Two Loop Radiative Seesaw Model with B-L Symmetry

Takashi Toma (IPPP Durham University)

Based on arXiv: 1303.7356 In collaboration with Yuji Kajiyama and Hiroshi Okada

Baryon and Lepton Number Violation (BLV) @Heidelberg Germany 8-11 Apr. 2013

Outline

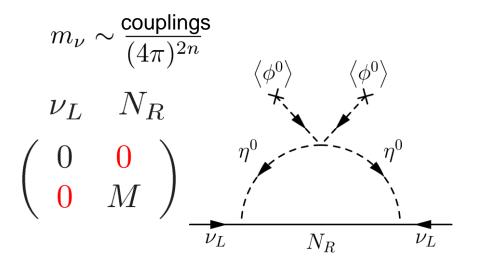
- Introduction
 - Neutrino mass and Dark Matter
 - Radiative Seesaw Models
- A New Radiative Seesaw Model
 Multi-component Dark Matters
 Constraints to the model
 - Numerical calculation
- Summary

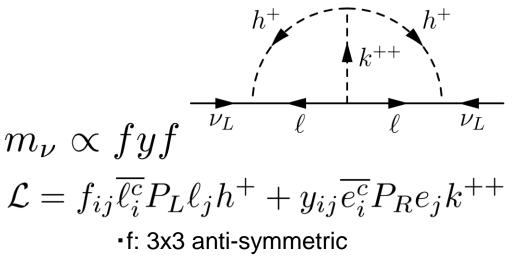
Standard Model

Unsatisfied points $m_{\nu} \sim 0.1 \,\,[\text{eV}] \ll 100 \,\,[\text{GeV}]$ Zero neutrino masses No Dark Matter candidate ← cosmological observations Seesaw mechanism introduce right-handed neutrinos Majorana mass term $\mathcal{L} = -\overline{\nu_L} m_D N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.}$ Block diagonalization (when $m_D \ll M$) $m_{\mu}^L \simeq -m_D M^{-1} m_D^T$ But no DM candidate

- DM candidate in MSSM: neutralino neutrino mass?
- \rightarrow improve simultaneously \rightarrow radiative seesaw models

Radiative Seesaw Models


 Ma model neutrino mass (1-loop) Dark Matter


	$SU(2)_L$	$U(1)_Y$	\mathbb{Z}_2
N_i	1	0	
η	2	1/2	

Zee-Babu model

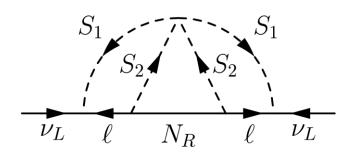
neutrino mass (2-loop) (one is massless)

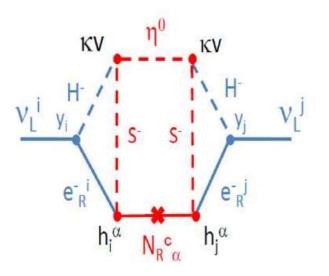
	$SU(2)_L$	$U(1)_Y$
h^+	1	1
k^{++}	1	2

Doubly charged scalar

Radiative Seesaw Models

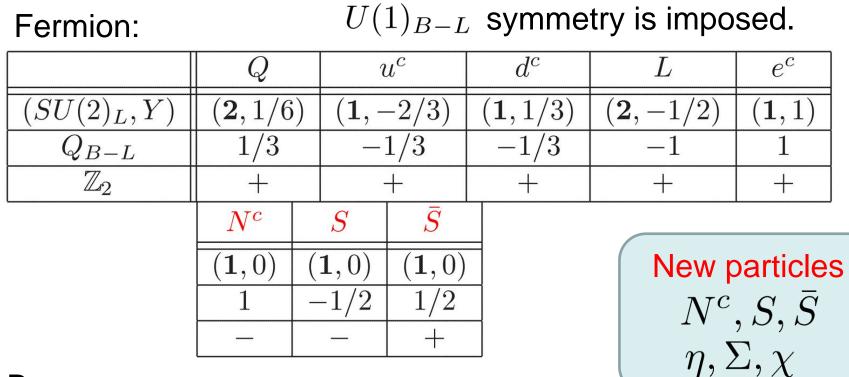
Krauss-Nasri-Trodden model


neutrino mass (3-loop)


Dark Matter candidate (N_R) (only one generation)

	$SU(2)_L$	$U(1)_Y$	\mathbb{Z}_2
S_1^+	1	1	+
S_2^+	1	1	+
N_R	1	0	_

 Aoki-Kanemura-Seto model neutrino mass (3-loop) Dark Matter candidate


	$SU(2)_L$	$U(1)_Y$	\mathbb{Z}_2
Φ_2	2	1/2	+
S^+	1	1	_
η	1	0	_
N_R	1	0	

A New Radiative Seesaw Model with B-L symmetry

Field contents

Boson:

	Φ	η	Σ	χ
$(SU(2)_L, Y)$	(2, 1/2)	(2, 1/2)	(1,0)	(1,0)
Q_{B-L}	0	0	1	-1/2
\mathbb{Z}_2	+		+	+

Lagrangian

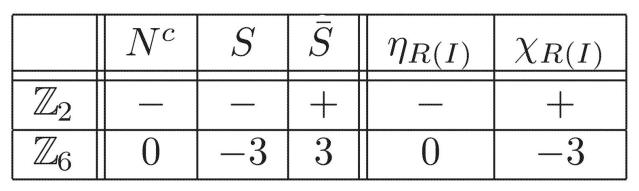
 $\mathcal{L}_{\text{lepton}} = y_{\ell} \Phi^{\dagger} e^{c} L + y_{\nu} \eta^{\dagger} N^{c} L + y_{N} \chi N^{c} S + y_{S} \Sigma S S$ $+ y_{\bar{S}} \Sigma^{\dagger} \bar{S} \bar{S} + \text{h.c.} - \mathcal{V} (\Phi, \eta, \Sigma, \chi)$

 $\begin{array}{l} \langle \eta \rangle = \langle \chi \rangle = 0 & \rightarrow \text{ no Dirac mass term} \\ & \rightarrow \text{ realized by constraining the scalar potential} \\ \langle \Sigma \rangle \neq 0 & \longrightarrow U(1)_{B-L} \rightarrow \mathbb{Z}_6 \end{array}$

Right-handed neutrino masses are forbidden.

•get masses at one-loop.

$$(m_N)_{\alpha\beta} = \left(y_N y_N^T\right)_{\alpha\beta} \frac{m_S}{(4\pi)^2} I\left(\frac{m_{\chi_R}^2}{m_S^2}, \frac{m_{\chi_I}^2}{m_S^2}\right) \xrightarrow[N^c]{} N^c \text{ when } \delta m_{\chi}^2 \to 0 \implies N^c \text{ becomes massless}$$


 χ_R, χ_I

Neutrino mass generation

$$\begin{split} & \eta_R, \eta_I \\ & \chi_R, \chi_I \\ & \nu_L & N^c & S & N^c & \nu_L \\ (m_\nu)_{\alpha\beta} &= \left(y_\nu^T y_N^* y_N^\dagger y_\nu\right)_{\alpha\beta} \frac{m_S}{4 \left(4\pi\right)^4} I\left(\frac{m_{\eta_R}^2}{m_S^2}, \frac{m_{\eta_I}^2}{m_S^2}, \frac{m_{\chi_R}^2}{m_S^2}, \frac{m_{\chi_I}^2}{m_S^2}\right) \\ & \delta m_\eta^2 \to 0 \\ & \delta m_\chi^2 \to 0 & \implies \text{massless since } \frac{\delta m_\eta^2}{\left(p^2 - m_{\eta_R}^2\right) \left(p^2 - m_{\eta_I}^2\right)} \\ & \text{ex. when } \frac{m_S \sim 1 \text{TeV}}{I \sim \mathcal{O}(1)} & \text{We need } y_\nu^2 y_N^2 \sim 10^{-8} \\ & \text{for neutrino mass scale.} \\ & m_\nu \sim 0.1 \text{ eV} \end{split}$$

Multi-component Dark Matter

DM candidates:

 N^c mass is radiatively generated.

 $> m_S$

We have various combinations. Two or three component DM.

$$\begin{array}{c|c} \operatorname{Ex.1} & m_{N^c} + m_{\chi_R} < m_S & \operatorname{Ex.2} & m_{N^c} + m_{\chi_R} \\ \end{array} \\ \xrightarrow{\operatorname{opp}}_{S \text{ seg}} & \xrightarrow{S} & \operatorname{seg} \\ & & & \chi_R \\ & & & & N^c \end{array} \end{array}$$

Constraints to the model

•S,T parameters

 \rightarrow vacuum polarization of gauge bosons

 $\delta S = 0.03 \pm 0.10 \ \delta T = 0.05 \pm 0.12 \text{ at } m_h = 126 \text{GeV}$ $\rightarrow \text{we get } (m_\eta - m_{\eta_R}) (m_\eta - m_{\eta_I}) \lesssim 133^2 \text{ GeV}$

