Neutrino masses from Planck scale

Takashi Toma McGill University

Neutrino Platform Week 2019 at CERN, Geneva Switzerland

Based on Phys.Rev.Lett. 122 (2019) no.8, 081803 [arXiv:1802.09997] + work in progress

In collaboration with Alejandro Ibarra and Patrick Strobl (TUM)

Introduction

Neutrinos are massive. (massless in the Standard Model)

• Neutrino oscillation data $\Rightarrow \mathcal{O}(0.1) \text{ eV}$

Esteban et al. JHEP (2017)

 Very small masses of neutrinos and large mixing angles.
 ⇒ different mechanism of mass generation?

Neutrino mass generation

- There are many neutrino mass generation mechanisms.
- Seesaw mechanism (Type I, Type II, Type III...), inverse seesaw, linear seesaw, radiative generation etc.
 - In Type I seesaw (simplest), three heavy right-handed neutrinos N_R are introduced.

$$\mathcal{L} = -\phi^{\dagger} \overline{\ell_L} y_{\nu} N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.}$$

$$\rightarrow -\overline{\nu_L} m_D N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.} \qquad m_D = y_{\nu} \langle \phi \rangle$$

Mass matrix $\nu_L \quad N_R^c$

$$\begin{pmatrix} 0 & m_D \\ m_D^T & M \end{pmatrix} \rightarrow \begin{array}{c} m_\nu \approx -m_D M^{-1} m_D^T + \cdots \\ (\text{if } m_D \ll M) \end{array}$$
Rough picture $m_\nu \sim \frac{y_\nu^2 \langle \phi \rangle^2}{M} \sim 0.1 \text{ eV}$

Takashi Toma (McGill University)

 \mathcal{M}

Seesaw mechanism

Seesaw mechanism

Cannot directly correlate neutrino mass scale and Planck scale.

Neutrino masses from Planck scale

A simple case

Two right-handed neutrinos and one lepton doublet.

$$\mathcal{L} = -Y_i \tilde{H} \overline{L} N_j - \frac{M_i}{2} \overline{N_i^c} N_i + \text{H.c.}$$

Assumption: hierarchical right-handed neutrino masses at Planck scale.

$$\begin{split} M &\approx \begin{pmatrix} 0 & 0 \\ 0 & M_2 \end{pmatrix}, \quad \rightarrow \quad M(\mu) = \begin{pmatrix} M_1(\mu) & 0 \\ 0 & M_2(\mu) \end{pmatrix} \\ M_1 &\ll M_2 \sim M_P \\ \text{at Planck scale} & \text{at lower energy scale} \end{split}$$

$$M = M_0 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \mathsf{Mass eigenvalues} = 0, 2M_0$$

E. K. Akhmedov et al., PRL (1992), V. Berezinsky et al., JHEP (2005)

Renormalization Group Equation for ${\cal M}$

• M_1 is generated by radiative effects.

 \Rightarrow Renormalization group equation (RGE) for M.

Renormalization Group Equation for ${\cal M}$

At 1-loop, only one diagram contributes

$$\beta_M^{\text{1-loop}} = \frac{dM}{dt} = \frac{1}{(4\pi)^2} \left[\left(Y^{\dagger} Y \right)^T M + M \left(Y^{\dagger} Y \right) \right]$$

At 2-loop, there are many contributions

$$\beta_M^{2\text{-loop}} = \frac{dM}{dt} = \frac{4}{\left(4\pi\right)^4} \left(Y^{\dagger}Y\right)^T M\left(Y^{\dagger}Y\right) + \cdots$$

Rank increasing diagram

the other diagrams do not increase rank of M.

Renormalization Group Equation for ${\cal M}$

Full beta function (can be done by SARAH https://sarah.hepforge.org/)

$$\begin{aligned} \frac{dM}{dt} &= \frac{1}{(4\pi)^2} \left[\left(Y^{\dagger}Y \right)^T M + M \left(Y^{\dagger}Y \right) \right] + \frac{4}{(4\pi)^4} \left(Y^{\dagger}Y \right)^T M \left(Y^{\dagger}Y \right) \\ &+ \frac{1}{(4\pi)^4} \left[\frac{17}{8} \left(g_Y^2 + 3g_2^2 \right) \left(Y^{\dagger}Y \right) - \frac{1}{4} Y^{\dagger}Y Y^{\dagger}Y - \frac{1}{4} Y^{\dagger}Y_e Y_e^{\dagger}Y \right. \\ &- \frac{3}{2} \text{Tr} \left(Y_e^{\dagger}Y_e + Y^{\dagger}Y + 3Y_u^{\dagger}Y_u + 3Y_d^{\dagger}Y_d \right) \left(Y^{\dagger}Y \right) \right]^T M \\ &+ \frac{1}{(4\pi)^4} M \left[\frac{17}{8} \left(g_Y^2 + 3g_2^2 \right) \left(Y^{\dagger}Y \right) - \frac{1}{4} Y^{\dagger}Y Y^{\dagger}Y - \frac{1}{4} Y^{\dagger}Y_e Y_e^{\dagger}Y \right. \\ &- \frac{3}{2} \text{Tr} \left(Y_e^{\dagger}Y_e + Y^{\dagger}Y + 3Y_u^{\dagger}Y_u + 3Y_d^{\dagger}Y_d \right) \left(Y^{\dagger}Y \right) \right] \end{aligned}$$

We include only M and Y for simplicity. The other contributions give small corrections.

