Smart and Human

^{常翔学園} 摂南大学 、

Complex Langevin analysis of the spontaneous rotational symmetry breaking in the Euclidean type IIB matrix model (arXiv:1712.07562, arXiv:2001.XXXXX)

Takehiro Azuma (Setsunan Univ.) NSM2019 IISER Bhopal, Dec 27th 2019, 15:15~15:45

with Konstantinos N. Anagnostopoulos (NTUA), Yuta Ito (KEK), Jun Nishimura (KEK, SOKENDAI), Toshiyuki Okubo (Meijo Univ.) and Stratos Kovalkov Papadoudis(NTUA)

1. Introduction

Difficulties in simulating complex partition functions.

$$Z = \int dA \exp(-S_0 + i\Gamma), \ Z_0 = \int dA e^{-S_0}$$

Sign problem: The reweighting $\langle \mathscr{O} \rangle = \frac{\langle \mathscr{O} e^{i\Gamma} \rangle_0}{\langle e^{i\Gamma} \rangle_0}$ requires configs. exp[O(N²)]

 $<^*>_0 = (V.E.V.$ for the phase-quenched partition function Z_0

Various methods to address the sign problem: (Complex Langevin Method (CLM), factorization method, Lefschetz-thimble method...) In the following, we discuss CLM.

2. Euclidean type IIB matrix model

type IIB matrix model model (a.k.a. IKKT model) ⇒Promising candidate for nonperturbative string theory [N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

$$Z = \int dAd\psi e^{-(S_{\rm b}+S_{\rm f})}$$

$$S_{\rm b} = -\frac{N}{4} \operatorname{tr}[A_{\mu}, A_{\nu}]^2, \ S_{\rm f} = N \operatorname{tr}\bar{\psi}_{\alpha}(\Gamma^{\mu})_{\alpha\beta}[A_{\mu}, \psi_{\beta}]$$

Euclidean case after Wick rotation $A_0 \rightarrow iA_D, \Gamma^0 \rightarrow -i\Gamma_D$. \Rightarrow Path integral is finite without cutoff.

[W. Krauth, H. Nicolai and M. Staudacher, hep-th/9803117, P. Austing and J.F. Wheater, hep-th/0103059]

• $A_{\mu}, \Psi_{\alpha} \Rightarrow N \times N$ Hermitian traceless matrices. $\mu = 1.2, \cdots, D, \alpha$

$$\beta = \begin{cases}
1,2,3,4 & (D=6) \\
1,2,\cdots,16 & (D=10)
\end{cases}$$

•Originally defined in D=10 (ψ : Majonara-Weyl) We consider the *simplified D=6 case as well* (ψ : Weyl, not Majorana d $\psi \rightarrow d\psi d\psi$)

2. Euclidean type IIB matrix model

• Result of Gaussian Expansion Method (GEM) [T.Aoyama, J.Nishimura, and T.Okubo, arXiv:1007.0883, J.Nishimura, T.Okubo and F.Sugino, arXiv:1108.1293]

2. Euclidean type IIB matrix model

 $e^{-\{S_{b}-\log(\det/\operatorname{Pf}\mathcal{M})\}}$

 $= \int dA$

5

=det/Pf \mathcal{M} =|det/Pf \mathcal{M} | $e^{i\Gamma}$ • Integrating out ψ yields det \mathcal{M} in D=6 (Pf \mathcal{M} in D=10)

 det/Pf *M*'s complex phase contributes to the Spontaneous Symmetry Breaking (SSB) of SO(D).

 $\int d\psi e^{-S_{\rm f}}$

No SSB with the phase-quenched partition function.

[J. Ambjorn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,0005147, K.N. Anagnostopoulos, T. Azuma, J.Nishimura arXiv:1306.6135, 1509.05079]

 $Z = \int dAde^{-S_{\rm b}}$

$$Z_0 = \int dAe^{-S_0} = \int dAe^{-S_b} |\det/\operatorname{Pf}\mathcal{M}|$$

<*>_0=V.E.V. for Z₀

6 SS

Complex Langevin Method (CLM)

\Rightarrow Solve the complex version of the Langevin equation.

