Multi-component Dark Matter with Hidden SU(3) Symmetry

Takashi Toma

Laboratoire de Physique Théorique d'Orsay

Warsaw Workshop on Non-Standard Dark Matter

In collaboration with Giorgio Arcadi, Yann Mambrini, (LPT Orsay) Christian Gross, Oleg Lebedev (Helsinki University) Stefan Pokorski (Warsaw University)

Work in Progress

Warsaw Workshop on Non-Standard DM

Introduction

- The exsitence of DM is crucial from many observations.
- Basic strategies to detect DM

■ Multi-component (WIMP) $DM \rightarrow$ Interesting phenomenology \rightarrow Different observation prospects from single-component DM

Introduction

 For example, recoil energy distribution for direct detection may change.

■ A kink feature can be seen in recoil energy distribution.
→ descriminative feature of

multi-component DM

S. Profumo et al arXiv:0907.4374, K. R. Dienes et al arXiv:1208.0336

• A concrete model: SU(3) hidden gauge symmetry \rightarrow naturally multi-component DM is realized ($\mathbb{Z}_2 \times \mathbb{Z}'_2$). (Oleg's talk)

Introduction

Coupled Boltzmann equations for DM1 and DM2 $(m_1 > m_2)$

Various processes are relevant to DM relic densities.

$$\frac{dn_1}{dt} + 3Hn_1 = -\langle \sigma v \rangle_{11 \to 00} \left(n_1^2 - n_1^{eq2} \right) - \langle \sigma v \rangle_{11 \to 22} \left(n_1^2 - n_1^{eq2} \frac{n_2^2}{n_2^{eq2}} \right) + \cdots$$
$$\frac{dn_2}{dt} + 3Hn_2 = -\langle \sigma v \rangle_{22 \to 00} \left(n_2^2 - n_2^{eq2} \right) + \langle \sigma v \rangle_{11 \to 22} \left(n_1^2 - n_1^{eq2} \frac{n_2^2}{n_2^{eq2}} \right) + \cdots$$

Red: normal annihilations, Blue: conversions, · · ·

Takashi Toma (LPT Orsay)

Warsaw Workshop on Non-Standard DM

The Model

- Hidden SU(3) symmetry is implosed.
- 8 hidden gauge bosons exist.
 In order to minimally break the SU(3) symmetry, 2 kinds of triplet scalars \(\phi_1\) and \(\phi_2\) are required. (Ref:Oleg's talk)

The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + |D_{\mu}\phi_1|^2 + |D_{\mu}\phi_2|^2 - \mathcal{V}, \quad \text{where} \quad D_{\mu} = \partial_{\mu} + i\tilde{g}A^a_{\mu}T^a.$$

After the SU(3) symmetry breaking

$$\phi_1 = \begin{pmatrix} 0\\ 0\\ v_1 + \varphi_1 \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} 0\\ v_2 + \varphi_2\\ v_3 + \varphi_3 + i\chi \end{pmatrix}, \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix}$$

The Full Scalar Potential

$$\begin{split} \mathcal{V} &= \mu_{H}^{2} |H|^{2} + \mu_{1}^{2} |\phi_{1}|^{2} + \mu_{2}^{2} |\phi_{2}|^{2} + \frac{\lambda_{H}}{2} |H|^{4} + \frac{\lambda_{1}}{2} |\phi_{1}|^{4} + \frac{\lambda_{2}}{2} |\phi_{2}|^{4} \\ &+ \lambda_{H11} |H|^{2} |\phi_{1}|^{2} + \lambda_{H22} |H|^{2} |\phi_{2}|^{2} + \lambda_{3} |\phi_{1}|^{2} |\phi_{2}|^{2} + \lambda_{4} |\phi_{1}^{\dagger} \phi_{2}|^{2} \\ &+ \left[\lambda_{H12} |H|^{2} \left(\phi_{1}^{\dagger} \phi_{2} \right) + \frac{\lambda_{5}}{2} \left(\phi_{1}^{\dagger} \phi_{2} \right)^{2} + \lambda_{6} |\phi_{1}|^{2} \left(\phi_{1}^{\dagger} \phi_{2} \right) \\ &+ \lambda_{7} |\phi_{2}|^{2} \left(\phi_{1}^{\dagger} \phi_{2} \right) + \text{H.c.} \end{split}$$