Lepton Flavor Violation

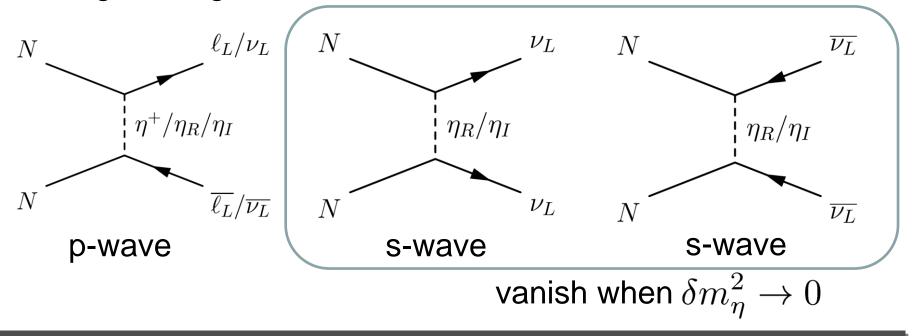
Br
$$(\mu \to e\gamma) = \frac{\alpha_{\rm em} |(y_{\nu}^{\dagger} y_{\nu})_{\mu e}|^2}{768\pi G_F^2 m_{\eta}^4} < 5.7 \times 10^{-13}$$

 \rightarrow Flavor structure of Yukawa couplings

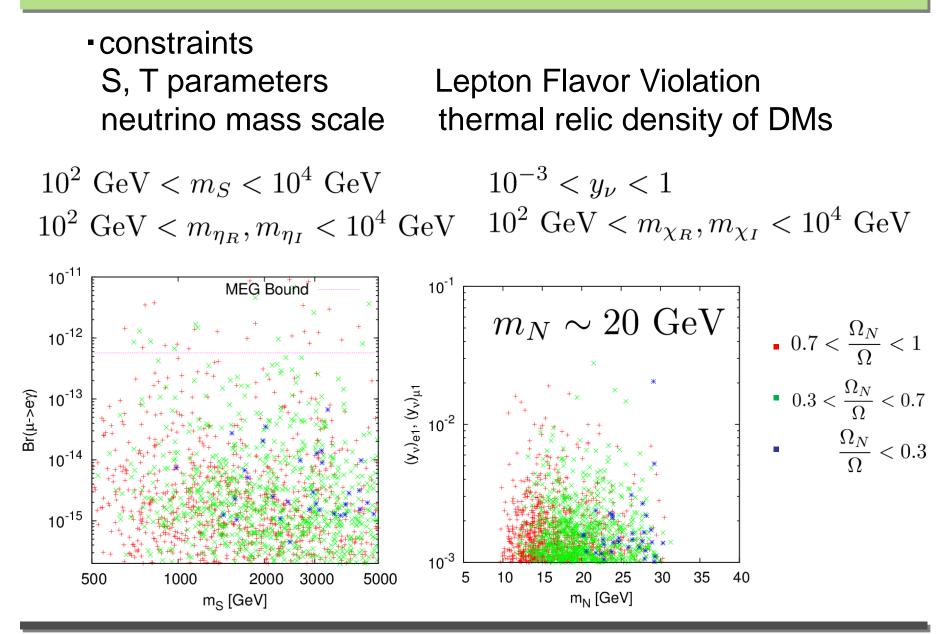
- Thermal relic density of DMs
- neutrino mass scale $m_{\nu} \sim 10^{-1} \text{ eV}$