[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]

$$\frac{d(A_{\mu})_{ij}}{dt} = -\frac{\partial S}{\partial (A_{\mu})_{ji}} + \eta_{\mu,ij}(t)$$

$$\frac{\partial S}{\partial (A_{\mu})_{ji}} = \frac{\partial S_{b}}{\partial (A_{\mu})_{ji}} - c_{d} \operatorname{Tr} \left(\frac{\partial \mathscr{M}}{\partial (A_{\mu})_{ji}} \mathscr{M}^{-1}\right) \qquad c_{d} = \begin{cases} 1 & (D = 6 \to \det \mathscr{M}) \\ \frac{1}{2} & (D = 10 \to \operatorname{Pf} \mathscr{M}) \end{cases}$$

• A_{μ} : Hermitian \rightarrow general complex traceless matrices.

• η_{μ} : Hermitian-matrix white noise obeying the probability distribution $\exp\left(-\frac{1}{4}\int \mathrm{tr}\eta^{2}(t)dt\right)$

CLM does not work when it encounters these problems:

- (1) Excursion problem: A_{μ} is too far from Hermitian \Rightarrow Gauge Cooling minimizes the Hermitian norm
 - $\mathcal{N} = \frac{-1}{DN} \sum_{\mu=1}^{D} \operatorname{tr}[(A_{\mu} (A_{\mu})^{\dagger})^{2}] \quad [\text{K. Nagata, J. Nishimura and S. Shimasaki,} arXiv:1604.07717]$
- A_{μ} : Hermitian→general complex traceless matrices. ⇒We make use of this extra symmetry:

After each step of discretized Langevin equation,

$$A_{\mu} \to g A_{\mu} g^{-1}, \ g = e^{\alpha H}, \ H = \frac{-1}{N} \sum_{\mu=1}^{D} [A_{\mu}, A_{\mu}^{\dagger}]$$

 α : real parameter, such that \mathcal{N} is minimized.

(2) Singular drift problem: The drift term $dS/d(A_{\mu})_{ji}$ diverges due to \mathscr{M} 's near-zero eigenvalues.

We trust CLM when the distribution p(u) of the drift norm

 $u = \sqrt{\frac{1}{DN^{3}} \sum_{\mu=1}^{D} \sum_{i,j=1}^{N} \left| \frac{\partial S}{\partial (A_{\mu})_{ji}} \right|^{2}}$ **falls exponentially as p(u) \propto e^{-au}.** [K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627]

Look at the drift term \Rightarrow Get the drift of CLM!!

Mass deformation [Y. Ito and J. Nishimura, arXiv:1609.04501] • SO(D) symmetry breaking term $\Delta S_b = \frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} tr(A_{\mu})^2$

Order parameters for SSB of SO(D): $\lambda_{\mu} = \operatorname{Re}\left\{\frac{1}{N}\operatorname{tr}(A_{\mu})^{2}\right\}$

• Fermionic mass term:

 $\Delta S_{\rm f} = Nm_{\rm f} {\rm tr} \left(\bar{\psi}_{\alpha} \gamma_{\alpha\beta} \psi_{\beta} \right), \quad \gamma = \begin{cases} \Gamma_6 & (D = 6) \\ i \Gamma_8 \Gamma_9^{\dagger} \Gamma_{10} & (D = 10) \end{cases}$ Avoids the singular eigenvalue distribution of \mathscr{M} . This breaks SO(6) \rightarrow SO(5) (SO(10) \rightarrow SO(7)) We study the SSB of the remaining symmetry. Extrapolation (i) N $\rightarrow \infty \Rightarrow$ (ii) $\epsilon \rightarrow 0 \Rightarrow$ (iii) m_f $\rightarrow 0$.