- The full model is hard to analyze due to complexity.
- \blacksquare Hidden particles interact with the SM via the Higgs bosons. \rightarrow Higgs portal
- Assuming CP symmetry, vector bosons and CP-odd scalar can be stable because of the structure of Lie Group.
 - \rightarrow multi-component DM

Simplifying the Model

The full model is hard to perform numerical computations (even using micromegas) due to non-abelian gauge symmetry. We simplify the model.

$$\mathcal{V} = \mu_H^2 |H|^2 + \mu_1^2 |\phi_1|^2 + \mu_2^2 |\phi_2|^2 + \frac{\lambda_H}{2} |H|^4 + \frac{\lambda_1}{2} |\phi_1|^4 + \frac{\lambda_2}{2} |\phi_2|^4 \\ + \lambda_{H11} |H|^2 |\phi_1|^2 + \lambda_{H22} |H|^2 |\phi_2|^2 + \lambda_3 |\phi_1|^2 |\phi_2|^2 + \lambda_4 |\phi_1^{\dagger} \phi_2|^2 \\ + \left[\lambda_{H12} |H|^2 \left(\phi_1^{\dagger} \phi_2 \right) + \frac{\lambda_5}{2} \left(\phi_1^{\dagger} \phi_2 \right)^2 + \lambda_6 |\phi_1|^2 \left(\phi_1^{\dagger} \phi_2 \right) \\ + \lambda_7 |\phi_2|^2 \left(\phi_1^{\dagger} \phi_2 \right) + \text{H.c.} \right]$$

 v₃ = λ_{H11} = λ₃ = λ_{H12} = λ₆ = λ₇ ≈ 0. (not exactly zero to allow decay of extra Higgs bosons)
 v₁/v₂ ≫ 1 to decouple some particles from dark sector.
 (Latest) micromegas can deal with two-component DM.

Takashi Toma (LPT Orsay)

DM candidates in the Simplified Model

gauge eigenstates	$\mathbb{Z}_2 imes \mathbb{Z}_2'$	• Pairs of (A^1_μ, A^2_μ)) and (A^4_μ,A^5_μ)
$h, arphi_i, A^7_\mu$	(+, +)	are completely c	legenerate.
A^1_μ, A^4_μ	(-, -)	$A^{1} + i A^{2}$	$A^{4} + i A^{5}$
A^2_μ, A^5_μ	(-,+)	$\rightarrow A_{\mu} \equiv \frac{\Pi_{\mu} + \upsilon_{\Pi_{\mu}}}{\sqrt{2}},$	$A'_{\mu} \equiv \frac{\pi_{\mu} + \pi_{\mu}}{\sqrt{2}}$
$\chi, A^3_\mu, A^6_\mu, A^8_\mu$	(+, -)	$\sqrt{2}$	$\sqrt{2}$
• Kinetic mixing: $\mathcal{L} \supset \frac{\tilde{g}}{2} v_2 A^6_\mu \partial^\mu \chi - \frac{\tilde{g}}{2} v_2 A^7_\mu \partial^\mu \varphi_3$			
This can be diagonalized $(\chi, arphi_3) o (ilde\chi, ildearphi_3)$			
Light particles (deco		upled) Heavy particles	$a, a \gg 1$
A , $A^{3\prime}$, h_1 , h_2 ,	$\tilde{\chi} = A'$,	A^{6} , A^{7} , $A^{8\prime}$, h_{3} , h_{4}	$] v_1/v_2 \gg 1 $
Possible combinations of two-component DM:			
$(A_{\mu}, \tilde{\chi}), (A'_{\mu}, \tilde{\chi}), (A_{\mu}, A'_{\mu}) \rightarrow \text{possible combination } (A_{\mu}, \tilde{\chi})$			

