Pseudo Nambu Goldstone dark matter Takashi Toma

XIth International Symposium: Quantum Theory and Symmetries at University of Montreal

> Based on PRL 119 191801, JHEP 1812 (2018) 089, PRD [arXiv:1812.05952], arXiv:1906.02175

Collaborators: Christian Gross (Pisa), Koji Ishiwata (Kanazawa), Katri Huitu, Niko Koivunen, Oleg Lebedev, Subhadeep Mondal (Helsinki), James Cline (McGill)

Outline

Introduction

- Dark matter
- WIMP
- 2 Pseudo-Goldstone dark matter
 - Model
 - Direct detection (tree, 1-loop)
 - Indirect detection (gamma rays and anti proton cosmic rays)
 - Collider search

3 Summary

Dark matter

Dark matter

There is a lot of evidence of dark matter.

- Rotation curves of spiral galaxies
- CMB observations
- Gravitational lensing
- Large scale structure of the universe
- Bullet cluster
- DM existence is crucial.

ApJ (1985) ©PLANCK Coll. ©HUBBLESITE

(c)MPA

Albada et al.

Takashi Toma (McGill U.)

QTS at University of Montreal

Dark matter

There is a lot of evidence of dark matter.

- Rotation curves of spiral galaxies
- CMB observations
- Gravitational lensing
- Large scale structure of the universe
- Bullet cluster

DM existence is crucial.

©MPA

Takashi Toma (McGill U.)

Dark matter

Nature of DM

- Stable (at least longer than age of universe)
- Electrically neutral (may have very small charge)
- Occupy 27% of energy density of the universe
- Graviational interaction
- Non-relativistic (cold)

Good candidates: WIMP, FIMP, SIMP, axion, sterile neutrino, PBHs etc Revived by recent observations of gravitational waves

WIMP production

Evolution of DM number density follows the Boltzmann eq.

Introduction

WIMP

Experimental bounds are stronger and stronger.

Interactions between DM and SM are very weak? \rightarrow non-WIMP DM? In this talk, I will consider a simple DM model which naturally evades the strong DD constraint.

Pseudo Nambu Goldstone DM

Model

Model of pseudo-Goldstone DM

C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

- Introduce complex scalar field $S = (s + i\chi)/\sqrt{2}$
- Assume global U(1) symmetry (invariant under $S \rightarrow e^{i\alpha}S$)

$$\begin{split} \mathcal{V} = & -\frac{\mu_H^2}{2} |H|^2 - \frac{\mu_S^2}{2} |S|^2 + \frac{\lambda_H}{2} |H|^4 + \lambda_{HS} |H|^2 |S|^2 + \frac{\lambda_S}{2} |S|^4 \\ & - \left(\frac{\mu_S'^2}{4} S^2 + \text{H.c.}\right) \quad \leftarrow \text{ soft breaking mass term} \end{split}$$

• After H and S get VEVs, ϕ and s mix

$$H = \begin{pmatrix} 0 \\ (v+\phi)/\sqrt{2} \end{pmatrix}, \qquad S = \frac{v_s + s + i\chi}{\sqrt{2}}$$
$$\begin{pmatrix} \phi \\ s \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

• $\sin \theta \leq 0.3$ \leftarrow Constrained by EWPT, h_2 direct search at LHC

Takashi Toma (McGill U.)

Model of pseudo-Goldstone DM

C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

- χ is mass eigenstate itself $m_{\chi}^2 = \mu_S'^2$ Invariant under $S \to S^{\dagger}$, $\Rightarrow \chi$ can be a DM candidate Higgs portal DM
- 4 independent parameters $(m_{\chi}, m_{h_2}, \sin \theta, v_s (\lambda_S))$

Rewrite scalar potential
$$\mathcal{V} = \mu_{h_1\chi\chi}h_1\chi^2 + \mu_{h_2\chi\chi}h_2\chi^2 + \cdots$$

