Fermionic Strongly Interacting Massive Particles

Takashi Toma

Technical University of Munich

7th KIAS Workshop and 2nd KEK-NCTS-KIAS Workshop Seoul, South Korea

Based on the work in collaboration with Johannes Herms and Alejandro Ibarra

Introduction

There is much experimental evidence of DM.

- Rotation curves of spiral galaxy
- CMB observations
- Gravitational lensing
- Large scale structure of the universe

Existence of DM is crucial.

- Well-motivated DM candidate[•] WIMP
- Basic strategies to detect WIMP
 - Indirect detection
 - Direct detection
 - · Collider search
 - \rightarrow These are strongly correlated.

Experimental Situation for WIMP Searches

Indirect search (gamma-rays from dSphs)

Fermi-LAT, PRL (2015) arxiv:1503.02641

 \blacksquare $m_{\rm DM} \lesssim 100$ GeV is constrained.

WIMPs

Experimental Situation for WIMP Searches

Direct search Collider search 10^{-43} May 2017 ATLAS Preliminary vs=8.13 TeV. 20.3-36.1 fb لمعالي [GeV برا المحالي الم All limits at 95% CL WIMP-nucleon σ [cm²] 10^{-44} LENONTE (this work) \breve{E} 1000 $- \bar{\chi}_1^{\pm} \bar{\chi}_2^{0}$ ATLAS-CONF-2017-039, arXiv:1403.5294 10^{-45} lbb+hry+l¹l²+3l, arXiv:1501.07110 $800 - \overline{\chi}^{\dagger} \overline{\chi}^{\dagger} / \overline{\chi}^{0}$ V. 2t. ATLAS-CONF-2017-035 3I+4I, arXiv:1509.07153 600 10^{-46} 400 10^{-47} 200 10^{1} 10^{2} 10^{3} 10^{4} WIMP mass $[\text{GeV}/c^2]$ 00 1000 1200 m(χ̃[±]₁, χ̃⁰₂, χ̃⁰₂) [GeV] 200 400 600 800

XENON1T, PRL (2017) arxiv:1705.06655

Summary plot from ATLAS

- Experimental constraints become stronger and stronger.
- Interactions between DM and SM may be weak enough.

Takashi Toma (TUM)

Joint Workshop@KIAS

WIMPs

One possibility to evade DD constraint

C. Gross, O. Lebedev, TT, PRL [arXiv:1708.02253]

- **SM** + a complex scalar with global U(1).
- Pseudo-scalar is DM $[S = (v_s + s + i\chi)/\sqrt{2}].$
- Cancellation between h_1 and h_2 diagrams always happens.

SIMP (Strongly Interacting Massive Particle)

Y. Hochberg et al. PRL (2014) [arxiv:1402.5143]

- DM abundance is determined by $3 \rightarrow 2$ or $4 \rightarrow 2$ processes in dark sector itself, but not $2 \rightarrow 2$ annihilating processes (WIMP).
- Typical scale of thermal SIMP mass: $m_{\chi} \sim \mathcal{O}(10)$ MeV for $3 \rightarrow 2$ process
 - $m_{\chi} \sim \mathcal{O}(100) \text{ keV for } 4 \rightarrow 2 \text{ process}$
 - \rightarrow Letter one is strongly constrainted by BBN, $\Delta N_{\rm eff}$ etc.
- Large coupling is required for $\Omega h^2 \sim 0.12$. → Large self-interaction of DM can solve small scale structure problems.
- Many models (Most of models focus on bosonic SIMP)

Dark QCD: Hochberg et al., arXiv:1411.3727, 1512.07917,

Perturbative models: Bernal et al., arXiv:1501.01973, Choi and Lee, arXiv:1505.00960,

Model with ν mass generation: Ho, Tsumura, TT, arXiv:1705.00592 etc

Takashi Toma (TUM)

Joint Workshop@KIAS

Fermionic SIMP

Simple Model with Fermionic SIMP

Add a singlet Majorana fermion χ (DM) and a scalar mediator s.

$$\mathcal{L} = -\frac{y_s}{2}s\overline{\chi^c}\chi - y_\nu H\overline{L}P_R\chi - \frac{\lambda_{sH}}{2}s^2|H|^2$$

Dark sector (χ, s) is very weakly coupled with SM sector via y_{ν} , $\lambda_{sH} \ll 1$ and small mixing $\sin \theta$.

- But Yukawa coupling y_s is large enough. \rightarrow SIMP
- χ may be identified as sterile neutrino.

Fermion SIMP

4-to-2 cross section for spin 1/2 Majorana fermion is suppressed by d-wave due to the Pauli exclusion principle.

	2-body	3-body	$4 ext{-body}$
1/2 Majorana	s-wave	p-wave	<i>d</i> -wave
1/2 Dirac	s-wave	s-wave	s-wave

4-to-2 Annihilation Cross Section

Totally ~ 100 diagrams exist.

- Very complicated. Not possible to do by hand.
- Computed with FeynCalc (non-relativistic limit).
- 1st diagram $\sim \overline{v}(p_4)u(p_3)\overline{v}(p_2)u(p_1) \sim v^2 \rightarrow \overline{|\mathcal{M}|^2} \sim v^4$
- Naturally, 2nd to 4th diagrams $\rightarrow \overline{|\mathcal{M}|^2} \propto v^2$, 5th diagram $\rightarrow \overline{|\mathcal{M}|^2} \propto 1$
- But after including all the diagrams obtained by exchanging initial state particles, the amplitude-squared is eventually proportional to v⁴ (d-wave).

