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Introduction Dark matter

Albada et al.
Dark matter Apd (1985)
©PLANCK Coll.
There is a lot of evidence of dark matter. ©HUBBLESITE
m Rotation curves of spiral galaxies o o
m CMB observations ; g ston
m Gravitational lensing .
m |Large scale structure of %
the universe ”
m Bullet cluster
DM existence is crucial. R R . S

Dark Matter

Dark Energy
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Nature of DM

Stable (at least longer than age of universe)
Electrically neutral (may have very small charge)

Graviational interaction

. . . Dark Energy
Non-relativistic (cold) Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

o
o
m Occupy 27% of energy density of the universe
o
o

Good candidates: =
A A

. & am nm!'-"' ]
WIMP, FIMP, SIMP, infiation_ ;ﬂ' @@Egﬁ '

axion, sterile neutrino,

PBHs etc d ’;
T Quantum § ‘ :
_ Fluctuations n
Revived by recent obser- = E;
vations of gravitational 1st Stars
about 400 million yrs.

WaVves Big Bang Expansion

13.77 billion years
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WIMP production

Evolution of DM number density follows the Boltzmann eq.

dn
X . 2 . eq2
g +3Hn, = —(ov) (ny —n)
. m n
change variables t$>x = et n, <Y = . ['= (ov) nSd,
S
‘=111 @ DM relic is determined by (ov).
: increasing {o,jv|)
P | 4 wm ovcan be expanded by v.
1 | : 10710 [GeV ™
A 1w QR ~ | | ~ (.1
L ] (o)
-5 R oty (Planck Collaboration Data)
: 1
..ggb o bawaenl Lo Tyl N ETIT —> <O"U> ~Y 10_9 [GGV_Q]
1 3 10 30 100 300 1000 96 5
—_ ~ 107 [cm?/s]
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WIMP search status

Direct detection

thermal freeze-out (early Univ.)
indirect detection (now)

1 0—43
Q) o)
“ %
g : 1 c DM SM
& 10 Y 9O ] S
6’3 *\ $ ‘a‘.q E -G
8 “\ i E
2 \\ . " : g
= k P10 ]
a \\ e :{ —(_L (4] . \_\\‘\:\‘\‘- i —
T 1074 . o=z goﬂ(\ N e‘\‘\‘j ______ ] O
= R *® u\(\o_é\.; ------ : ﬂJ
S [ T NE (et =
—————————— A ' i ‘
= 0% B . © DM SM
—49 [ el e — —
1 O - I --------- I I .:

T T T production at colliders

WIMP mass [GeV/c?]
m Experimental bounds are stronger and stronger.

m Interactions between DM and SM are very weak? — non-WIMP DM?

In this talk, | will consider a simple DM model which naturally evades

the strong DD constraint.

QTS at University of Montreal 5th July 2019

Takashi Toma (McGill U.)

7/23



Pseudo-Goldstone DM

Pseudo Nambu Goldstone DM
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Model of pseudo-Goldstone DM

m Introduce complex scalar field S = (s + iy)/v/2
m Assume global U(1) symmetry (invariant under S — €'*S)

9 9
gy 2 Mg 2 AH
V=—"2\H*— 225"+ —

12
_ (%952 + H.C.) < soft breaking mass term

A
HI + s HP|SIP + LS|

m After H and S get VEVs, ¢ and s mix
Vst st

"= ((vﬂ(z)/\/?)’ R,

@\ [ cost sind hq
s ) \ —sinf cosb ho
msinfd < 0.3 <« Constrained by EWPT, hy direct search at LHC
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Model of pseudo-Goldstone DM

m )\ is mass eigenstate itself mi = '
Invariant under S — ST, = v can be a DM candidate
m Higgs portal DM

m 4 independent parameters (mX, Mp,, SN0, v (As))

m Rewrite scalar potential V= g, hiX” + fhgyhaX” + -+

m% sin 6 m% cos 0
1 2

Hhixx = — Mhoyy =
1XX Vs ) 2XX Vs ?

