Dark matter models, properties and particle physics candidates

Takashi Toma

The 2nd DMNet International Symposium, Heidelberg Based on PRL 119 191801, PRD 100 (2019) 1, 015009, PRD 104 (2021) 3, 035011 JHEP 1812 (2018) 089, JHEP 05 (2020) 057, JHEP 08 (2019) 050

Outline

- **I** Introduction
 - · WIMP
 - \cdot Status of direct detection experiments
- 2 EWIMP, SIMP, cannibal DM, FIMP
- **3** A pseudo-Nambu-Goldstone dark matter (pNG DM)
- 4 Summary

WIMP is thermalized with SM particles in early universe

- To get $\Omega_{\chi}h^2 = 0.12$, roughly $\sigma \sim 1 \mathrm{pb} \sim 10^{-26} \mathrm{cm}^3/\mathrm{s} \sim 10^{-36} \mathrm{cm}^2$
- Almost independent on DM mass

WIMP

Status of direct detection experiments

Takashi Toma (Kanazawa U.)

The 2nd DMNet International Symposium

4 / 35

WIMP

Future sensitivity of direct detection experiments

DM models

Classification of DM models from experimental results

- **1** WIMP with suppressed cross section for direct detection
 - · EWIMP \Rightarrow loop-induced $\sigma_{\rm SI}$

 - pNGB DM : $\mathcal{L} \supset \frac{s}{v} \left[\left(\partial_{\mu} \chi \right)^2 m_{\chi}^2 \chi^2 \right]$ DM with a pseudo-scalar mediator : $\mathcal{L} \supset a \overline{\chi} \gamma_5 \chi \Rightarrow \sigma_{\mathrm{SI}} \propto v_{\chi}^2$
- 2 Sub-GeV DM (unexplored mass region)
 - SIMP (Strongly Interacting Massive Particle)
 - · DM with a new light particle
- 3 Very small interactions with SM
 - · FIMP (Feebly Interacting Massive Particle) $\Rightarrow \lambda \sim 10^{-11}$
 - · Cannibal DM $\Rightarrow \lambda \leq 10^{-8}$, but large couplings in dark sector

6/35

DM models

Classification of DM models from experimental results

- **1** WIMP with suppressed cross section for direct detection
 - · EWIMP \Rightarrow loop-induced $\sigma_{\rm SI}$

 - pNGB DM : $\mathcal{L} \supset \frac{s}{v} \left[\left(\partial_{\mu} \chi \right)^2 m_{\chi}^2 \chi^2 \right]$ DM with a pseudo-scalar mediator : $\mathcal{L} \supset a \overline{\chi} \gamma_5 \chi \Rightarrow \sigma_{\text{SI}} \propto v_{\chi}^2$
- Sub-GeV DM (unexplored mass region)
 - SIMP (Strongly Interacting Massive Particle)
 - · DM with a new light particle
- 3 Very small interactions with SM
 - · FIMP (Feebly Interacting Massive Particle) $\Rightarrow \lambda \sim 10^{-11}$
 - · Cannibal DM $\Rightarrow \lambda \leq 10^{-8}$, but large couplings in dark sector

7 / 35

EWIMP (ElectroWeak-Intereacting Massive Particle)

Farina et al., JHEP (2013) [arxiv:1303.7244]

Quantum numbers			DM could	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Finite naturalness	$\sigma_{ m SI}$ in
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	bound in TeV	$10^{-46}{\rm cm}^2$
2	1/2	0	EL	0.54	350	$0.4 imes \sqrt{\Delta}$	$(0.4 \pm 0.6) 10^{-3}$
2	1/2	1/2	EH	1.1	341	$1.9 imes \sqrt{\Delta}$	$(0.3 \pm 0.6) 10^{-3}$
3	0	0	HH^*	$2.0 \rightarrow 2.5$	166	$0.22 imes \sqrt{\Delta}$	0.12 ± 0.03
3	0	1/2	LH	$2.4 \rightarrow 2.7$	166	$1.0 imes \sqrt{\Delta}$	0.12 ± 0.03
5	0	1/2	stable	$4.4 \rightarrow 10$	166	$0.4 imes \sqrt{\Delta}$	1.0 ± 0.2
7	0	0	stable	$8 \rightarrow 25$	166	$0.06 imes \sqrt{\Delta}$	4 ± 1

• Quintuplet is automatically stabilized by accidental \mathbb{Z}_2 symmetry.