8 Independent parameters: m_A , $m_{\tilde{\chi}}$, \tilde{g} , $\sin \theta$, $m_{h_{2,3,4}}$, $r \equiv v_1/v_2$.

Mass spectra in the Simplified Model

The masses of the hidden gauge bosons in the simplified model

$$m_A^2 = \frac{\tilde{g}^2}{4} v_2^2, \quad m_{A'}^2 = \frac{\tilde{g}^2}{4} v_1^2, \quad m_{A^6}^2 = m_{A^7}^2 = \frac{\tilde{g}^2}{4} \left(v_1^2 + v_2^2 \right),$$
$$m_{A^{3'}/A^{3'}}^2 = \frac{2}{3} m_A^2 \left(1 + r^2 \right) \left[1 \mp \sqrt{1 - \frac{3r^2}{(1+r^2)^2}} \right]$$

where $r = v_1/v_2 \gg 1$. $\rightarrow m_{A^{3\prime}} \lesssim m_A$ (degenerate). The masses of the scalar bosons in the simplified model

$$m_{h_3}^2 = \lambda_1 v_1^2, \quad m_{h_4}^2 = \frac{\lambda_4 + \lambda_5}{2} v_1^2, \quad m_{\tilde{\chi}}^2 = \frac{\lambda_4 - \lambda_5}{2} v_1^2,$$

 φ_3 and h mix with $\sin \theta \rightarrow$ the mass eigenstates h_1 and h_2

a little tuning between λ_4 and λ_5 may be needed so that $\tilde{\chi}$ is a light particle.

Takashi Toma (LPT Orsay) Warsaw Workshop on Non-Standard DM

Numerical Computations

Relic Density of DM

Boltzmann equation $(m_A > m_{\tilde{\chi}})$

$$\begin{aligned} \frac{dn_A}{dt} + 3Hn_A &= -\langle \sigma v \rangle_{AA \to SM} \left(n_A^2 - n_A^{eq2} \right) - \langle \sigma v \rangle_{AA \to \tilde{\chi}\tilde{\chi}} \left(n_A^2 - n_A^{eq2} \frac{n_{\tilde{\chi}}^2}{n_{\tilde{\chi}}^{eq2}} \right) \\ &- \langle \sigma v \rangle_{AA \to A^3h_i} \left(n_A^2 - n_A^{eq2} \frac{n_{\tilde{\chi}}^2}{n_{\tilde{\chi}}^{eq2}} \right) \\ \frac{dn_{\tilde{\chi}}}{dt} + 3Hn_{\tilde{\chi}} &= -\langle \sigma v \rangle_{\tilde{\chi}\tilde{\chi} \to SM} \left(n_{\tilde{\chi}}^2 - n_{\tilde{\chi}}^{eq2} \right) + \langle \sigma v \rangle_{AA \to \tilde{\chi}\tilde{\chi}} \left(n_A^2 - n_A^{eq2} \frac{n_{\tilde{\chi}}^2}{n_{\tilde{\chi}}^{eq2}} \right) \\ &+ \langle \sigma v \rangle_{AA \to A^3h_i} \left(n_A^2 - n_A^{eq2} \frac{n_{\tilde{\chi}}^2}{n_{\tilde{\chi}}^{eq2}} \right) - \langle \sigma v \rangle_{AA^3 \to Ah_i} n_A \frac{n_A^{eq}}{n_{\tilde{\chi}}^{eq}} \left(n_{\tilde{\chi}} - n_{\tilde{\chi}}^{eq} \right) \end{aligned}$$

Red: normal annihilations, Blue: conversions, Green: Semi-conversions, Magenta: Semi-coannihilations

Semi-coannihilations are suppressed by the Boltzmann factor unless $m_A \approx m_{\tilde{\chi}}$.

Boltzmann equation

Example of solutions

- DM relic density is basically dominated by scalar DM. Conversion process $AA \rightarrow \tilde{\chi}\tilde{\chi}$
- Annihilations to the SM particles are controlled by $\sin \theta$. $\sin \theta \lesssim 0.3$ by EWPD, collider experiments.