SM Yukawa int. £ D —y, (cos Ohy + sin 9h2)ﬁq

20,02 1 win Oom2 2002 2 2 - 2 2
cos” fmy, + sin® Omy_ Vo Omy, + cos” Omy _— sin 6 cos 0(my_ — mj, )
2 9 HS —
V3 VU

V2
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RN ELI ST TUBIVI Direct detection (tree level)

Direct detection (tree level)

X X
Dark Matter ~~o_ -
. 200km/s ~r-
|
I
Recoil Energy : hla h2
ER I
\ N N
m Scattering amplitude cancels between hi, ho mediated diagrams
2 2 2(02 2
. . my, my, q (mm - mh2>
M~ | 5 — 55 | ~i >
q mh1 q th mhlth

m The cancellation happens because of nature of Goldstone boson
— Lint — Lint(a,uX)
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Direct detection (1-loop level)

m Compute Feynman diagrams at 1-loop level

(i) (ii)
X X X X X X X X
T ~r YD Y
@ hi, ho I : hi, ho
hi, ho : hi, ho
| |
q q g g q q g g
(iii)
X X X N X X X X X
~eo X .- Seo - T~~l_ __--T Tt~ . -
: _____ T \:// \v\/ /f\\ ST \
he o ! ' hh hi,hy | \ by hishe /N sl hy hs | \ b
1 21 I 1 2 \ | / \\ |
: ! ‘e /// /’ \ N /,’
T AL 09999200, N 09995 Pogq,
q q [ g q q g g

m (i) self-energy correction
m (ii) vertex correction
o

(iii) box and triangle — two Yukawa couplings

— sub-dominant in most cases
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Numerical analysis (1—Ioo:) level)

10" ‘ - 10"

Umtarlty

100 © 100 © Unitarity -

—
z = —— e e o m ommm w emm E

DARWIN

< 107! < 107!
~ ~
S )

1072 . 1072 ¢ v

| sinf = 0.1 ] | sinf = 0.1
mp, = 300 GeV My, = 1000 GeV
1073 o S o 1073 o R ‘
101 102 103 10% 101 102 103 104
my [GeV] my [GeV]

sinf = 0.1  ( (i)+(ii) is dominant )

invisible Higgs decay Br(h; — inv) < 10% at LHC
Two resonances at (hi, ha),  v/vs ~ V/Agv/my,
Perturbative unitarity Ag < 87/3

ok = O(107*) cm? at most

Direct detection limit is always above the unitarity bound
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Numerical analysis (1-loop level)

10t . ———— — 10
i Unitarityz
,-'<.-:.--]-------_-----—-—-_-__-_:_-’_--- L J
0 | == b e e e e ——— 0 | . . |
107 ¢ DARWIN 107 Unitarity-
Higgs decay J
< 10-1
< 107 ¢
> i
f sin = 0.2 ] f sin = 0.2 ]
mp, = 300 GeV mp, = 1000 GeV
10*3 . L . L . L 10*3 . L . L . L
10 102 103 10* 10 102 103 10*
my [GeV] my [GeV]
msinfd =0.2

m Direct detection limit is always above the unitarity bound.

m lestable parameter space is slightly extended.
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PNG DM Signals

Signals of

Pseudo Nambu Goldstone DM
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Gamma-ray constraint

m Present bounds and future prospects (xx — bb)
10-24 T T T ! ! ! ! L L ! ! ! | A T T
- XX — bb E
_ R ' £sS.
& 102 | e \”\W
ol : ]
5 [tem SE
= e R ' Ferr=ma=n=- :'—":",—_
L 1020 | ~ T TA ;
e |
10-27 _4| -| -l—l ?e( | | | | I | | | | | I | | | | | I
10 10° 10° 10*
m., (GeV)

DM annihilations: xx — hih;, WW, ZZ f f

m Gamma-rays are produced at the end
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Gamma-ray constraint

102 ¢
10" ¢

100

v/vg

107" |
1072 |

1073
30

- Higgs decay

J Fermi

(
l

-~

@&3%
7)

v/vg

Unitarity

PLANCK -

sinf = 0.1 ]
mp, = 150 GeV 1

m, [GeV]

100 150

102 ¢

109
1071 ¢

1072 |

1073

10" |

Higgs decay

sinf = 0.1
- mp, = 300 GeV

30

100 300

my [GeV]

m Small parameter space is excluded by Fermi-LAT gamma-ray

observation

m Thermal WIMP scenarios can be tested only when m, = O(100) GeV

m CTA is sensitive in heavy DM mass region (DM profile dependent)
but Yx — hohs is dominant in this mass range.
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PNG DM Signals Indirect detection

Cosmic ray anomalies

10
CMB Limits

Dwarf Limits

ov(x10%6cm3s ™)

m—

i % )
GC GeV Exce p Excess

el

0.5 ‘
40

60
my (GeV)

80

100

m Excesses in gamma ray and
anti-proton cosmic ray. = 4o

m could be (thermal) DM signal.

