\m_1 & m_2 & m_3 \end{pmatrix} \begin{cases} l_1 & l_2 & l_3\\l_4 & l_5 & l_6 \end{cases}$$

$$= (-8\pi^{2}\rho_{\gamma,0})^{-3} \left[\prod_{n=1}^{3} \int_{0}^{k_{D}} k_{n}^{\prime 2} dk_{n}^{\prime} P_{B}(k_{n}^{\prime}) \right] \qquad \ell_{\mathcal{Z}} \qquad \qquad \ell_{\mathcal{Z}}$$

$$\begin{aligned} \text{scalar mode:} \quad f_{L''L\ell}^{S''S0}(r_3, r_2, r_1) \; \equiv \; -16\pi R_{\gamma} \ln(\tau_{\nu}/\tau_B) \sum_{L_1L_2L_3} \int_0^\infty y^2 dy j_{L_3}(r_3y) j_{L_2}(r_2y) j_{L_1}(r_1y) \\ & \times (-1)^{L_2} (-1)^{\frac{L_1+L_2+L_3}{2}} I_{L_1L_2L_3}^{0,0,0} I_{L_3L_2L_3}^{0,0''} I_{L_21L}^{0,S''-S''} I_{L_21L}^{0,S-S} \\ & \times \left[\sum_{L_k=0,2} \frac{4\pi}{3} (-1)^{L_3} I_{L_1\ell L_k}^{0,0,0} I_{11L_k}^{000} \left\{ \begin{array}{c} L'' & L & \ell \\ L_3 & L_2 & L_1 \\ 1 & 1 & L_k \end{array} \right\} - \frac{1}{3} (-1)^L \left\{ \begin{array}{c} L & L'' & \ell \\ L_3 & L_2 & 1 \end{array} \right\} \delta_{\ell,L_1} \right] \end{aligned}$$

vector mode (
$$\lambda = \pm 1$$
): $f_{L''L\ell}^{S''S\lambda}(r_3, r_2, r_1) \equiv \frac{2(8\pi)^{3/2}}{3} \sum_{L_1L_2L_3} \int_0^\infty y^2 dy j_{L_3}(r_3y) j_{L_2}(r_2y) j_{L_1}(r_1y)$
 $\times \lambda(-1)^{\ell+L_2+L_3}(-1)^{\frac{(L_1+L_2+L_3)}{2}} I_{L_1L_2L_3}^{0\ 0\ 0\ 0} I_{L_31L''}^{0S''-S''} I_{L_21L}^{0S-S} I_{L_1\ell_2}^{0\lambda-\lambda} \begin{cases} L'' & L & \ell \\ L_3 & L_2 & L_1 \\ 1 & 1 & 2 \end{cases}$

$$\begin{aligned} \text{tensor mode } (\Lambda = \pm 2): \quad f_{L''L\ell}^{S''S\lambda}(r_3, r_2, r_1) &\equiv -4(8\pi)^{3/2} R_{\gamma} \ln(\tau_{\nu}/\tau_B) \sum_{L_1L_2L_3} \int_0^\infty y^2 dy j_{L_3}(r_3y) j_{L_2}(r_2y) j_{L_1}(r_1y) \\ & \times (-1)^{\ell + L_2 + L_3} (-1)^{\frac{L_1 + L_2 + L_3}{2}} I_{L_1L_2L_3}^{0\ 0\ 0\ 0} I_{L_31L''}^{0S''-S''} I_{L_21L}^{0\lambda - \lambda} \begin{cases} L'' & L & \ell \\ L_3 & L_2 & L_1 \\ 1 & 1 & 2 \end{cases} \end{aligned}$$

Summation ranges are restricted by selection rules

 $I^{s_1s_2s_3}_{\ell_1\ell_2\ell_3} \equiv \sqrt{\frac{(2\ell_1+1)(2\ell_2+1)(2\ell_3+1)}{4\pi}} \left(\begin{array}{ccc} \ell_1 & \ell_2 & \ell_3\\ s_1 & s_2 & s_3 \end{array}\right)$

CMB reduced bispectra $b_{\ell_1\ell_2\ell_3} \equiv \sqrt{\frac{(4\pi)}{(2\ell_1+1)(2\ell_1+2)(2\ell_1+3)}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{pmatrix}^{-1} B_{\ell_1\ell_2\ell_3}$ of tensor intensity mode for $\ell_1 = \ell_2 \neq \ell_3$

obs result: |f_{NL}| < 100 @ B_{1Mpc} < 2.6 - 4.4nG

CMB reduced bispectra $b_{\ell_1\ell_2\ell_3} \equiv \sqrt{\frac{(4\pi)}{(2\ell_1+1)(2\ell_1+2)(2\ell_1+3)}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{pmatrix}^{-1} B_{\ell_1\ell_2\ell_3}$ of tensor intensity mode for $\ell_1 = \ell_2 \neq \ell_3$

obs result: $|f_{NL}| < 100 \otimes B_{IMpc} < 2.6 - 4.4nG$

*tighter than power spectrum constraints
*tighter by factor of 4 - 2 than Seshadri + [0902.4066]

Summary

Present the CMB bispectrum induced from the scalar, vector and tensor modes of PMFs by taking into account the full angular dependence

find the roughly constraint : B_{IMpc} < 2.6 - 4.4nG for n_B ~ -3 from the current observational data

future works

- if n_B ≠ -3...
- consider mode-coupling terms, polarizations