EWIMP

Gamma-ray line search

Lefranc et al., arXiv:1608.00786

- CTA prospect (expected to start in 2026) Energy range: 20 GeV - 300 TeV
- Both of DM and baryon number is large in Galactic center

Broad gamma-ray search

EWIMP

Disappearing tracks at colliders

SIMP (Strongly Interacting Massive Particle)

Y. Hochberg et al. PRL (2014) [arxiv:1402.5143]

- DM abundance is determined by $3 \rightarrow 2$ or $4 \rightarrow 2$ processes in dark sector, but not $2 \rightarrow 2$ processes (WIMP).
- \blacksquare Kinetic eq. with the SM at least until $2 \rightarrow 2$ freeze-out.

Condition for thermal SIMP: $\Gamma_{ann} < \Gamma_{3\rightarrow 2} < \Gamma_{kin}$

 $\begin{array}{l} \mathbf{m}_{\chi} \sim \mathcal{O}(10) \text{ MeV for } 3 \rightarrow 2 \text{ process} \\ \frac{dn}{dt} + 3Hn = -\langle \sigma_{3 \rightarrow 2} v^2 \rangle \left(n^3 - n^2 n_{\text{eq}} \right) \end{array} \begin{array}{l} \text{Ex: } \mathbb{Z}_3 \text{ symmetry} \\ V \supset \kappa \chi^3 + \text{h.c.} + \frac{\lambda}{4} |\chi|^4 \end{array}$

 $m_{\chi} \sim \mathcal{O}(100)$ keV for $4 \rightarrow 2$ process \Rightarrow naively conflict with BBN

SIMP properties

Y. Hochberg et al. PRL (2014) [arxiv:1402.5143]

Large self-interactions are required for observed abundance Ωh² = 0.12.
 Improve small scale problems σ_{self}/m_χ ~ 1 cm²/g.

Ex. core vs cusp problem

Tulin and Yu, Phys.Rept. (2018) [arxiv:1705.02358]

Takashi Toma (Kanazawa U.)

Cannibal DM

Cannibal DM

Cannibal DM

Pappadopulo et al. PRD (2016) [arxiv:1602.04219], JHEP (2016) [arxiv:1607.03108]

- $\langle \sigma v \rangle$ larger than WIMP is needed for observed relic.
- Indirect detection signals are enhanced.

Takashi Toma (Kanazawa U.)

FIMP

FIMP (Feebly Interacting Massive Particle)

- FIMP is never thermalized with SM sector, and is slowly produced by decays or scatterings.
- $\Omega_{\text{FIMP}} \propto (\text{coupling})^n$ cf: $\Omega_{\text{WIMP}} \propto (\text{coupling})^{-n}$
- coupling $\sim 10^{-11}$ to reproduce the PLANCK value.
- Candidates: sterile neutrino, Higgs portal DM etc

FIMP signals

Hall et al., JHEP 03 (2010) 080 [arXiv:0911.1120] Hambye et al., PRD (2018) [arXiv:1807.05022]

- Detection of FIMP is challenging.
- Enhanced direct detection rate Ex. DM coupled with a light dark photon $\mathcal{L} \supset -\frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu}$

Takashi Toma (Kanazawa U.)

13th September 2022

17 / 35

FIMP

Summary of DM models

• χ : DM, f: SM particles, ϕ : light dark sector particles

Other candidates

Other possibilities

ELDER (ELastically DEcoupling Relic) Kuflik et al., PRL 116, 221302 (2016)

2 Zombie DM Kramer et al., PRL 126, 081802 (2021)

· Reduce DM numbers by $\chi \zeta^{\dagger} \rightarrow \zeta \zeta$

· thermal production is possible even if DM mass is heavy as 10^8 GeV without violating the unitarity bound.