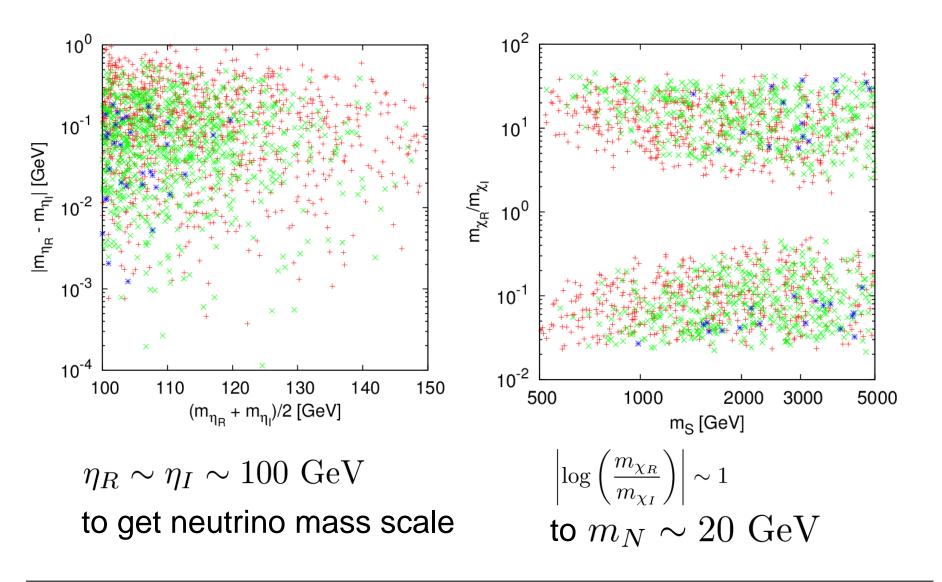
Annihilation channels

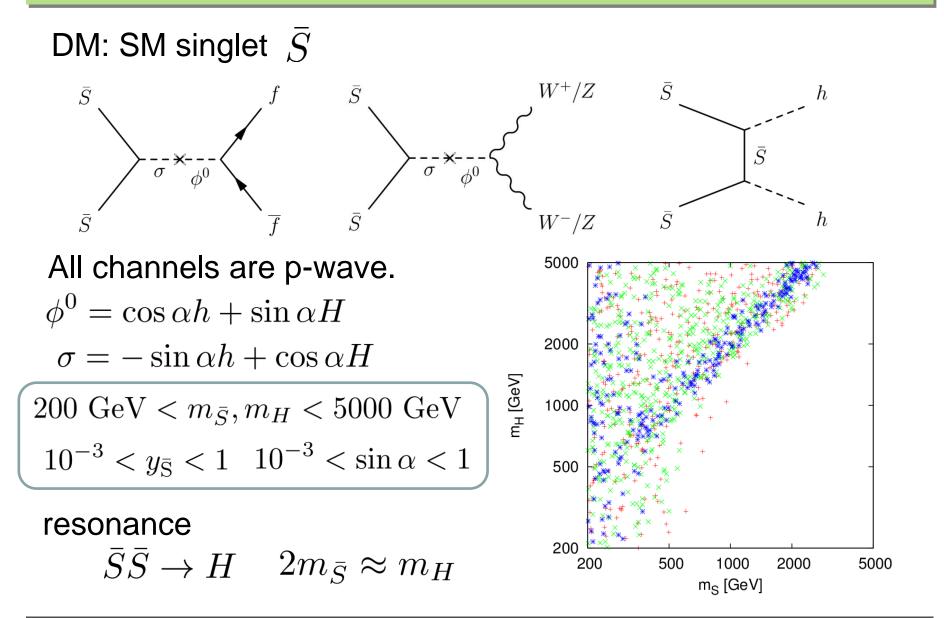
Simplest case: $\left(N^{c}, \bar{S}
ight)$ They do not exchange (at tree level).


→ we can consider their abundances independently.

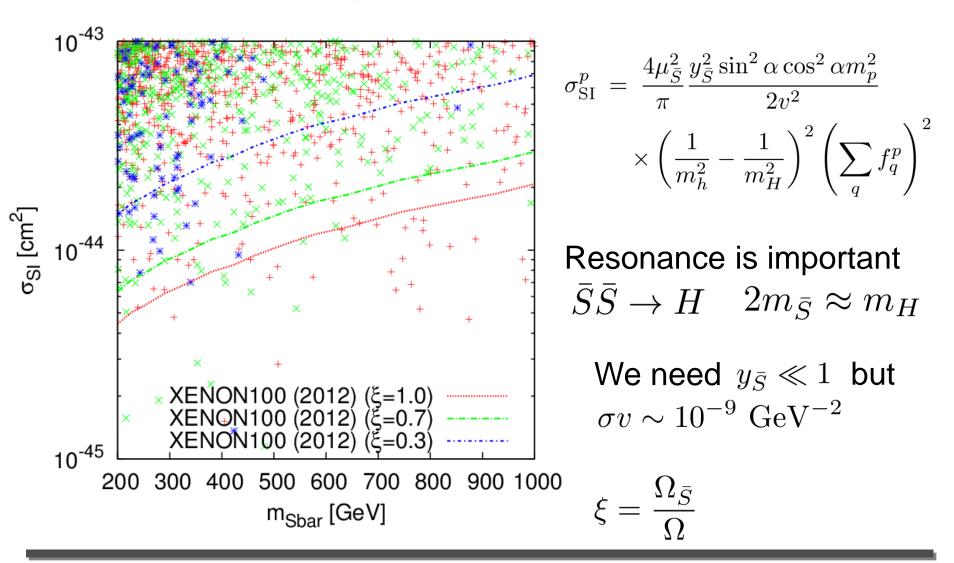
$$\Omega h^2 = \Omega_N h^2 + \Omega_{\bar{S}} h^2$$


DM: lightest right-handed neutrino N^c


$$\sigma v = a + bv^2$$


Numerical calculation

Numerical calculation



Annihilation channels

Direct detection of DM

Elastic scattering: $\bar{S}q \rightarrow \bar{S}q$ (Higgs exchange)

- •We constructed a new radiative seesaw model.
- Light neutrino masses are generated at two-loop level.
- Multi-component DMs are included.

($\mathbb{Z}_2, \mathbb{Z}_6$ symmetries)

•We analyzed this model under some constraints.

(S-T parameters, thermal relic density of DMs, Lepton Flavor Violation, neutrino mass scale)

-Resonance region is only allowed by both of relic density of DM $\bar{S}\,$ and direct detection experiment.

Thank you for your attention!