(other explanations: pulser

etc)
XX = JWW,ZZ — ~,D

m Cross section: (o,;v) &
(0.8 —5.2) x 1072° ecm? /s
DM mass: 64 — 88 GeV

— coincide with (ov) for thermal relic.

m [Typical thermal WIMP conflicts with direct detection bound.
But pseudo Goldstone DM can naturally avoid the constraint.
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Cosmic ray anomalies

1072 | — ‘ ‘ , 1072 | ‘ ‘ ,
* i mp, = 70 GeV 1 * mp, = 96 GeV -
i | ,
I dSph limit | dSph limit |
= . = .
= = I
o, _9% i = 10~26 — 1
= 10 i ' = i ! D excess |
% =N |
£ & i
1 >
I 8
1 !
| =
| &
10*27 | | | | | ] 10*27 ; | I | | | | |
45 50 55 60 65 70 75 80 45 50 55 60 65 70 75 80
my, [GeV] my [GeV]

m my, = 70,96 GeV.

m Additional channel xx — hohs if m, > my,. — mixing dependence

m Cosmic-ray anomalies can be explained by pseudo Goldstone DM
in 20 CL if m, = 64 — 67 GeV.
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Collider anomalies

m Collider anomalies around 96 GeV. 2.3¢0 (LEP) and 2.90 (CMS)

OexpleT€™ — hy — Zbb)
USM(6+€_ — hSM(96) — Zbg)
ex h
Oexp(99 = 2 = 97) 040
osm(g99 — hsn(96) — )
m Both anomalies cannot be explained at the same time in the model.

= (0.117 £ 0.057

bb excess at LEP ULEP =

vy excess at CMS : pcovs =

m But can be explained if a new scalar quark @ is added.
— chanage h~y~ and hgg effective couplings (and other couplings)

m O is triplet or sextet

0

L = —Xso| SP|P|” — Ao HI?|®|” + (%CI)*C]_RQ% or 3 (Q_RC]%)2>

ASP A _
m?b:ﬂ?b+7v§+—v25ﬂgb+ﬂgb

2
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Collider anomalies

m Model list: ~
model | g3 |N, Mgﬁ (GeV] Mﬁﬁ [GeV]| sg | Aso | Ao | x2/d.o.f.
1 8/3 | 6 043 336 039119 3.3 3.6
2 8/3 | 3 601 718 036|141 1.6 2.2
3 5/3 | 6 700 741 034/ 34| 35 2.1
4 5/3 | 3 417 338 0.39/ 30| 5.2 3.7
5 2/3 | 6 588 795 037148 | 5.9 1.4
6(*) | 2/3 3| 284 765 03534 36| 15
7 |-1/3/ 6| 554 830  039/54 80 15
8(*) |—1/3/3| 256 810 1038|4156 14
9 —4/3] 6 666 752 0.35/ 3.8 | 3.9 1.8
10(*) | —4/3| 3 | 333 737 03424 30| 25

m We need large couplings Ase, Age, and large mixing sy
m Mass bounds: mg 2 720 GeV (triplet 4jet)

me 2 1.3 TeV (sextet 4jet)

me 2 520 GeV (triplet 2jet)
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HNERPIVII-GEII  Collider search

Collider anomalies

m K, — K, plane

13 .1 m Higgs couling strengths are also
del2 =
1.2 Eggﬁi o affected
mode A . .
il y, model5 v | coupling in our model
9 N T . .
. (Chis) | coupling in SM
0ol ,," ] ex. L = thZhZQ — Ry = Cp
model 6 =
0.8 | mocelz =1 m Model 5,6,7,8 within 20 range
model 9 a
ol moddl0 w (all observables).
08 09 1 11 12 13 14 15 1.6

m xX — 77 is also enhanced by &. — o, v ~ 107% cm? /s
slightly below the Fermi bound (0.5 —4) x 107%° cm?/s
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Summary
DD constraint is strong, but pseudo-Goldstone DM naturally avoids.

Elastic cross section with nucleaon is o&f = O(10~%) cm? at most.

(1-loop)
Gamma ray and anti proton excesses can be explained at the same time

with m, = 64 — 67 GeV.
Collider anomalies can also be fit if a new colored scalar is introduced.