A pseudo-Nambu-Goldstone DM

The simplest pNGB DM model

C. Gross, O. Lebedev, TT, PRL (2017)

- Introduce complex scalar field $S = (s + i\chi)/\sqrt{2}$
- Global U(1) symmetry is assumed (invariant under $S \rightarrow e^{i\alpha}S$)

$$\begin{split} \mathcal{V} = & -\frac{\mu_H^2}{2} |H|^2 - \frac{\mu_S^2}{2} |S|^2 + \frac{\lambda_H}{2} |H|^4 + \lambda_{HS} |H|^2 |S|^2 + \frac{\lambda_S}{2} |S|^4 \\ & - \left(\frac{\mu_S'^2}{4} S^2 + \text{H.c.}\right) \quad \leftarrow \text{ soft breaking mass term} \end{split}$$

 \blacksquare After H and S get VEVs, ϕ and s mix

$$H = \begin{pmatrix} 0 \\ (v + \phi)/\sqrt{2} \end{pmatrix}, \qquad S = \frac{v_s + s + i\chi}{\sqrt{2}}$$
$$\begin{pmatrix} \phi \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

• $\sin \theta \lesssim 0.3 \quad \leftarrow \text{Constrained by EWPT}$, h_2 direct search at LHC

Model

Bound on $\sin \theta$ A. Falkowski et al., JHEP 1505 (2015) [arxiv:1502.01361]

- **Red**: h_2 direct search at LHC
- Yellow: h_1 coupling measurements
- Green: Favored region from stability of scalar potential
- Gray: Electroweak precision tests

$$|\sin\theta| \lesssim 0.3 \text{ if } m_{h_2} \gtrsim m_{h_1}$$

• $m_{\chi} \leq m_{h_2}$ (above EW scale)

Direct detection (tree level) C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

Scattering amplitude cancels between h_1, h_2 mediated diagrams

$$i\mathcal{M} \sim i\left(\frac{m_{h_1}^2}{q^2 - m_{h_1}^2} - \frac{m_{h_2}^2}{q^2 - m_{h_2}^2}\right) \sim i\frac{q^2(m_{h_1}^2 - m_{h_2}^2)}{m_{h_1}^2 m_{h_2}^2} \to 0$$

23 / 35

Direct detection (tree level) C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

Rewrite with
$$S = \frac{(v_s + s)}{\sqrt{2}} e^{i\chi/v_s} \Rightarrow \mathcal{L} \supset \frac{1}{v_s} s \left[(\partial_\mu \chi)^2 - m_\chi^2 \chi^2 \right]$$

The cancellation is due to nature of Goldstone boson

All interactions are written with derivative couplings $\mathcal{L}_{int} = \mathcal{L}_{int}(\partial_{\mu}\chi)$

• Only 4 independent parameters $(m_{\chi}, m_{h_2}, \sin \theta, v_s (\lambda_S))$

D. Azevedo et al., JHEP [arXiv:1810.06105] K. Ishiwata, TT, JHEP [arXiv:1810.08139] S. Glaus et al., JHEP [arXiv:2008.12985] Direct detection (1-loop level)

Compute Feynman diagrams at 1-loop level

q

(i) self-energy correction

q

q

- (ii) vertex correction
- (iii) box and triangle \rightarrow two Yukawa couplings
 - \rightarrow sub-dominant in most cases

Takashi Toma (Kanazawa U.)

The 2nd DMNet International Symposium

00000 DECERCE

Numerical analysis (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

 $\sin \theta = 0.1$

- Invisible Higgs decay $Br(h_1 \rightarrow inv) \leq 20\%$ at LHC
- $\sigma_{\rm SI}^p = \mathcal{O}(10^{-48}) \ {\rm cm}^2$ at most
- Unitarity bound: $\lambda_S \leq 8\pi/3$
- More recent calculation: Glaus et al., JHEP 12 (2020) 034 [arXiv:2008.12985]

