Smart and Human

常翔学園
 摂南大学

Complex Langevin analysis of the spontaneous rotational symmetry breaking in the Euclidean type IIB matrix model
（arXiv：1712．07562，arXiv：2001．XXXXX）
Takehiro Azuma（Setsunan Univ．） NSM2019 IISER Bhopal，Dec 27th 2019，15：15～15：45
with Konstantinos N．Anagnostopoulos（NTUA），Yuta Ito（KEK）， Jun Nishimura（KEK，SOKENDAI），Toshiyuki Okubo（Meijo Univ．） and Stratos Kovalkov Papadoudis（NTUA）

1. Introduction

Difficulties in simulating complex partition functions.

$$
Z=\int d A \exp \left(-S_{0}+i \Gamma\right), Z_{0}=\int d A e^{-S_{0}}
$$

Sign problem:
The reweighting $\langle\theta\rangle=\frac{\left\langle\theta e^{T}\right\rangle_{0}}{\left\langle e^{T}\right\rangle_{0}}$ requires configs. $\exp \left[\mathrm{O}\left(\mathrm{N}^{2}\right)\right]$
$\left\langle^{*}\right\rangle_{0}=\left(\right.$ V.E.V. for the phase-quenched partition function $\left.Z_{0}\right)$
Various methods to address the sign problem:
(Complex Langevin Method (CLM), factorization method, Lefschetz-thimble method...)
In the following, we discuss CLM.

2. Euclidean type IIB matrix model

type IIB matrix model model (a.k.a. IKKT model)
\Rightarrow Promising candidate for nonperturbative string theory
[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

$$
\begin{aligned}
Z & =\int d A d \psi e^{-\left(S_{\mathrm{b}}+S_{\mathrm{f}}\right)} \\
S_{\mathrm{b}} & =-\frac{N}{4} \operatorname{tr}\left[A_{\mu}, A_{\nu}\right]^{2}, \quad S_{\mathrm{f}}=N \operatorname{tr} \bar{\psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]
\end{aligned}
$$

Euclidean case after Wick rotation $A_{0} \rightarrow i A_{D}, \Gamma^{0} \rightarrow-i \Gamma_{D}$. \Rightarrow Path integral is finite without cutoff.
[W. Krauth, H. Nicolai and M. Staudacher, hep-th/9803117, P. Austing and J.F. Wheater, hep-th/0103059]

- $\mathrm{A}_{\mu}, \Psi_{\alpha} \Rightarrow \mathrm{N} \times \mathrm{N}$ Hermitian traceless matrices.

$$
\mu=1,2, \cdots, D, \alpha, \beta= \begin{cases}1,2,3,4 & (D=6) \\ 1,2, \cdots, 16 & (D=10)\end{cases}
$$

- Originally defined in $\mathrm{D}=10$ (Ψ : Majonara-Weyl) We consider the simplified $D=6$ case as well
$(\psi:$ Weyl, not Majorana $\mathrm{d} \psi \rightarrow \mathrm{d} \psi \mathrm{d} \bar{\psi})$

2. Euclidean type IIB matrix model

- Result of Gaussian Expansion Method (GEM)
[T.Aoyama, J.Nishimura, and T.Okubo, arXiv:1007.0883, J.Nishimura, T.Okubo and F.Sugino, arXiv:1108.1293]

SSB SO(6) \rightarrow SO(3) (In D=10, too, SO(10) \rightarrow SO(3)) Dynamical compactification to 3 -dim spacetime.

$\lambda_{n}\left(\lambda_{1} \geq \cdots \geq \lambda_{D}\right)$: eigenvalues of $T_{\mu \nu}=\frac{1}{N} \operatorname{tr}\left(A_{\mu} A_{\nu}\right)$

$$
\rho_{\mu}=\frac{\left\langle\lambda_{\mu}\right\rangle}{\left.\left.\sum_{\nu=1}^{D}\right\rangle \lambda_{\nu}\right\rangle}= \begin{cases}\hline 0.30 & (\mu=1,2,3) \\ \hline 0.035 & (\mu=4,5,6)\end{cases}
$$

$$
(D=6) \text { arXiv:1007.0883 (D=6) }
$$

Shrunken
(D-d) dim.