 $\mu_{h_1\chi\chi} = -\frac{m_{h_1}^2\sin\theta}{v_s}, \quad \mu_{h_2\chi\chi} = \frac{m_{h_2}^2\cos\theta}{v_s},$
SM Yukawa int. $\mathcal{L} \supset -y_q \left(\cos\theta h_1 + \sin\theta h_2\right)\overline{q}q$
 $\lambda_H = \frac{\cos^2\theta m_{h_1}^2 + \sin^2\theta m_{h_2}^2}{v^2}, \quad \lambda_S = \frac{\sin^2\theta m_{h_1}^2 + \cos^2\theta m_{h_2}^2}{v_s^2}, \quad \lambda_{HS} = \frac{\sin\theta\cos\theta(m_{h_2}^2 - m_{h_1}^2)}{vv_s}$

Direct detection (tree level) C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

Scattering amplitude cancels between h_1, h_2 mediated diagrams

$$i\mathcal{M} \sim i\left(\frac{m_{h_1}^2}{q^2 - m_{h_1}^2} - \frac{m_{h_2}^2}{q^2 - m_{h_2}^2}\right) \sim i\frac{q^2(m_{h_1}^2 - m_{h_2}^2)}{m_{h_1}^2 m_{h_2}^2}$$

• The cancellation happens because of nature of Goldstone boson $\rightarrow \mathcal{L}_{int} = \mathcal{L}_{int}(\partial_{\mu}\chi)$

Takashi Toma (McGill U.)

Direct detection (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

Compute Feynman diagrams at 1-loop level

- (i) self-energy correction
- (ii) vertex correction
- (iii) box and triangle \rightarrow
 - \rightarrow two Yukawa couplings
 - \rightarrow sub-dominant in most cases

QTS at University of Montreal

Numerical analysis (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

Pseudo-Goldstone DM Direct detection (1-loop)

Numerical analysis (1-loop level) K. Ishiwata, TT, JHEP [arXiv:1810.08139]

 $\sin \theta = 0.2$

- Direct detection limit is always above the unitarity bound.
- Testable parameter space is slightly extended.

Signals of Pseudo Nambu Goldstone DM

Gamma-ray constraint L. Roszkowski et al., Rept.Prog.Phys. 81 (2018), [arXiv:1707.06277]

Gamma-ray constraint

Huitu, Koivunen, Lebedev, Mondal, TT, arXiv:1812.05952

- Small parameter space is excluded by Fermi-LAT gamma-ray observation
- Thermal WIMP scenarios can be tested only when $m_{\chi} = \mathcal{O}(100)$ GeV
- CTA is sensitive in heavy DM mass region (DM profile dependent) but $\chi\chi \to h_2h_2$ is dominant in this mass range.

Takashi Toma (McGill<u>U.)</u>

QTS at University of Montreal

Indirect detection

Cosmic ray anomalies

Cholis, Linden, Hooper, arXiv:1903.02549

- Excesses in gamma ray and anti-proton cosmic ray. $\geq 4\sigma$
- could be (thermal) DM signal. (other explanations: pulser etc)
 - $\chi \chi \to f \overline{f}, WW, ZZ \to \gamma, \overline{p}$
- Cross section: $\langle \sigma_{b\bar{b}}v \rangle \approx$ $(0.8 - 5.2) \times 10^{-26} \text{ cm}^3/\text{s}$ **DM mass:** 64 - 88 GeV

 \rightarrow coincide with $\langle \sigma v \rangle$ for thermal relic.

Typical thermal WIMP conflicts with direct detection bound. But pseudo Goldstone DM can naturally avoid the constraint.

Cosmic ray anomalies Cline, T

Cline, TT, arXiv:1906.07659

• $m_{h_2} = 70,96 \text{ GeV}.$

Additional channel $\chi\chi \to h_2h_2$ if $m_{\chi} > m_{h_2}$. \to mixing dependence

Cosmic-ray anomalies can be explained by pseudo Goldstone DM in 2σ CL if $m_{\chi} = 64 - 67$ GeV.

