A Radiative Neutrino Mass Model with SIMP Dark Matter

Takashi Toma

Technical University of Munich

TevPA2017 Columbus, Ohio, United States

Based on JHEP **1708**, 101 (2017) [arXiv:1705.00592] In collaboration with

Shu-Yu Ho (Caltech), Koji Tsumura (Kyoto University),

Takashi Toma (TUM)

TeVPA 2017

Introduction

Neutrino mass differences are confirmed by the neutrino oscillations.

• $\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{ eV}^2$, $\Delta m_{31}^2 = 2.524 \times 10^{-3} \text{ eV}^2$ (NH)

■ Large mixing angles of the PMNS matrix arXiv:1611.01514 $\sin^2 \theta_{12} = 0.306$, $\sin^2 \theta_{23} = 0.441$, $\sin^2 \theta_{13} = 0.0217$.

Neutrinos should be massive

Dirac or Majorana? How much is CP phase?

There is much experimental evidence of DM.

- Rotation curves of spiral galaxy
- CMB observations
- Gravitational lensing
- Large scale structure of the universe

Existence of DM is crucial.

Takashi Toma (TUM)

Radiative generation of neutrino masses

■ Zee model A. Zee, Phys.Lett.B (1980,1985) First model (one-loop, no DM) \rightarrow Already excluded by current ν oscillation data.

 $\begin{array}{l} \mbox{How to construct a model with DM} \\ \rightarrow \mbox{Forbid Dirac mass term with a symmetry (ex. \mathbb{Z}_2)} \\ \mbox{Type I seesaw} \qquad \mbox{E. Ma, Phys.Rev.D (hep-ph/0601225)} \end{array}$

$$\begin{pmatrix} \text{loop} & 0 \\ 0 & M \end{pmatrix} \rightarrow m_{\nu} \sim -\frac{1}{(4\pi)^2} m_D M^{-1} m_D^T$$

 \rightarrow Correlate DM and neutrino phenomenology.

- A large number of models have been proposed.
- Most of models deal with canonical WIMP.

 h^+

SIMP (Strongly Interacting Massive Particle)

Y. Hochberg et al. PRL (2014) [arxiv:1402.5143]

- DM abundance can be determined by $3 \rightarrow 2$ or $4 \rightarrow 2$ processes in dark sector, but not $2 \rightarrow 2$ annihilating processes (WIMP).
- DM is in kinetic equilibrium with the SM at least until freeze-out of DM.

A Radiative Neutrino Mass Model with SIMP

S. Ho, T.T., K. Tsumura, arxiv:1705.00592

Particle content

	L	H	N	η	χ	S
$SU(2)_L$	2	2	1	2	1	1
$U(1)_Y$	-1/2	1/2	0	1/2	0	0
\mathbb{Z}_5	0	0	2	2	2	1
Spin	1/2	0	1/2	0	0	0

- **\square** \mathbb{Z}_5 symmetry can be derived by an extra U(1) symmetry.
 - S. Ho, T.T., K. Tsumura, Phys.Rev.D (arXiv:1604.07894)
 - \rightarrow 3-to-2 annihilation occurs.
 - \mathbb{Z}_3 symmetry is also possible (but excluded by perturbativity)
- S is a resonant particle to enhance annihilation cross section for $3DM \rightarrow 2DM$.

Neutrino Masses

Neutrino masses are generated at two-loop level.

Constraints

- LFV $(\ell \to \ell' \gamma) \to y$ is constrained.
- Electroweak precision data (STU parameters)

 $ightarrow m_{H} pprox m_{\eta^{+}}$ and small $\sin \xi$

- Invisible decay modes $(h, Z \to X\overline{X})$ $m_X = \mathcal{O}(10)$ MeV $\rightarrow \sin \xi \lesssim 0.2 \left(\frac{100 \text{ GeV}}{m_H}\right)$
- Perturbativity (scalar quartic couplings $< 4\pi$)
- Potential should be bounded from below (quartic couplings > 0) and vacuum stability ($\langle X \rangle = 0$)

$$\rightarrow$$
 sufficient condition $\lambda_X > \frac{\mu_2^2}{m_S^2} \ \lambda_S > \frac{\mu_1^2}{m_S^2}$ (μ_i : cubic couplings)

- \blacksquare SIMP condition $\Gamma_{ann} < \Gamma_{3 \rightarrow 2} < \Gamma_{kin}$
- **DM** abundance $\Omega h^2 \approx 0.12$
- $\sigma_{\rm self}/m_X \lesssim 1~{\rm cm}^2/{\rm g}$ by collision of bullet cluster

Condition for SIMP 3 to 2 process $XXX \to XX$ $\Gamma_{3\to 2} = \langle \sigma v^2 \rangle n_X^2$ $\sigma v^2 \sim \frac{\mu_2^2}{m_v^3} \left| \frac{1}{4m_v^2 - m_s^2 + im_s\Gamma_s} + \frac{1}{9m_x^2 - m_s^2 + im_s\Gamma_s} + \cdots \right|$

Elastic scattering with the SM particles (ν)

 $\langle \sigma_{\rm el} v \rangle \sim \frac{y^4 \sin^4 \xi m_X T}{8\pi (M_N^2 - m_X^2)^2}$ $\Gamma_{\rm kin} = \langle \sigma_{\rm el} v \rangle n_{\nu}$

Condition for SIMP

Relic Abundance

Two resonances at $m_S \approx 2m_X, 3m_X$

- DM relic abundance can be sufficiently reduced when close to a resonance.
- Not to much parameter tuing ($\leq 10\%$).

Self-interacting Cross Section

$$\sigma_{
m self} = rac{1}{4} \left(\sigma_{XX} + \sigma_{X\overline{X}} + \sigma_{\overline{XX}}
ight)$$
 ,

 $\sigma_{\rm self}/m_X \lesssim 1 \ {\rm cm}^2/{\rm g}$

 $+ \cdots$

by bullet cluster

$$\sigma_{X\overline{X}} \approx \frac{1}{64\pi m_X^2} \left(\lambda_X - \frac{\mu_2^2}{m_S^2}\right)^2$$
$$\sigma_{XX} = \sigma_{\overline{XX}} \approx \frac{1}{128\pi m_X^2} \left(\lambda_X + \frac{\mu_2^2}{4m_X^2 - m_S^2}\right)^2$$

Resonance at $m_S \approx 2m_X$ is excluded.

Summary

- Radiative neutrino mass generation mechanism correlates small neutrino masses and DM.
- 2 We have constructed a model with radiative neutrino masses and SIMP DM.
- **3** A resonant particle is needed to satisfy all the constraints.