2. Euclidean type IIB matrix model

$Z=\int d A d e^{-S_{\mathrm{b}}} \underbrace{\left(\int d \psi e^{-S_{\mathrm{f}}}\right)}=\int d A \underbrace{e^{-S}}_{\left.e^{-\left\{S_{\mathrm{b}}-\log (\operatorname{det} / \mathrm{Pf} / \mathscr{K})\right.}\right)}$
$=\operatorname{det} /$ Pf. $\mathscr{M}=|\operatorname{det} / P f . \mathscr{M}| e^{i \Gamma}$.

- Integrating out ψ yields det \mathscr{M} in $\mathrm{D}=6(\operatorname{Pf} \mathscr{M}$ in $\mathrm{D}=10)$
- det/Pf \mathscr{M} 's complex phase contributes to the Spontaneous Symmetry Breaking (SSB) of SO(D).

No SSB with the phase-quenched partition function.
[J. Ambjorn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,0005147,
K.N. Anagnostopoulos, T. Azuma, J.Nishimura arXiv:1306.6135, 1509.05079]
$Z_{0}=\int d A e^{-S_{0}}=\int d A e^{-S_{\mathrm{b}}}|\operatorname{det} / \operatorname{Pf} \mathscr{M}|$
$\left\langle^{*}\right\rangle_{0}=$ V.E.V. for Z_{0}

3. Complex Langevin Method

Complex Langevin Method (CLM)

\Rightarrow Solve the complex version of the Langevin equation.
[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]

$$
\frac{d\left(A_{\mu}\right)_{i j}}{d t}=-\frac{\partial S}{\partial\left(A_{\mu}\right)_{j i}}+\eta_{\mu, i j}(t)
$$

drift term
$\frac{\partial S}{\partial\left(A_{\mu}\right)_{j i}}=\frac{\partial S_{\mathrm{b}}}{\partial\left(A_{\mu}\right)_{j i}}-c_{d} \operatorname{Tr}\left(\frac{\partial \mathscr{M}}{\partial\left(A_{\mu}\right)_{j i}} \mathscr{M}^{-1}\right) \quad c_{d}= \begin{cases}1 & (D=6 \rightarrow \operatorname{det}, \mathscr{M}) \\ \frac{1}{2} & (D=10 \rightarrow \operatorname{Pf}, \mathscr{M})\end{cases}$

- A_{μ} : Hermitian \rightarrow general complex traceless matrices.
$\cdot \eta_{\mu}$: Hermitian-matrix white noise obeying the probability distribution $\exp \left(-\frac{1}{4} \int \operatorname{tr} \eta^{2}(t) d t\right)$

3. Complex Langevin Method

CLM does not work when it encounters these problems:
(1) Excursion problem: A_{μ} is too far from Hermitian \Rightarrow Gauge Cooling minimizes the Hermitian norm
$\mathscr{N}=\frac{-1}{D N} \sum_{\mu=1}^{D} \operatorname{tr}\left[\left(A_{\mu}-\left(A_{\mu}\right)^{\dagger}\right)^{2}\right] \quad \begin{aligned} & {\left[\begin{array}{l}\text { K. Nagata, } \\ \text { arxiv: } 1604.07777]\end{array}\right.}\end{aligned}$
$A_{\mu}:$ Hermitian \rightarrow general complex traceless matrices.
\Rightarrow We make use of this extra symmetry:
After each step of discretized Langevin equation,

$$
A_{\mu} \rightarrow g A_{\mu} g^{-1}, g=e^{\alpha H}, \quad H=\frac{-1}{N} \sum_{\mu=1}^{D}\left[A_{\mu}, A_{\mu}^{\dagger}\right]
$$

a: real parameter, such that \mathscr{N} is minimized.

3. Complex Langevin Method

(2) Singular drift problem:

The drift term dS/d $\left(\mathrm{A}_{\mu}\right)_{\mathrm{ji}}$ diverges due to \mathscr{M} 's near-zero eigenvalues.