Collider anomalies

 γ

Heinemeyer, Stefaniak, arXiv:1812.05864 CMS-PAS-HIG-14-037, CMS-PAS-HIG-17-013

Collider anomalies around 96 GeV. 2.3 σ (LEP) and 2.9 σ (CMS)

$$b\overline{b} \text{ excess at LEP}: \ \mu_{\text{LEP}} \equiv \frac{\sigma_{\exp}(e^+e^- \to h_2 \to Zb\overline{b})}{\sigma_{\text{SM}}(e^+e^- \to h_{\text{SM}}(96) \to Zb\overline{b})} = 0.117 \pm 0.057$$

$$\gamma \text{ excess at CMS}: \ \mu_{\text{CMS}} \equiv \frac{\sigma_{\exp}(gg \to h_2 \to \gamma\gamma)}{\sigma_{\text{SM}}(gg \to h_{\text{SM}}(96) \to \gamma\gamma)} = 0.6 \pm 0.2$$

- Both anomalies cannot be explained at the same time in the model. But can be explained if a new scalar quark Φ is added.
- \rightarrow chanage $h\gamma\gamma$ and hgg effective couplings (and other couplings) Φ is triplet or sextet

$$\mathcal{L} = -\lambda_{S\Phi} |S|^2 |\Phi|^2 - \lambda_{H\Phi} |H|^2 |\Phi|^2 + \left(y_{\Phi} \Phi^* \overline{q_R} q_R^c \quad \text{or} \quad \frac{\Phi}{\Lambda^3} (\overline{q_R} q_R^c)^2 \right)$$
$$m_{\Phi}^2 = \mu_{\Phi}^2 + \frac{\lambda_{S\Phi}}{2} v_s^2 + \frac{\lambda_{H\Phi}}{2} v^2 \equiv \mu_{\Phi}^2 + \overline{\mu}_{\Phi}^2$$

Collider search

Collider anomalies

Cline, TT, arXiv:1906.07659

Model list:

model	q_{Φ}	N_c	$\frac{m_{\Phi}}{ \lambda_{S\Phi} ^{1/2}}$ [GeV]	$\frac{\overline{\mu}_{\Phi}}{ \lambda_{S\Phi} ^{1/2}}$ [GeV]	$S_{ heta}$	$\lambda_{S\Phi}$	$\lambda_{H\Phi}$	χ^2 /d.o.f.
1	8/3	6	943	836	0.39	1.9	3.3	3.6
2	8/3	3	601	778	0.36	1.4	1.6	2.2
3	5/3	6	700	741	0.34	3.4	3.5	2.1
4	5/3	3	417	838	0.39	3.0	5.2	3.7
5	2/3	6	588	795	0.37	4.8	5.9	1.4
6(*)	2/3	3	284	765	0.35	3.4	3.6	1.5
7	-1/3	6	554	830	0.39	5.4	8.0	1.5
8(*)	-1/3	3	256	810	0.38	4.1	5.6	1.4
9	-4/3	6	666	752	0.35	3.8	3.9	1.8
10(*)	-4/3	3	333	737	0.34	2.4	3.0	2.5

• We need large couplings $\lambda_{S\Phi}$, $\lambda_{H\Phi}$, and large mixing s_{θ}

Mass bounds: $m_{\Phi} \gtrsim 720 \text{ GeV}$ (triplet 4jet)

 $m_{\Phi} \gtrsim 1.3 \text{ TeV}$ (sextet 4jet) $m_{\Phi} \gtrsim 520 \text{ GeV}$ (triplet 2jet)

Collider search

Collider anomalies

Cline. TT. arXiv:1906.07659

Higgs couling strengths are also affected

coupling in our model $\kappa_i =$ coupling in SM

ex.
$$\mathcal{L} = g_{hZZ}hZ^2 \rightarrow \kappa_Z = c_{\theta}$$

Model 5,6,7,8 within 2σ range (all observables).

 $\chi \chi \to \gamma \gamma$ is also enhanced by $\Phi. \to \sigma_{\gamma\gamma} v \sim 10^{-28} \text{ cm}^3/\text{s}$ slightly below the Fermi bound $(0.5-4) \times 10^{-28} \text{ cm}^3/\text{s}$

Summary

- **1** DD constraint is strong, but pseudo-Goldstone DM naturally avoids.
- 2 Elastic cross section with nucleaon is $\sigma_{\rm SI}^N = \mathcal{O}(10^{-48})~{\rm cm}^2$ at most. (1-loop)
- 3 Gamma ray and anti proton excesses can be explained at the same time with $m_{\chi} = 64 67$ GeV.
- 4 Collider anomalies can also be fit if a new colored scalar is introduced.