Numerical analysis (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

 $\sin \theta = 0.2$

- Invisible Higgs decay $Br(h_1 \rightarrow inv) \leq 20\%$ at LHC
- $\sigma_{\rm SI}^p = \mathcal{O}(10^{-48}) \ {\rm cm}^2$ at most
- Unitarity bound: $\lambda_S \leq 8\pi/3$
- More recent calculation: Glaus et al., JHEP 12 (2020) 034 [arXiv:2008.12985]

Domain wall problem

- Domain walls due to spontaneous breaking of \mathbb{Z}_2 symmetry \Rightarrow distort CMB
- Solutions: UV compettion
 - · low energy inflation after the \mathbb{Z}_2 breaking
 - · decay before BBN (making the domain wall unstable)

Press, Ryden, Spergel ApJ (1989)

UV completion Y. Abe, TT, K. Tsumura, JHEP (2020) [arXiv:2001.03954]

• Origin of the soft breaking term? $\frac{m_{\chi}^2}{4}S^2 + H.c.$

	Q_L	u_R^c	d_R^c	L	e_R^c	Н	ν_R^c	S	Φ
$SU(3)_c$	3	$\overline{3}$	$\overline{3}$	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	2	1	1	1
$U(1)_Y$	+1/6	-2/3	+1/3	-1/2	+1	+1/2	0	0	0
$U(1)_{B-L}$	+1/3	-1/3	-1/3	-1	+1	0	+1	+1	+2

- Gauged $U(1)_{B-L}$ extension (New fields: ν_R , Φ)
- Potential $\mathcal{V} \supset \mu_c \Phi^* S^2 + h.c. \rightarrow m_{\chi}^2 S^2$ at low energy The soft breaking term is induced.
- **3** ν_R for anomaly cancellation
 - Seesaw for ν mass $\mathcal{L} \supset \Phi \nu_R \nu_R$

GUT embedding Y. Abe, TT, K. Tsumura, N. Yamatsu, PRD (2021) [arXiv:2104.13523]

		fermions	H	S	Φ	<u>SO(10)</u>
	A_{μ}	Ψ_{16}	Φ ₁₀	Φ ₁₆	$\Phi_{\overline{126}}$	Φ ₂₁₀
SO(10)	45	16	10	16	$\overline{126}$	210

- We embed the UV complete model in SO(10) GUT.
- The pNGB model is reproduced at low energy.
- Breaking pattern: SO(10) → G_{PS} → G_{SM} at µ = M_U at µ = M_I
 Pati-Salam symmetry: G_{PS} = SU(4)_C × SU(2)_L × SU(2)_R
 GUT scale (M_U) Intermediate scale (M_I) = breaking scale of U(1)_{B-L},
- Proton decay SK limit: $\tau_{p \to e^+\pi^0} > 2.4 \times 10^{34}$ years Rough estimate: $\tau \sim (\alpha_U^2 m_p^5 / M_U^4)^{-1} = 1.1 \times 10^{37}$ years

Gauge coupling unification

1-loop RGEs are solved.

Intermediate scale, GUT scale: determined by matching conditions of gauge couplings

$$v_{\phi} = M_I = 1.26 \times 10^{11} \text{ GeV}, \ M_U = 2.06 \times 10^{16} \text{ GeV}$$

 $g_{B-L} = 0.38 \text{ at } \mu = M_I$

Takashi Toma (Kanazawa U.)

DM decay

 χ

DM decay

 χ

DM lifetime: $\tau_{\rm DM} \gtrsim 10^{17}$ sec at least (the age of the universe).

 h_i

Cosmic ray observations give stronger limits: $\tau_{\rm DM} \gtrsim 10^{27}$ sec. 3-body decays $\chi \to ffh_i, ffZ$ if $m_{\chi} \gtrsim m_{h_i}, m_Z \rightarrow \text{excluded}$

Parameter space

•
$$v/v_s \sim \sqrt{\lambda_S}$$

Fermi-LAT: $\chi\chi \to b\bar{b}, WW \to \gamma$ production

• close to the h_2 resonance

Other variations of pNGB DM

- **THDM** + S with global U(1) Zhang, Cai, Jiang, Tang, Yu, Zhang, JHEP 05 (2021) 160
 - \Rightarrow Gravitational waves from strong 1st order phase transition

■ pNGB from global SU(2) Abe and Hamada, arXiv: 2205.11919 ⇒ No domain wall problem, two-component DM

Takashi Toma (Kanazawa U.)