We trust CLM when the distribution $p(u)$ of the drift norm $u=\sqrt{\frac{1}{D N^{3}} \sum_{i=1}^{D} \sum_{i=1}^{N}\left|\frac{\partial s}{\partial\left(A_{\mu}\right)_{i}}\right|^{2}}$ falls exponentially as $\mathrm{p}(\mathrm{u}) \propto \mathrm{e}^{-\mathrm{au}}$.
[K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627]
Look at the drift term \Rightarrow Get the drift of CLM!!

3. Complex Langevin Method

Mass deformation [Y. Ito and J. Nishimura, arXiv:1609.04501]

- $\mathrm{SO}(\mathrm{D})$ symmetry breaking term $\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2}$

Order parameters for SSB of SO(D): $\lambda_{\mu}=\operatorname{Re}\left\{\frac{1}{N} \operatorname{tr}\left(A_{\mu}\right)^{2}\right\}$

- Fermionic mass term:

$$
\Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha} \gamma_{\alpha \beta} \psi_{\beta}\right), \gamma= \begin{cases}\Gamma_{6} & (D=6) \\ i \Gamma_{8} \Gamma_{9}^{\dagger} \Gamma_{10} & (D=10)\end{cases}
$$

Avoids the singular eigenvalue distribution of \mathscr{M}.
This breaks $\mathrm{SO}(6) \rightarrow \mathrm{SO}(5)(\mathrm{SO}(10) \rightarrow \mathrm{SO}(7))$
We study the SSB of the remaining symmetry.
Extrapolation (i) $\mathrm{N} \rightarrow \infty \Rightarrow$ (ii) $\varepsilon \rightarrow 0 \Rightarrow$ (iii) $\mathrm{m}_{\mathrm{f}} \rightarrow 0$.

4. Result for $\mathrm{D}=6$

The effect of adding these mass terms

Scattering plots of the eigenvalues of the $4\left(\mathrm{~N}^{2}-1\right) \times 4\left(\mathrm{~N}^{2}-1\right)$ matrix \mathscr{M} for $\mathrm{D}=6, \mathrm{~N}=24$.
ΔS_{b} narrows the eigenvalue distribution.
ΔS_{f} shifts the eigenvalues, to evade the origin.

4. Result for $\mathrm{D}=6$

$$
\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)
$$

$$
\mathrm{m}_{\mu}=(0.5,0.5,1,2,4,8)
$$

$$
u=\sqrt{\frac{1}{D N^{3}} \sum_{\mu=1, i, j=1}^{D} \sum_{j \mid}^{N}\left|\frac{\partial S}{\partial\left(A_{\mu}\right)_{i i}}\right|^{2}} \text { 's distribution p(u) (log-log) }
$$

4. Result for $\mathrm{D}=6$

$\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)$ $m_{\mu}=(0.5,0.5,1,2,4,8)$
(i) $\mathrm{N} \rightarrow \infty$ limit for fixed $\left(\varepsilon, \mathrm{m}_{\mathrm{f}}\right)$
$(\varepsilon, \mathrm{mf})=(0.25,0.65)$

$\left(\varepsilon, m_{f}\right) \rightarrow(0,0)$ extrapolation for finite N
\Rightarrow We cannot observe SSB of $\mathrm{SO}(\mathrm{D})$.
$\left\langle\lambda_{\mu}\right\rangle_{\varepsilon, m_{\mathrm{f}}}$ at large N

4. Result for $\mathrm{D}=6$

$$
\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \mathrm{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)
$$

(ii) $\varepsilon \rightarrow 0$ after $\mathrm{N} \rightarrow \infty$

- $m_{f} \rightarrow \infty: \Psi$ decouples from A_{μ} and reduces to the bosonic IKKT.
- The bosonic IKKT S_{b} does not break $\mathrm{SO}(\mathrm{D})$.
[T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220]
-The SSB of $S O(D)$ is not an artifact of $\varepsilon \rightarrow 0$ but a physical effect.