Future works

1 Embedding in a UV Gauged $U(1) \mod \rightarrow \text{induce DM decay}$

Buck Up

Bound on $\sin \theta$

A. Falkowski et al., JHEP 1505 (2015) [arxiv:1502.01361]

$$|\sin \theta| \lesssim 0.44$$
 at $m_{H_2} = 96$ GeV.

Takashi Toma (McGill U.)

Majorana DM model

G. Arcadi et al., JCAP 1803 (2018), T. Abe et al. arxiv:1810.01039, · · ·

Majorana DM interacting with pseudo-scalar

$$\mathcal{L} \supset \frac{g_{\chi}}{2} a \overline{\chi} \gamma_5 \chi - c_2 a^2 |H_2|^2 + \cdots$$

Two Higgs Doublet + fermion DM (χ) + pseudo-scalar (a).

Tree level amplitude vanishes in non-relativistic limit

Direct detection (tree level) C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]

$$\text{Rewrite with } S = \frac{(v_s + s)}{\sqrt{2}} e^{i\chi/v_s} \quad \Rightarrow \quad \mathcal{L} \supset -\frac{1}{v_s} \partial_\mu s \left(\chi \partial^\mu \chi\right)$$

■ The cancellation happens because of nature of Goldstone boson → All the interactions are written with derivative couplings L_{int} = L_{int}(∂_µχ)

Additional comment: Scalar potential can be stabilized up to Planck scale if $m_{h_2} \gtrsim 200 \text{ GeV}$.

Indirect detection

DM annihilations

- $\chi\chi \to h_i h_j, WW, ZZ, f\overline{f}$
 - Gamma-rays are produced at the end
 - Strong constraints from dSphs (rich DM and less visible matter)

- \$\mathcal{O}(50)\$ dSphs have been found so far.
- DM models are constrained.

Indirect detection

Cosmic ray anomalies

Cline, TT, arXiv:1906.07659

• $m_{h_2} = 70,96$ GeV.

Additional channel $\chi\chi \to h_2 h_2$ if $m_{\chi} > m_{h_2}$. \to mixing dependence

Cosmic-ray anomalies can be explained by pseudo Goldstone DM in 2σ CL if $m_{\chi} = 64 - 67$ GeV.

Collider search

Huitu, Koivunen, Lebedev, Mondal, TT, arXiv:1812.05952

Constraint on h_2 production cross section at LHC

 $\sigma_{\text{prod}} = \sigma(pp \to h_2) \operatorname{Br}(h_2 \to \operatorname{SM}) \propto \sin^2 \theta \operatorname{Br}(h_2 \to \operatorname{SM})$

■ $pp \rightarrow h_2 \rightarrow ZZ$ mode When $\sin \theta \gtrsim 0.2$ and $m_{h_2} \lesssim 2m_{h_1}$, parameters are constrained.

Takashi Toma (McGill U.)

Collider search

Collider search

Huitu, Koivunen, Lebedev, Mondal, TT, arXiv:1812.05952

- Signal channel (VBF) h_1 and h_2 , both contributions are important
- We focus on $m_{h_2} \geq 2m_{\chi}$
- Simulate the events and put appropriate cuts $E_T > 250 \text{ GeV}, p_j > 80 \text{ GeV}$ etc

- $\frac{S}{\sqrt{S+B+\sigma_B^2}}$ Signal significance S =
- Background $B \pm \sigma_B = 1779 \pm 96$ at 35.9 fb⁻¹ (CMS)
- Analyzed with 3000 fb^{-1} .

Buck Up Collider search

Collider search

Huitu, Koivunen, Lebedev, Mondal, TT, arXiv:1812.05952

Signal significance can be $\mathcal{S} \approx 4 - 6$ at most. • $m_{\chi} \lesssim 100 \text{ GeV}$ can be visible.