8

Thermal Averaged Cross Section

Final result

$$\langle \sigma v^3 \rangle = \frac{27\sqrt{3}y_s^8 \sum_{n=0}^{\infty} a_n \xi^n}{20480\pi m_{\chi}^8 (16-\xi)^2 (4-\xi)^4 (2+\xi)^6 {x'}^2}$$

where $\xi = m_s^2/m_{\chi}^2 \ge 4$
 $a_0 = 2467430400, \quad a_1 = -1648072704, \quad a_2 = 491804416,$
 $a_3 = -25463616, \quad a_4 = 4824144, \qquad a_5 = -1528916,$

 $a_6 = 473664, \qquad a_7 = -35259, \qquad a_8 = 1201.$

If $\xi \gg 1$, $\langle \sigma v^3 \rangle \approx \frac{32427\sqrt{3}y_s^8}{20480\pi m_s^8 {x'}^2}$ (effective case)

There are two resonances at m_s = 2m_{\chi}, 4m_{\chi} for the toy model.
Computing the cross section at resonances is difficult.

Multi-dimensional integration has to be done.

Takashi Toma (TUM)

Joint Workshop@KIAS

Boltzmann Equations

Assumptions:

• Quantum statistics effect is neglected.

 \rightarrow Boltzmann statistics is assumed for all the particles and all temperature.

- Initial condition $n_{\chi} = 0$, $\rho_{\chi} = 0$.
- Each sector is initially in kinetic equilibrium $(T \neq T')$.

Temperature evolution of dark sector is followed by solving the Boltzmann equations.

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = 2\Gamma_{h \to \chi\chi} \frac{g_h m_h^2 m_{\chi}}{2\pi^2 x} K_2 \left(\frac{m_h}{m_{\chi}}x\right) - \langle \sigma v^3 \rangle \left(n_{\chi}^4 - n_{\chi}^2 n_{\chi}^{\text{eq}2}\right)$$
$$\frac{d\rho_{\chi}}{dt} + CH\rho_{\chi} = m_h \Gamma_{h \to \chi\chi} n_h^{\text{eq}}$$

where $3 \le C \le 4$.

Schematic Picture

Evolution of DM number density as a function of \boldsymbol{T}

- Energy is transferred from visible sector by $h \rightarrow \chi \chi$.
- $\chi\chi \to \chi\chi\chi\chi$ enters to thermal eq.
- $\rightarrow n_{\chi}$ increases rapidly, and T' decreases.
 - Dark thermalization

$$\rightarrow n_{\chi} = n_{\chi}^{\rm eq}.$$

 Freeze-out in dark sector occurs when DM becomes non-relativistic as same as WIMP.

N. Bernal, X. Chu, arXiv:1510.08527

Schematic Picture

Temperature in dark sector T'

- Energy is transferred from visible sector by $h \rightarrow \chi \chi$.
- $\chi\chi \to \chi\chi\chi\chi$ enters to thermal eq.
- $\rightarrow n_{\chi}$ increases rapidly, and T' decreases.
 - Dark thermalization $\rightarrow n_{\chi} = n_{\chi}^{\text{eq}}.$
 - Freeze-out in dark sector occurs when DM becomes non-relativistic as same as WIMP.

N. Bernal, X. Chu, arXiv:1510.08527

Instantaneous Freeze-out Approximation

- Generally coupled Boltzmann equations have to be solved.
- Instantaneous freeze-out approximation

$$\begin{split} \Gamma_{4\to 2}(x_f') &= H(x_f), \\ Y_{\chi}(\infty) &= Y_{\chi}(x_f') \end{split}$$

Instantaneous freeze-out approximation is very accurate. $\Gamma_{4\to 2} \equiv \langle \sigma v^3 \rangle n_{\chi}^{\rm eq3} \propto e^{-3x'} \text{ for non-relativistic DM}$ $\rightarrow \text{Reaction rate rapidly decreases with temperature.}$ cf: $\Gamma_{2\to 2} \equiv \langle \sigma v \rangle n_{\chi}^{\rm eq} \propto e^{-x'}$

Numerical Results

- Perturbative coupling $y_s \leq \sqrt{4\pi} \approx 3.55$.
- Region that freeze-out happens at semi-relativistic x'_f < 3 is not valid for our computation.</p>
- Bullet Cluster constraint $\sigma_{\text{self}}/m_{\chi} = y_s^4 m_{\chi}/(8\pi m_s^4) \le 1 \text{ cm}^2/\text{g}.$

Takashi Toma (TUM)

Required magnitude of the portal couplings 1

- Temperature ratio T'/T is controlled by the couplings y_{ν} , λ_{sH} and $\sin \theta$.
- $\lambda_{sH} \lesssim 10^{-10}$ to evade all the constraints.

Takashi Toma (TUM)

Required magnitude of the portal couplings 2

Contours of $\sin \theta$ $m_s/m_{\chi} = 3$ $m_s/m_{\chi} = 10$

- Temperature ratio T'/T is controlled by the couplings y_{ν} , λ_{sH} and $\sin \theta$.
- $\sin\theta \lesssim 10^{-9}$ to evade all the constraints.

Takashi Toma (TUM)

Summary

- **1** We have considered a simple model for Majorana SIMP DM.
- 2 4-to-2 annihilation cross section for Majorana SIMP DM is necessarily suppressed by *d*-wave due to the Pauli exclusion principle. (Independent on detailed interactions of DM)
- 3 DM abundance is determined by instantaneous freeze-out approximation with high precision since the reaction rate very rapidly decreases with T' when DM is non-relativistic.
- 4 This may give a new mechanism to produce sterile neutrino DM.