4. Result for $\mathrm{D}=6$

$\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)$
(ii) $\varepsilon \rightarrow 0$ after $\mathrm{N} \rightarrow \infty \quad \mathrm{m}_{\mu}=(0.5,0.5,1,2,4,8)$

$$
\begin{aligned}
& 4, \text { (}) \\
& \rho_{\mu}\left(\varepsilon, m_{\mathrm{f}}\right)
\end{aligned}=\frac{\left\langle\lambda_{\mu}\right\rangle_{\varepsilon, m_{\mathrm{f}}}}{\sum_{v=1}^{D}\left\langle\lambda_{v}\right\rangle_{\varepsilon, m_{\mathrm{f}}}}
$$

ε

4. Result for $\mathrm{D}=6$

$$
\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)
$$

(iii) $\mathrm{m}_{\mathrm{f}} \rightarrow 0$ after $\varepsilon \rightarrow 0$

(dotted line: $\mathrm{m}_{\mathrm{f}} \rightarrow 0$ limit fixed to GEM results) SSB SO(6) \rightarrow at most SO(3) Consistent with GEM.

5. Result for $D=10$

$$
m_{\mu}=(0.5,0.5,1,2,4,8,8,8,8,8)
$$

$\Delta S_{\mathrm{b}}=N \frac{\varepsilon}{2} \sum_{\mu=1}^{10} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(i \Gamma_{8} \Gamma_{9}^{\dagger} \Gamma_{10}\right)_{\alpha \beta} \psi_{\beta}\right) \rho_{\mu}\left(\varepsilon, m_{\mathrm{f}}\right)=\frac{\left\langle\lambda_{\mu}\right\rangle_{\varepsilon, m_{\mathrm{f}}}}{\sum_{v=1}^{10}\left\langle\lambda_{v}\right\rangle_{\varepsilon, m_{\mathrm{f}}}}$

5. Result for $\mathrm{D}=10$

$$
m_{\mu}=(0.5,0.5,1,2,4,8,8,8,8,8)
$$

$$
\Delta S_{\mathrm{f}}=N m_{\mathrm{ftr}}\left(\bar{\psi}_{\alpha}\left(i \Gamma_{8} \Gamma_{9}^{\dagger} \Gamma_{10}\right)_{\alpha \beta} \psi_{\beta}\right) \quad\left(\text { no } \quad \Delta S_{b}=N \frac{\varepsilon}{2} \sum_{\mu=1}^{10} m_{\mu} \mathrm{tr}\left(A_{\mu}\right)^{2} \quad \text { term }\right)
$$

GEM result for $\mathrm{m}_{\mathrm{f}}>0$ at 3 loop solutions of $\mathrm{SO}(4)$ and $\mathrm{SO}(6)$ ansatz

Favors lower symmetry at smaller m_{f}.

6. Summary

Dynamical compactification of the spacetime in the Euclidean type IIB matrix model.
"Complex Langevin Method" \Rightarrow trend of $\mathrm{SO}(\mathrm{D}) \rightarrow \mathrm{SO}(3)$.
Future works
Application of CLM to other cases
Lorentzian version of the type IIB matrix model generalization to Gross-Witten-Wadia model
$S_{\mathrm{g}}=N\left(a \operatorname{tr} U+b \operatorname{tr} U^{\dagger}\right)$ P. Basu, K. Jaswin and A. . Soseph, arxiv.1802. 10381]
supersymmetric quantum mechanics
[A. Joseph and A. Kumar, arXiv:1908.04153]

backup: example of CLM

Example [G. Aarts, arXiv:1512.05145]
$S(x)=\frac{1}{2} \underbrace{(a+i b)} x^{2},(a, b \in \mathbf{R}, a>0) \mathrm{S}(\mathrm{X})$ is complex for real x . Complexify to $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$.
$S(z)=\frac{1}{2} \sigma z^{2}=\frac{1}{2}(a+i b) \overbrace{(x+i y)^{2}}^{==^{2}}=\frac{a\left(x^{2}-y^{2}\right)}{2}+i b x y, \frac{\partial S}{\partial z}=\sigma z=(a+i b)(x+i y)$
Complex Langevin equation for this action $\dot{x}(t)=-\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)+\eta(t)=(-a x+b y)+\eta(t) \quad \dot{y}(t)=-\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)=(-a y-b x)$
The real white noise satisfies
$\left\langle\eta\left(t_{1}\right) \eta\left(t_{2}\right)\right\rangle=2 \delta\left(t_{1}-t_{2}\right) \quad\langle\cdots\rangle=\frac{\int \mathscr{P} \eta \cdots \exp \left(-\frac{1}{4} \int \eta^{2}(t) d t\right)}{\int \mathscr{D} \eta \exp \left(-\frac{1}{4} \int \eta^{2}(t) d t\right)}$

