Sterile neutrino dark matter from dark thermal bath

Takashi Toma (Kanazawa U.)

Scalars 2023 @ University of Warsaw

1/10

1862-

Introduction

- Sterule ν is a strong DM candidate.
- But the production mechanism is unknown.
- **Dodelson-Widrow?** $W\nu_a \leftrightarrow W\nu$

Introduction

- We consider a dark sector made from sterile ν and a scalar field s. \Rightarrow dark matter is produced from dark thermal bath.
- 1 Quantum statistics: $f = \left(e^{(E-\mu)/T} \pm 1\right)^{-1}$ 2 Thermal mass: $\Delta m_s^2 = \frac{\lambda_s}{4}T^2$, $\Delta M^2 = \frac{\lambda^2 T^2}{16}$

Model

Model (setup)

Particles in dark sector: ν (DM) and s (real scalar)

• Lagrangian:
$$\mathcal{L} = -y_{\nu}LH\nu - \frac{\lambda}{2}s\nu\nu - \frac{M}{2}\nu\nu$$

Relic abundance is determined by $\nu\nu \rightarrow ss$ freeze-out $(M > m_s)$

But SM sector is decoupled from dark sector $(T_{SM} \neq T)$ Temperature of dark sector: T Temperature of SM sector: T_{SM} $T < T_{SM} \Leftarrow$ SM sector dominates energy density in the universe.

DM relic abundance

Boltzmann equation

$$\frac{dn_{\nu}}{dt} + 3Hn_{\nu} = 2\left(\Gamma_{ss \to \nu\nu} - \Gamma_{\nu\nu \to ss}\right)$$

Reaction rate for inverse process $\Gamma_{ss \to \nu\nu} = \Gamma_{\nu\nu \to ss} e^{-2\mu/T}$

• Entropies in each sector independently conserve. $\frac{s_{\nu} + s_s}{s_{\text{SM}}} = \text{const}$

Solve the coupled equations

Example of numerical solution

• M = 10 MeV, $\lambda = 6.5 \times 10^{-4}$

Initial condition: $T_{
m SM}/T=34$ at $M/T_{
m SM}=10^{-3}$

• Yield = $Y_i = \frac{n_i}{s_{\text{SM}}}$ where $s_{\text{SM}} = \frac{2\pi^2}{45}g_{*s}T_{\text{SM}}^3$

• $M/T_f = 1.54 \Rightarrow$ relativistic freeze-out

Takashi Toma (Kanazawa U.)

Example of numerical solution

- Temperature starting decoupling: $x_f = M/T_f$ Temperature fixing relic abundance: $\tilde{x}_f = M/\tilde{T}_f$
- Relation between x_f and \tilde{x}_f : $\tilde{x}_f/x_f = 2.6x_f^{-1.04} 3.0x_f^{-0.024} + 3.6$

Final DM abundance:
$$Y_{\infty} = 4.4 \times 10^{-10} \left(\frac{\text{GeV}}{M} \right)$$

Summary plot

Takashi Toma (Kanazawa U.)

8 / 10

Comparison with previous work (different process)

- Scalar DM (S) is produced via $SSSS \rightarrow SS$ in dark sector.
- For the scalar S, large parameter space inducing relativistic freeze-out due to BE enhancement
 ⇒ This is because of large enhancement due to f⁴(1 + f)².

Summary

- **1** Sterile ν is a strong DM candidate.
- **2** But the production mechanism is unknown.
- 3 Here we considered a production from dark sector freeze-out.
- Most of parameter space induces non-relativistic freeze-out. (large relativistic parameter space for $SSSS \rightarrow SS$)

Back Up

 $\nu\nu \rightarrow ss$ freeze-out

- $\times f_1 f_2 \left(1 + f_3 \right) \left(1 + f_4 \right) \left| \mathcal{M}_{\nu\nu\to ss} \right|^2 \left(2\pi \right)^4 \delta^4 \left(p_1 + p_2 p_3 p_4 \right)$
- 1 + f : Bose-Einstein factor

•
$$f_{\nu} = \left(e^{\frac{E-\mu}{T}} + 1\right)^{-1}$$
, $f_s = \left(e^{\frac{E}{T}} - 1\right)^{-1}$

 $\nu\nu \rightarrow ss$ freeze-out 2

$$\frac{\nu}{\nu} \underbrace{\int_{V} \int_{V} \int_{S} \int_{V} \int_{V} \int_{V} \int_{V} \int_{S} \int_{V} \int_{V} \int_{S} \int_{S} \int_{V} \int_{V} \int_{S} \int_{S} \int_{V} \int_{V} \int_{S} \int_{V} \int_{V}$$

Possible to numerically calculate $\sigma_{\rm CM}$ by CalcHEP

Back Up

Parameter space that dark sector is thermalized

Effect of quantum statistics

Ratio of reaction rates with quantum and Boltzmann (app.) statistics
 When M/T << 1, a few factor enhancement due to BE factor

Takashi Toma (Kanazawa U.)

Back Up

Constraints

- The scalar s eventually decays into SM particles. BBN: $\tau_s < 1 {\rm s}$
 - Ex: decay via the mixing with the SM Higgs
 - $\tau_s < 1 \mathbf{s} \Leftrightarrow \text{mixing angle } \sin \theta \gtrsim 10^{-9}$

Decoupling temperature: $T_{\rm SM}$ at freeze-out > 1 MeV

- Self-interaction of sterile ν DM ($\nu\nu \rightarrow \nu\nu$) $\frac{\sigma_{\text{self}}}{M} = \frac{\lambda^4}{8\pi} \frac{M}{m_s^4} < 1 \text{ cm}^2/\text{g}$
- $\xi_f = T_{\rm SM}/T$ at freeze-out Required condition: $\xi_f > 1 \ (\rho_{\rm SM} \gg \rho_{\rm DM})$
- Perturbative unitarity bound: $\lambda < \sqrt{4\pi}$
- Dark sector thermalization condition: $\Gamma_{\nu\nu\to ss} > Hn_{\nu}$ at M/T = 0.6