Takashi Toma (McGill University)

After simplification

$$\rightarrow \frac{dM}{dt} \approx \frac{1}{(4\pi)^2} \left[\left(Y^{\dagger}Y \right)^T M + M \left(Y^{\dagger}Y \right) \right] + \frac{4}{(4\pi)^4} \left(Y^{\dagger}Y \right)^T M \left(Y^{\dagger}Y \right)^T \\ - \frac{1}{4(4\pi)^4} \left(Y^{\dagger}YY^{\dagger}Y \right)^T M - \frac{1}{4(4\pi)^4} M \left(Y^{\dagger}YY^{\dagger}Y \right) \\ = \left(1 - \frac{1}{4}P^T \right) P^T M + MP \left(1 - \frac{1}{4}P \right) + 4P^T MP \\ \text{where } P \equiv \frac{1}{(4\pi)^2} Y^{\dagger}Y = \frac{1}{(4\pi)^2} \left(\begin{array}{c} Y_1^2 & Y_1Y_2 \\ Y_1Y_2 & Y_2^2 \end{array} \right).$$

Picard iterative integration:

$$M(\mu) = M(M_P) + \left(\beta|_{\mu=M_P}\right) \log\left(\frac{\mu}{M_P}\right) + \cdots$$

at leading order

Takashi Toma (McGill University)

Analytic solution

$$M(\mu) \approx \begin{pmatrix} 0 & 0 \\ 0 & M_2 \end{pmatrix} + M_2 \begin{pmatrix} 4P_{12}^2 & P_{12} + 4P_{12}P_{22} \\ P_{12} + 4P_{12}P_{22} & 2P_{22} + 4P_{22}^2 \end{pmatrix} \log \left(\frac{\mu}{M_P}\right)$$

 \blacksquare Diagnalize $M(\mu)$

$$M_2(\mu) \approx M_2,$$

$$M_1(\mu) \approx 4M_2 P_{12}^2 \log\left(\frac{\mu}{M_P}\right) = \frac{4M_2 Y_1^2 Y_2^2}{(4\pi)^4} \log\left(\frac{\mu}{M_P}\right),$$

- · M_1 is proportional to M_2 . $M_1 \sim 10^{14} \text{ GeV}$ if $Y_1 \sim Y_2 \sim \mathcal{O}(1)$
- \cdot small neutrino mass scale is obtained by seesaw mechanism

$$m_{\nu} = -v^2 Y M^{-1} Y^T = -v^2 \left(\frac{Y_1^2}{M_1} + \frac{Y_2^2}{M_2} \right) \approx -\frac{v^2 (4\pi)^4}{4M_2 Y_2^2 \log\left(\mu/M_P\right)}$$
$$= 0.05 \text{ eV} \left(\frac{0.6}{Y_2} \right)^2 \left(\frac{1.2 \times 10^{19} \text{ GeV}}{M_2} \right)$$

Takashi Toma (McGill University)

Realistic case

Three right-handed neutrinos and lepton doublets.

$$\mathcal{L} = -Y_{ij}\tilde{H}\overline{L_i}N_j - \frac{M_i}{2}\overline{N_i^c}N_i + \text{H.c.}$$

Assumption: hierarchical mass eigenvalues at Planck scale.

$$\begin{split} M \approx \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & M_3 \end{pmatrix}, & \to & M(\mu) = \begin{pmatrix} M_1(\mu) & 0 & 0 \\ 0 & M_2(\mu) & 0 \\ 0 & 0 & M_3(\mu) \end{pmatrix} \\ M_1 \ll M_2 \ll M_3 \\ \text{at Planck scale} & \text{at low energy scale} \end{split}$$

 M_1 and M_2 are generated by radiative effects?