backup: example of CLM

Solution of the Langevin equation

$$
\begin{aligned}
x(t)= & e^{-a t} \underbrace{[x(0) \cos b t+y(0) \sin b t]}_{=A(t)}+\int_{0}^{t} \eta(s) e^{-a(t-s)} \cos [b(t-s)] d s \\
y(t)= & e^{-a t}[y(0) \cos b t-x(0) \sin b t]-\int_{0}^{t} \eta(s) e^{-a(t-s)} \sin [b(t-s)] d s \\
\left\langle x^{2}\right\rangle= & \lim _{t \rightarrow+\infty}\left\langle x^{2}(t)\right\rangle=\lim _{t \rightarrow+\infty}\{\underbrace{e^{-2 a t} A(t)^{2}}_{\rightarrow 0}+2 e^{-a t} A(t) \int_{0}^{t} \underbrace{\langle\eta(s)\rangle}_{=0} e^{-a(t-s)} \cos [b(t-s)] d s \\
& +\int_{0}^{t} \int_{0}^{t} \underbrace{\left\langle\eta(s) \eta\left(s^{\prime}\right)\right\rangle}_{=2 \delta\left(s-s^{\prime}\right)} e^{-a\left(2 t-s-s^{\prime}\right)} \cos [b(t-s)] \cos \left[b\left(t-s^{\prime}\right)\right] d s d s^{\prime}\}
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty}\left\{2 \int_{0}^{t} e^{-2 a(t-s)} \cos ^{2}[b(t-s)]\right\} d s=\frac{2 a^{2}+b^{2}}{2 a\left(a^{2}+b^{2}\right)}
$$

Similarly, $\left\langle y^{2}\right\rangle=\frac{b^{2}}{2 a\left(a^{2}+b^{2}\right)},\langle x y\rangle=\frac{-b}{2\left(a^{2}+b^{2}\right)}$
This replicates $\left\langle z^{2}\right\rangle=\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle+2 i\langle x y\rangle=\frac{a-i b}{a^{2}+b^{2}}=\frac{1}{\sigma}$

backup: example of CLM

Fokker-Planck equation
$\frac{\partial P}{\partial t}=L^{\top} P$ where $L^{\top}=\frac{\partial}{\partial x}\{\underbrace{\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)}_{=a x-b y}+\frac{\partial}{\partial x}\}+\frac{\partial}{\partial y}\{\underbrace{\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)}_{=a y+b x}\}$
Ansatz for its static solution:
$P(x, y)=N \exp \left(-\alpha x^{2}-\beta y^{2}-2 \gamma x y\right)=N \exp (-\beta\left(y+\frac{\gamma \gamma}{\beta}\right)^{2}-\overbrace{\left(\alpha-\frac{\gamma^{2}}{\beta}\right)} x^{2})$
$0=\partial_{t} P=L^{\top} P=[\underbrace{(2 a-2 \alpha)}_{=0 \rightarrow a=\alpha}+x^{2} \underbrace{\left(4 \alpha^{2}-2 a \alpha-2 b \gamma\right)}_{=0 \rightarrow \gamma=a^{2} / b}+y^{2} \underbrace{\left(4 \gamma^{2}+2 b \gamma-2 a \beta\right)}_{=0 \rightarrow \beta=a\left(1+2 a^{2} / b^{2}\right)}+x y \underbrace{(\underbrace{(2 \alpha-a) \gamma+2 b(\alpha-\beta))}]}_{=0} P$
Using $\frac{\int_{-\infty}^{+\infty} t^{2} e^{-A t^{2}} d t}{\int_{-\infty}^{+\infty} e^{-A t^{2}} d t}=\frac{1}{2 A}(A>0)$ we have
$\left\langle x^{2}\right\rangle=\frac{\iint x^{2} P(x, y) d x d y}{\iint P(x, y) d x d y}=\frac{1}{2} \div \frac{a\left(a^{2}+b^{2}\right)}{2 a^{2}+b^{2}}=\frac{2 a^{2}+b^{2}}{2 a\left(a^{2}+b^{2}\right)}$