Future works
Embedding in a UV Gauged U(1) model — induce DM decay
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Buck Up

Buck Up
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BOU nd on sin (9 A. Falkowski et al., JHEP 1505 (2015) [arxiv:1502.01361]

0.0 . : . : ]
0 50 100 150 200 250
my, [GeV ]

m |sinf| < 0.44 at my, = 96 GeV.
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Majorana DM model

Majorana DM interacting with pseudo-scalar

gy _
L D %ax%x — 02a2]H2]2 + .-

m Two Higgs Doublet + fermion DM () + pseudo-scalar (a).
m [ree level amplitude vanishes in non-relativistic limit

m 1-loop contribution is
1 — ¢2=0 dominant

| — €2=0.5 m ¢y coupling enhances
— Cz=—0.5 9]

| m,=100 GeV

200 400 600800
m, [GeV]
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Direct detection (tree level)

Ws+8) e p o ——0,5 (x9"x)

V2 Us

Rewrite with S =

~
~
~
~
~
~§
~ 4
L X 4

e ————

m The cancellation happens because of nature of Goldstone boson
— All the interactions are written with derivative couplings
Lint — »Cint(a,uX)
m Additional comment: Scalar potential can be stabilized up to Planck
scale if my, = 200 GeV.
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Buck Up Indirect detection

Indirect detection
DM annihilations
XX — hihj, WW. ZZ. f7
m Gamma-rays are produced at the end

m Strong constraints from dSphs
(rich DM and less visible matter)

/M) eo et
Sextanséi A n T

m O(50) dSphs have been
found so far.

B DM models are
constrained.
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Cosmic ray anomalies

102 ‘ ‘ 10? : :
10! Unitarity : Unitarity
=——
100 bo-.
= ~. m
. 2D T s EE==
10 ?____*s_\.;— pp——
10-2 [Higgs decay s __. ;s ]
a3 = \‘ \\‘5>' ::/ ] 0
= 0L NNC ol il
i NN r ]
4 f NN i ]
1077 ¢ 6}('?\‘ \{0 n ]
z 2K |
1072 ¢ oy 3
1076 L | .
i mp, = 70 GeV
10*7 | | | | | |

45 50 %) 60 65 70 75 80

mmy, = 70,96 GeV.
m Additional channel xx — hohs if m, > my,. — mixing dependence

m Cosmic-ray anomalies can be explained by pseudo Goldstone DM
in 20 CL if m, = 64 — 67 GeV.
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Collider search

m Constraint on hy production cross section at LHC
Oprod = 0(pp — ho) Br(he — SM) sin’ @ Br(hy — SM)

m pp — hy — ZZ mode
When sinf 2 0.2 and my, < 2my,,, parameters are constrained.

101 E ; S 101 E T e E
i Unitarity : Unitarity |
10 | 10 | Fermi }
§ . Higgs decay § :pp ey —ey
\2 1071 — \2 107 E‘Higgs decay =
| 2
: — Q
10~2 L PP —7 h2 — L7 1072 L P
- sinf = 0.2 - sinf=0.3
10-3 ’ My, = ‘15.0 IGeV | | T 10-3 ’ M, = 20(.) GeV | o
5 10 30 100 5 10 30 100 150

m, [GeV]
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Buck Up Collider search

Collider search
m Signal channel (VBF)

hi and ho, both contributions are X

important 7
m We focus on my, > 2m, S
m Simulate the events and put N

appropriate cuts
Br > 250 GeV, p; > 80 GeV etc

S
VS + B+ 0%
m Background B 4 op = 1779 £ 96 at 35.9 fb~' (CMS)
m Analyzed with 3000 fb™!.

m Signal significance S =
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COl | Ider Sea rCh Huitu, Koivunen, Lebedev, Mondal, TT, arXiv:1812.05952

my, = 300 GeV, sin® = 0.3, Og=VB

m;,. = 150 GeV, sin® = 0.2, o0r=VB

10 — 10

8 -— 8
3 3
e

6 CIYIj 6 Il

:\> v :\> (<]
> 2 > -
(1¢] [4°]
4 ©O 4 O
0.1 & b=
& j
N )

- 0.1 2

LHC search
0.01 0 0
10 20 30 40 50 60 70 20 40 60 80 100 120 140
my (Gev) m, (Gev)

m Signal significance can be § ~ 4 — 6 at most.
mm, S 100 GeV can be visible.
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