4. Result for D=6

E

The effect of adding these mass terms $(\epsilon, m_f) = (0.25, 0.00)$ $(\epsilon, m_f) = (0.00, 0.00)$ 2 2 Ξ -2 -2 -4 -4 -2 2 -4 -2 2 Λ _1 4 Re Re $(\epsilon, m_f) = (0.00, 0.65)$ $(\epsilon, m_f) = (0.25, 0.65)$ 4

Re

Scattering plots of the eigenvalues of the $4(N^2-1) \times 4(N^2-1)$ matrix \mathcal{M} for D=6, N=24.

 ΔS_{b} narrows the eigenvalue distribution.

ΔS_f shifts the eigenvalues, to evade the origin.

4. Result for D=6

$$\Delta S_{b} = \frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} tr(A_{\mu})^{2} \qquad \Delta S_{f} = N m_{f} tr(\bar{\psi}_{\alpha}(\Gamma_{D})_{\alpha\beta}\psi_{\beta}) \quad (D = 6)$$

$$m_{\mu} = (0.5, 0.5, 1, 2, 4, 8)$$

$$u = \sqrt{\frac{1}{DN^{3}} \sum_{\mu=1}^{D} \sum_{i,j=1}^{N} \left|\frac{\partial S}{\partial (A_{\mu})_{ji}}\right|^{2}} \quad \text{'s distribution p(u) (log-log)}$$

u

4. Result for D=6

12

$\Delta S_{\rm b} = \frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}(A_{\mu})^{2} \qquad \frac{\Delta S_{\rm f} = N m_{\rm f} \operatorname{tr}(\bar{\psi}_{\alpha}(\Gamma_{D})_{\alpha\beta} \psi_{\beta})}{m_{\mu} = (0.5, \ 0.5, \ 1, \ 2, \ 4, \ 8)} (D = 6)$ (i) N $\rightarrow \infty$ limit for fixed ($\varepsilon, m_{\rm f}$)

 $(\varepsilon, m_f) \rightarrow (0, 0)$ extrapolation for finite N \Rightarrow We cannot observe SSB of SO(D).

4. Result for D=6

13

• $m_f \rightarrow \infty$: Ψ decouples from A_{μ} and reduces to the bosonic IKKT. •The bosonic IKKT S_b does not break SO(D).

[T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220]

• The SSB of SO(D) is not an artifact of $\epsilon \rightarrow 0$ but a physical effect.

4. Result for D=6

14

4. Result for D=6

15

(dotted line: $m_f \rightarrow 0$ limit fixed to GEM results) SSB SO(6) \rightarrow at most SO(3) Consistent with GEM.

6. Summary

Dynamical compactification of the spacetime in the Euclidean type IIB matrix model. "Complex Langevin Method" \Rightarrow trend of SO(D) \rightarrow SO(3).

Future works Application of CLM to other cases Lorentzian version of the type IIB matrix model generalization to Gross-Witten-Wadia model $S_g = N(a tr U + b tr U^{\dagger})$ [P. Basu, K. Jaswin and A. Joseph, arXiv:1802.10381]

Supersymmetric quantum mechanics [A. Joseph and A. Kumar, arXiv:1908.04153]

backup: example of CLM

Example [G. Aarts, arXiv:1512.05145]

$$S(x) = \frac{1}{2} \underbrace{(a+ib)}_{=\sigma} x^2, (a,b \in \mathbf{R}, a > 0) \qquad \mathbf{S}(\mathbf{x}) \text{ is complex for real } \mathbf{x}.$$

$$Complexify \text{ to } \mathbf{z} = \mathbf{x} + \mathbf{iy}.$$

$$S(z) = \frac{1}{2} \sigma z^2 = \frac{1}{2} (a+ib) \underbrace{(x+iy)^2}_{=z^2} = \frac{a(x^2 - y^2)}{2} + ibxy, \quad \frac{\partial S}{\partial z} = \sigma z = (a+ib)(x+iy)$$

Complex Langevin equation for this action $\dot{x}(t) = -\operatorname{Re}\left(\frac{\partial S}{\partial z}\right) + \eta(t) = (-ax + by) + \eta(t) \quad \dot{y}(t) = -\operatorname{Im}\left(\frac{\partial S}{\partial z}\right) = (-ay - bx)$