Example plots on $(ilde{g}, m_A)$ plane

Example of plots 1

 $r = 10, m_{h_3} = 5 \text{ TeV}, m_{h_4} = 6 \text{ TeV}$ $0 \le \Omega_A / (\Omega_A + \Omega_{\tilde{\chi}}) \le 1$

Left: slightly far from the resonance. Right: close to the resonance $2m_{\tilde{\chi}} \approx m_{h_1}$

Direct Detection in The Simplified Model

- The scalar DM candidate does not scatter with nuclei in non-relativistic limit since the amplitude mediated by h₁ and h₂ cancels.
- This is actually not exactly zero, but scattering cross section is suppressed by the mass of A⁶. (kinetic mixing)

Perturbativity

$$\lambda_2 = \tilde{g}^2 \frac{\sin^2 \theta m_{h_1}^2 + \cos^2 \theta m_{h_2^2}}{4m_A^2} < 4\pi, \quad \lambda_4 = \tilde{g}^2 \frac{m_{\tilde{\chi}}^2 + m_{h_4}^2}{4m_{A'}^2} < 4\pi$$

Takashi Toma (LPT Orsay)

Warsaw Workshop on Non-Standard DM

5th June 2016 14 / 19

Example plots on $(ilde{g}, m_{ ilde{\chi}})$ plane

Example of plots 2

Left: slightly far from the resonance. Right: close to the resonance $2m_A \approx m_{h_1}$

Example plots on (\tilde{g}, m_A) plane Example of plots 3 (small r) $r = 1.2, m_{h_3} = 400 \text{ GeV}, m_{h_4} = 300 \text{ GeV}$ 10^{1} 10^{1} Perturbativity Perturbativity Higgs LUX limit 08 0.8 10^{0} 10^{0} XENON17 06 06 prospect õ õ $m_{\tilde{\chi}} > m_{A^3}$ $m_{\tilde{\chi}} > m_{A^3}$ 040.4 10^{-1} 10^{-1} 0202 $m_{\tilde{\chi}} = 55 \text{ GeV}$ $m_{\tilde{\chi}} = 60 \text{ GeV}$ n n $m_{h_2} = 500 \text{ GeV}$ $\sin \theta = 0.1$ $m_{h_2} = 500 \text{ GeV}$ $\sin \theta = 0.1$ 10^{-2} 10^{-2} 10^{2} 10^{2} 10^{3} 10^{3} m_A [GeV] m_A [GeV]

Direct detection rate for scalar DM increases.

Direct detection rate for scalar DM increases.

How to discriminate two-component DM

- A kink may be viable in recoil energy distribution → since the pseudo-scalar DM does not scatter with nuclei in the simplified case.
 - S. Profumo et al arXiv:0907.4374, K. R. Dienes et al arXiv:1208.0336
- However discriminative features would be obtained in combination of direct and indirect detection signals.
 - Scalar DM $\tilde{\chi}$: gamma-ray in indirect detection may be able to fit to the gamma-ray excess in the galactic centre.
 - Vector DM A_{μ} : responsible for direct detection.

Different signals of two-component DM in different mass range.

Work in progress

Summary

- 1 The model with SU(3) hidden symmetry naturally includes multi-component DM.
- 2 In the simplified model, two-component DM composed of $(A_{\mu}, \tilde{\chi})$ is the only possibility. $(m_{\tilde{\chi}} < m_A)$
- 3 To determine the relic density of vector DM, the conversion process $AA \rightarrow \tilde{\chi}\tilde{\chi}$ is dominant.

 \rightarrow The abundance of scalar DM dominates the total DM density in the most of parameter space.

(exception: resonance at $2m_{\tilde{\chi}} \approx m_{h_i}$)

4 Direct detection rate for scalar DM *χ̃* is small.
 → Descrimination from single-component DM: vector DM A_μ: direct detection scalar *χ̃*: indirect detection