Summary

- Dark matter direct detection experiments impose the strong bounds on the scattering cross section.
 Wayout: suppression of scattering, sub-GeV mass, very small couplings
- 2 A pNGB dark matter is a candidate naturally avoiding the bounds.
- **3** UV completion and GUT embedding have been done.

The simplest pNGB DM model

C. Gross, O. Lebedev, TT, PRL (2017)

\$\chi_{\chi}\$ is mass eigenstate itself \$m_{\chi_{\chi}}^2 = \mu_S'^2\$ Invariant under \$S \rightarrow S^{\dagger}\$, \$\Rightarrow \chi_{\chi}\$ can be a DM candidate
 Higgs portal DM

Scalar potential $\mathcal{V} = \mu_{h_1\chi\chi}h_1\chi^2 + \mu_{h_2\chi\chi}h_2\chi^2 + \cdots$ $\mu_{h_1\chi\chi} = -\frac{m_{h_1}^2 \sin \theta}{v_c}, \quad \mu_{h_2\chi\chi} = \frac{m_{h_2}^2 \cos \theta}{v_c},$ SM Yukawa int. $\mathcal{L} \supset y_q \Big(\cos \theta h_1 + \sin \theta h_2\Big) \overline{q} q$ $\lambda_{H} = \frac{\cos^{2}\theta m_{h_{1}}^{2} + \sin^{2}\theta m_{h_{2}}^{2}}{n^{2}}, \quad \lambda_{S} = \frac{\sin^{2}\theta m_{h_{1}}^{2} + \cos^{2}\theta m_{h_{2}}^{2}}{n^{2}},$ $\lambda_{HS} = \frac{\sin\theta\cos\theta(m_{h_2}^2 - m_{h_1}^2)}{2}$ $\mathcal{V}\mathcal{V}_{c}$

Direct detection (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

Compute Feynman diagrams at 1-loop level

$$\sigma_{\rm SI}^N = \frac{1}{\pi} \frac{m_N^2}{(m_\chi + m_N)^2} |f_{\rm scalar}^N|^2$$

where $\frac{f_{\text{scalar}}^N}{m_N} = \sum_{q=u,d,s} C_S^q f_{Tq}^N - \frac{8}{9} C_S^G f_{Tg}^N \quad (f_{Tq}^N, f_{TG}^N: \text{ nucleon matrix elements})$

$$\langle N|m_q \overline{q}q|N\rangle = f_{Tq}^N m_N, \quad \langle N|\frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu}|N\rangle = -\frac{8}{9} f_{Tg}^N m_N$$

 f_{Tq}^N, f_{Tg}^N are calculated by QCD lattice simulation

 $\mathcal{L}_{\text{eff}} = C_S^q m_q \chi^2 \overline{q} q + C_S^G \frac{\alpha_s}{\pi} \chi^2 G_{\mu\nu}^a G^{a\mu\nu} \quad \leftarrow C_S^q \text{ and } C_S^G \text{ (calculated)}$

Calculate up to 2-loop level in terms of QCD α_s (NLO) \rightarrow scattering amplitude is $\mathcal{O}(\alpha_s)$ J. Hisano, K. Ishiwata, N. Nagata, arXiv:1504.00915

35 / 35

Direct detection (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

(i)+(ii) is dominant for large DM mass
NLO is O(10%) correction

Origin of the soft term C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

U(1) is extended to gauge symmetry, and a new field \$\Delta\$ is introduced
Odd charge for \$S\$, even charge for \$\Delta\$

Ex.
$$q_S = 3$$
, $q_{\Phi} = 2$
 $\mathcal{V} \supset \frac{1}{\Lambda} \Phi^{\dagger^3} S^2 + \frac{1}{\Lambda^3} \Phi^{\dagger^3} |H|^2 S^2 + \frac{1}{\Lambda^3} \Phi^{\dagger^3} |S|^2 S^2 + \cdots$