The real white noise satisfies $\langle \eta(t_1)\eta(t_2)\rangle = 2\delta(t_1 - t_2) \quad \langle \cdots \rangle = \frac{\int \mathscr{D}\eta \cdots \exp(-\frac{1}{4}\int \eta^2(t)dt)}{\int \mathscr{D}\eta \exp(-\frac{1}{4}\int \eta^2(t)dt)}$

backup: example of CLM

Solution of the Langevin equation $x(t) = e^{-at} \left[x(0)\cos bt + y(0)\sin bt \right] + \int_0^t \eta(s)e^{-a(t-s)}\cos[b(t-s)]ds$ $y(t) = e^{-at} [y(0)\cos bt - x(0)\sin bt] - \int_0^t \eta(s) e^{-a(t-s)} \sin[b(t-s)] ds$ $\langle x^2 \rangle = \lim_{t \to +\infty} \langle x^2(t) \rangle = \lim_{t \to +\infty} \left\{ \underbrace{e^{-2at}A(t)^2}_{0} + 2e^{-at}A(t) \int_0^t \underbrace{\langle \eta(s) \rangle}_{0} e^{-a(t-s)} \cos[b(t-s)] ds \right\}$ $+\int_0^t \int_0^t \underbrace{\langle \eta(s)\eta(s') \rangle}_{e^{-a(2t-s-s')}} \cos[b(t-s)] \cos[b(t-s')] ds ds' \bigg\}$ $= \lim_{t \to +\infty} \left\{ 2 \int_0^t e^{-2a(t-s)} \cos^2[b(t-s)] \right\} ds = \frac{2a^2 + b^2}{2a(a^2 + b^2)}$ Similarly, $\langle y^2 \rangle = \frac{b^2}{2a(a^2 + b^2)}, \ \langle xy \rangle = \frac{-b}{2(a^2 + b^2)}$ This replicates $\langle z^2 \rangle = \langle x^2 \rangle - \langle y^2 \rangle + 2i \langle xy \rangle = \frac{a - ib}{a^2 + b^2} = \frac{1}{\sigma}$

backup: example of CLM

Fokker-Planck equation

$$\frac{\partial P}{\partial t} = L^{\top}P \text{ where } L^{\top} = \frac{\partial}{\partial x} \left\{ \underbrace{\operatorname{Re}\left(\frac{\partial S}{\partial z}\right) + \frac{\partial}{\partial x}}_{=ax-by} \right\} + \frac{\partial}{\partial y} \left\{ \underbrace{\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)}_{=ay+bx} \right\}$$
Ansatz for its static solution:

$$P(x,y) = N \exp\left(-\alpha x^{2} - \beta y^{2} - 2\gamma xy\right) = N \exp\left(-\beta\left(y + \frac{\gamma x}{\beta}\right)^{2} - \underbrace{\left(\alpha - \frac{\gamma^{2}}{\beta}\right)}_{=0 \rightarrow \beta = a(1+2a^{2}/b^{2})} \right\}$$

$$0 = \partial_{t}P = L^{\top}P = \underbrace{\left[(2a - 2\alpha) + x^{2}\left(4\alpha^{2} - 2a\alpha - 2b\gamma\right) + y^{2}\left(4\gamma^{2} + 2b\gamma - 2a\beta\right)}_{=0 \rightarrow \beta = a(1+2a^{2}/b^{2})} \right] + \underbrace{xy(4(2\alpha - a)\gamma + 2b(\alpha - \beta))}_{=0} \right] P$$
Using
$$\frac{\int_{-\infty}^{+\infty} t^{2}e^{-At^{2}}dt}{\int_{-\infty}^{+\infty} e^{-At^{2}}dt} = \frac{1}{2A} (A > 0) \text{ we have}$$

$$\langle x^{2} \rangle = \frac{\int \int x^{2}P(x, y)dxdy}{\int \int P(x, y)dxdy} = \frac{1}{2} \div \underbrace{\frac{a(a^{2} + b^{2})}{2a^{2} + b^{2}}} = \frac{2a^{2} + b^{2}}{2a(a^{2} + b^{2})}$$

2

SFTS