Monte Carlo studies of the six-dimensional IKKT model

Konstantinos N. Anagnostopoulos, Tatsumi Aoyama, *Takehiro Azuma*, Masanori Hanada and Jun Nishimura

1. Introduction

Matrix models as a constructive definition of superstring theory

IKKT model (IIB matrix model)

⇒ Promising candidate for constructive definition of superstring theory. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612119

- Evidences for spontaneous breakdown of SO(10) \rightarrow SO(4).
- Complex fermion determinant:
 - * Crucial for rotational symmetry breaking. J. Nishimura and G. Vernizzi, hep-th/0003223
 - * Difficulty of Monte Carlo simulation.

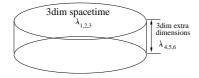
2. 6d IKKT matrix model

Toy model for studying rotational symmetry breaking.

$$S = \underbrace{-rac{N}{4} ext{tr} \left[A_{\mu}, A_{
u}
ight]^2}_{=S_{B}} + \underbrace{rac{N}{2} ext{tr} \, ar{\psi}_{lpha}(\Gamma_{\mu})_{lphaeta} \left[A_{\mu}, \psi_{eta}
ight]}_{=S_{B}}.$$

- A_{μ} (6d vector) and ψ (6d Weyl spinor) are $N \times N$ matrices . SO(6) rotational symmetry and SU(N) gauge symmetry. Presence of $\mathcal{N}=2$ supersymmetry. $Z=\int dAe^{-S_B}(\det\mathcal{M})=\int dAe^{-S_0}e^{i\Gamma}$. CPU cost is $\mathrm{O}(N^6)$. $4d \rightarrow \det \mathcal{M}$ is real positive 6d and 10d \rightarrow det \mathcal{M} is complex. Complex phase is important in SO(6) breakdown.
- Previous works on this model:
 - * Simulation of phase-quenched 6d and 10d IKKT model \Rightarrow no symmetry breakdown of SO(6) (and SO(10)). J. Ambjorn et. al., hep-th/0005147
 - Gaussian Expansion Method ⇒ symmetry breakdown of SO(6) to SO(3)
 T. Aoyama, J. Nishimura and T. Okubo

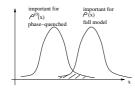
Observable for probing dimensionality : $T_{\mu\nu} = \frac{1}{N} \operatorname{tr} (A_{\mu} A_{\nu})$.



3. Monte Carlo simulation

Factorization method

Numerical approach to the complex action problem.



Distribution function

$$ho_n(x) \stackrel{ ext{def}}{=} \langle \delta(x - ilde{\lambda}_n)
angle = rac{1}{C}
ho_n^{(0)}(x) w_n(x), ext{ where}$$
 $ilde{\lambda}_n = \lambda_n / \langle \lambda_n
angle_0, ext{ } C = \langle \cos \Gamma
angle_0,$
 $ho_n^{(0)}(x) = \langle \delta(x - ilde{\lambda}_n)
angle_0.$

 $\langle * \rangle_0 = ($ V.E.V. for the phase-quenched model $Z_0 = \int dA e^{-S_0})$.

no symmetry breakdown of SO(6) for $Z_0 \to \langle \lambda_1 \rangle_0 = \cdots = \langle \lambda_6 \rangle_0$. $\tilde{\lambda}_n = \lambda_n/\langle \lambda_n \rangle_0 \neq 1 \rightarrow SO(6)$'s breakdown.

$$egin{aligned} & w_n(x) = \langle \cos \Gamma
angle_{n,x}, \ & \langle *
angle_{n,x} = (ext{V.E.V.} ext{ for the partition function } Z_{n,x}) \ & Z_{n,x} = \int dA e^{-S_0} \delta(x - \tilde{\lambda}_n). \end{aligned}$$

Resolution of the overlap problem:

The system is forced to visit the configurations where $\rho_n(x)$ is important.

The position of the peak x_p for the distribution function $\rho_{n,V}(x)$:

$$0 = rac{\partial}{\partial x} \log
ho_{n,V}(x) = f_n^{(0)}(x) - \langle \lambda_n
angle_0 V'(\langle \lambda_n
angle_0 x), ext{ where}$$
 $f_n^{(0)}(x) \stackrel{ ext{def}}{=} rac{\partial}{\partial x} \log
ho_n^{(0)}(x).$

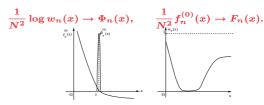
Monte Carlo evaluation of $\langle \tilde{\lambda}_n \rangle$

 $w_n(x) > 0 \Rightarrow \langle \tilde{\lambda}_n \rangle$ is the minimum of $\mathcal{F}_n(x)$:

$$\mathcal{F}_n(x) = ext{(free energy density)} = -rac{1}{N^2}\log
ho_n(x).$$

We solve $\mathcal{F}_n'(x) = 0$, namely $\frac{1}{N^2} f_n^{(0)}(x) = -\frac{d}{dx} \left\{ \frac{1}{N^2} \log w_n(x) \right\}$.

Both $\frac{1}{N^2} \log w_n(x)$ and $\frac{1}{N^2} f_n^{(0)}(x)$ scale at large N as



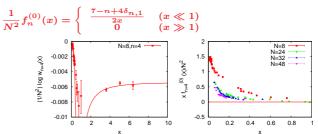
Behavior of $\frac{1}{N^2}\log w_n(x)$

Expected power behaviors:

$$\frac{1}{N^2}\log w_n(x) \propto \left\{ \begin{array}{l} c_{n,0}x^{7-n} + \cdots & (x \ll 1, n = 2, 3, \cdots, 6 \\ \text{const.} & (x \gg 1, n = 1, 2, \cdots, 5) \end{array} \right.$$

Behavior of $\frac{1}{N^2}f_n^{(0)}(x)$

- Small $x \Rightarrow (7-n)$ directions are shrunk. $n = 2, \dots, 6$: $\rho_n^{(0)}(x) \simeq (\sqrt{x})^{N^2(7-n)}$
 - n=1: Eigenvalues of A_{μ} are collapsed to zero. \Rightarrow Add the effect of fermionic determinant (polynomial of A_{μ} with degree $4N^2$). $\Rightarrow \rho_{i=1}^{(0)}(x) \simeq (\sqrt{x})^{(6+4)N^2}$



Double-peak structure for n = 2, 3, 4, 5. • N-48

Symmetry breakdown of SO(6) to SO(3) in Gaussian Expansion Method.

 $\frac{1}{N^2}f_n^{(0)}(x)$ scales at small x in 6d full IKKT model.

(in contrast to $\frac{1}{N}f_n^{(0)}(x)$'s scaling in 6d one-loop model). \Rightarrow hard-core potential at large N (x_s is finite).

Consistent with Gaussian Expansion Method.

4. Conclusion

Monte Carlo simulation of 6d IKKT model. Can we understand the emergence of spacetime?

• Extent of the extra dimension → finite. ⇒ Consistent with Gaussian Expansion Method.

- Analysis of large-x regime.
- Comparison of the free energy.