- After Φ gets a VEV, μ'_S is generated ($\mu'^2_S = \langle \Phi \rangle^3 / \Lambda$)
- Other terms are suppressed by higher dimensional operators \rightarrow the previous model is reproduced in low energy
- CP violation induces DM decay

$$\mathcal{V} \supset \left(\frac{\langle \Phi \rangle}{\Lambda}\right)^3 |H|^2 s \chi \longrightarrow \text{lifetime } \tau_{\chi} \sim \frac{8\pi}{100 \text{ GeV}} \left(\frac{\Lambda}{\langle \Phi \rangle}\right)^6$$

Ex. when $\Lambda = 10^{16} \text{ GeV}$, $\langle \Phi \rangle = 10^7 \text{ GeV} \Rightarrow \tau_{\chi} \sim 10^{29} \text{ s}$

35 / 35

Majorana DM model

G. Arcadi et al., JCAP 1803 (2018), T. Abe et al. arxiv:1810.01039, ···

Majorana DM interacting with pseudo-scalar

$$\mathcal{L} \supset \frac{g_{\chi}}{2} a \overline{\chi} \gamma_5 \chi - c_2 a^2 |H_2|^2 + \cdots \rightarrow i \mathcal{M} \sim \overline{u} \gamma_5 u \sim \boldsymbol{q} \cdot \boldsymbol{J}_{1/2}$$

- Two Higgs Doublet + fermion DM (χ) + pseudo-scalar (a).
- Tree level amplitude vanishes in non-relativistic limit

Indirect detection

DM annihilations

 $\chi\chi \to h_i h_j, WW, ZZ, f\overline{f}$

- Gamma-rays are produced at the end
- Constraints from dSphs

(less visible matter and more DM)

- $\mathcal{O}(50)$ dSphs have been found so far.
- DM models are constrained.

Indirect detection

L. Roszkowski et al., Rept.Prog.Phys. 81 (2018), [arXiv:1707.06277]

Takashi Toma (Kanazawa U.)

Indirect detection

Huitu, Koivunen, Lebedev, Mondal, TT, arXiv:1812.05952

- Small parameter space is excluded by Fermi-LAT gamma-ray observation
- Thermal WIMP scenarios can be tested only when m_{\chi} = O(100) GeV
 CTA is sensitive in heavy DM mass region (DM profile dependent) (\(\chi \chi \chi \chi h_2 h_2 may dominate in this mass range)\)

Takashi Toma (Kanazawa U.)

The 2nd DMNet International Symposium

Collider search

Huitu, Koivunen, Lebedev, Mondal, TT, PRD (2019) [arXiv:1812.05952]

Constraint on h_2 production cross section at LHC

 $\sigma_{\text{prod}} = \sigma(pp \to h_2) \operatorname{Br}(h_2 \to \operatorname{SM}) \propto \sin^2 \theta \operatorname{Br}(h_2 \to \operatorname{SM})$

■ $pp \rightarrow h_2 \rightarrow ZZ$ mode When $\sin \theta \gtrsim 0.2$ and $m_{h_2} \lesssim 2m_{h_1}$, parameters are constrained.

Back Up

Collider search

Huitu, Koivunen, Lebedev, Mondal, TT, PRD (2019) [arXiv:1812.05952]

- Signal channel (VBF)
 h₁ and h₂, both contributions are important
- We focus on $m_{h_2} \geq 2m_{\chi}$
- Simulate the events and put appropriate cuts *E*_T > 250 GeV, p_j > 80 GeV etc

- Signal significance $S = \frac{S}{\sqrt{S + B + \sigma_B^2}}$
- Background $B \pm \sigma_B = 1779 \pm 96$ at 35.9 fb⁻¹ (CMS)
- Analyzed with 3000 fb^{-1} .

Signal significance can be S ≈ 4 − 6 at most.
 m_χ ≤ 100 GeV can be visible.

35 / 35

Direct detection for light DM (electron scattering)

- SENSEI: ongoing, Oscura: next generation
- **7**–8 orders of magnitude improvement is expected.

Takashi Toma (Kanazawa U.)