Analytic solution

- Diagnalize $M(\mu)$ assumption: $M_1 \ll M_2 \ll M_3$ at $\mu = M_P$
- 1 If radiative corrections are dominant,

$$\begin{split} M_{3}(\mu) &\approx M_{3}, \\ M_{2}(\mu) &\approx 4M_{3} \left(P_{31}^{2} + P_{32}^{2} \right) \log \left(\frac{\mu}{M_{P}} \right), \\ M_{1}(\mu) &\approx 8M_{3} \frac{\left[P_{31}P_{32} \left(P_{11} - P_{22} \right) - P_{21} \left(P_{31}^{2} - P_{32}^{2} \right) \right]^{2}}{P_{31}^{2} + P_{32}^{2}} \log^{2} \left(\frac{\mu}{M_{P}} \right) \end{split}$$

- \cdot All masses are proportional to M_3 .
- $\cdot M_1(\mu)$ is order of four-loop.
- **2** If tree contribution M_1 is dominant,

$$M_1(\mu) \approx \frac{M_2 P_{31}^2 + M_1 P_{32}^2}{P_{31}^2 + P_{32}^2}$$

Analytic solution

• Why $M_1(\mu)$ is order of four loop? If RGE is expressed in terms of M_i (eigenvalues) and U:

Re diag:

$$\frac{dM_i}{dt} = 2M_i \text{Re}\hat{P}_{ii} + 4\sum_k M_k \text{Re}\left(\hat{P}_{ki}^2\right),$$

$$-2M_i \text{Im } \left(U^{\dagger}\frac{dU}{dt}\right)_{ii} = 4\sum_k M_k \text{Im}\left(\hat{P}_{ki}^2\right),$$

Re non-diag: $(M_j - M_i) \operatorname{Re} \left(U^{\dagger} \frac{dU}{dt} \right)_{ij} = (M_i + M_j) \operatorname{Re} \hat{P}_{ij} + 4 \sum_k M_k \operatorname{Re} \left(\hat{P}_{ki} \hat{P}_{kj} \right),$ Im non-diag: $-(M_j + M_i) \operatorname{Im} \left(U^{\dagger} \frac{dU}{dt} \right)_{ij} = (M_i - M_j) \operatorname{Re} \hat{P}_{ij} + 4 \sum_k M_k \operatorname{Im} \left(\hat{P}_{ki} \hat{P}_{kj} \right),$

where
$$P = U^{\dagger}PU$$
 and $U^{T}MU = \text{diag}(M_1, M_2, M_3)$.

If
$$M_1 \sim M_2 \sim 0$$
 at Planck scale \rightarrow fixed point conditions
 $\operatorname{Im}\left(\hat{P}_{21}^2\right) = 0$, $\operatorname{Im}\left(\hat{P}_{31}^2\right) = 0$, $\operatorname{Im}\left(\hat{P}_{32}^2\right) = 0$, $\hat{P}_{31}\hat{P}_{32} = 0$,
 $M_1(\mu) = 4M_3\operatorname{Re}\left(\hat{P}_{31}^2\right)\log\left(\frac{\mu}{M_P}\right) \rightarrow 0$ at $\mathcal{O}(P^2)$ order

 ν mass from Planck scale Numerical results

Numerical results (radiatively generated M_1)

- Numerically diagonalize 6×6 mass matix $\begin{pmatrix} 0 & Yv \\ Y^Tv & M \end{pmatrix}$
 - at lower energy scale
- 6 mass eigenvalues are obatained

Numerical results (radiatively generated M_1)

- Heaviest N_3 : $M_3(\mu) \sim M_P$
- 2nd heaviest N₂:

$$M_2(\mu) \sim \frac{y_3^4 M_P}{(4\pi)^4} \times \text{mixing}^4$$

= $10^{10} \sim 10^{14} \text{ GeV}$

■ Lightest v₁: m₁(µ) ~ 0 suppressed by heaviest N₃

2nd lightest v₂ can be ~ 0.1 eV via seesaw with 2nd heaviest N₂.
 The other two states (v₃, N₁) are degenerate if √y₁² + y₂² ≤ 10⁻²
 Seesaw with N₁ does not work.

Numerical results (tree M_1)

If M is not exactly democratic,

- At Planck scale
 - $M = \text{diag}(0, 10^9 \text{ GeV}, M_P)$ $Y_D = \text{diag}(y_1, y_2, 1)$
- Heaviest, 2nd heaviest, lightest are same with previous case.
- \blacksquare Lightest N_1 : tree M_1

Seesaw with N_2 and N_1 works if $10^{-4} \lesssim \sqrt{y_1^2 + y_2^2} \lesssim 10^{-2}$

Summary

- If right-handed neutrino masses are hierarchical at Planck scale (high energy scale), radiative corrections may dominate right-handed neutrino masses at low energy scale.
- 2 Without introduing new energy scale, one of small neutrino masses was naturally generated from Planck scale by seesaw mechanism with N_2 .

Outlook

This framework leads predictive phenomenology because number of parameters are reduced.

Ex. application to leptogenesis, models with hierarchical mass spectrum.