Smart and Human

常翔学園 **摂南大学**

Emergence of an expanding (3+1)dimensional spacetime in the type IIB matrix model

Takehiro Azuma (Setsunan Univ.) Challenges and opportunities in Lattice QCD simulations and related fields, Feb 15th 2023, 15:10~15:40 with Konstantinos N. Anagnostopoulos (NTUA), Kohta Hatakeyama (KEK), Mitsuaki Hirasawa (INFN), Jun Nishimura (KEK, SOKENDAI), Stratos Papadoudis (NTUA) and Asato Tsuchiya (Shizuoka Univ.)

1. Introduction

Type IIB matrix model (a.k.a. IKKT model) ⇒Promising candidate for nonperturbative string theory

[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

- Dimensional reduction of the D=10 super-Yang-Mills theory to 0 dimension
- $A_{\mu}(\mu=0,1,...,9), \Psi_{\alpha} (\alpha=1,2,...,16 \text{ after Weyl projection})$ $\Rightarrow N \times N$ Hermitian traceless matrices.
- •N=2 supersymmetry \Rightarrow eigenvalues of A_µ are interpreted as the spacetime coordinates.

How does our (3+1)-dim spacetime emerge dynamically?

Sign problem of the type IIB matrix model

Euclidean version : Wick rotation $A_{10} = -iA_0$, $\Gamma_{10} = i\Gamma^0$ contracted by the Euclidean metric $\delta_{\mu\nu} = \text{diag}(1, 1, 1, \dots, 1)$

SSB SO(10)
$$\rightarrow$$
SO(3) $Z = \int dA \left(\frac{e^{-1}}{16} \right)^{-1}$

[K.N. Anagnostopoulos, T. Azuma, Y. Ito J. Nishimura, T. Okubo and S.K. Papadoudis arXiv:2002.07410]

Lorentzian version : no Wick rotation

contracted by the Lorentzian metric $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, \dots, 1)$

$$Z = \int dA \left(e^{iS_{\rm b}} \int d\psi e^{iS_{\rm f}} \right)$$

[J. Nishimura and A. Tsuchiya, arXiv:1904.05919]

 $d\psi e^{-S_{\rm f}}$

-Pf M

 \mathcal{M} is a 16(N²-1) × 16(N²-1) sparse matrix

We employ the Complex Langevin Method (CLM)

Time development of the Lorentzian version: \Rightarrow gauge fixing to diagonalize A_0

[S.W. Kim, J. Nishimura and A. Tsuchiya, arXiv:1108.1540]

Results with the approximation to avoid the sign problem

Equivalence between the Lorentzian and Euclidean version [Y. Asano, private communication] Contour deformation $A_0 = e^{-3i\pi u/8} \tilde{A}_0$, $A_I = e^{i\pi u/8} \tilde{A}_I$ $S_{\rm b} \to \tilde{S}_{\rm b} = e^{i\pi u/2} \left\{ \frac{-N}{4} \operatorname{tr}[\tilde{A}_I, \tilde{A}_J]^2 + \frac{N}{2} e^{-i\pi u} \operatorname{tr}[\tilde{A}_0, \tilde{A}_I]^2 \right\}$ w.r.t. worldsheet u=0: Lorentzian, u=1: Euclidean $e^{iS_{\rm b}(A)} = e^{-S(\tilde{A})}, \quad S(\tilde{A}) = -\frac{N}{4}e^{-i\pi(1-u)/2} {\rm tr}[\tilde{A}_I, \tilde{A}_J]^2 - \frac{N}{2}e^{i\pi(1-u)/2} {\rm tr}[\tilde{A}_0, \tilde{A}_I]^2$ real part is positive ($0 < u \leq 1$). Cauchy's theorem: $\langle \mathcal{O}(e^{-3i\pi u/8}\tilde{A}_0, e^{i\pi u/8}\tilde{A}_I) \rangle_u$ is independent of u.

6

SETSUNAN UNIVERSITY 🧪

Adding the Lorentzian mass term

$$Z = \int dA d\psi e^{i(S+S_{\gamma})}, S_{\gamma} = \frac{-N\gamma}{2} \operatorname{tr}(A^{\mu}A_{\mu}) = \frac{N\gamma}{2} \{\operatorname{tr}(A_{0})^{2} - \operatorname{tr}(A_{I})^{2}\}$$

$$e^{iS_{\gamma}(A)} = e^{-S_{\gamma}(\tilde{A})}, \quad S_{\gamma}(\tilde{A}) = \frac{N\gamma}{2} \{ e^{-i\pi(2+3u)/4} \operatorname{tr}(\tilde{A}_{0})^{2} + e^{i\pi(2+u)/4} \operatorname{tr}(\tilde{A}_{I})^{2} \}$$

real part is negative (0

At γ>0, we cannot define the model by contour deformation

 \Rightarrow Equivalence to the Euclidean model (u=1) is violated.

We consider the limit $N \rightarrow \infty \Rightarrow \gamma \rightarrow 0$.

SETSUNAN UNIVERSITY 🖧

3. Complex Langevin Method

9 SETSUDAI

Complex Langevin Method (CLM)

⇒Promising method to solve complex-action systems.

[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]

•Introducing τ_a \Rightarrow time order $\alpha_1 < \alpha_2 < ... < \alpha_N$ for complexified α_i (k=2, •••, N)

$$\alpha_1 = 0, \ \alpha_k = \sum_{i=1}^{k-1} e^{\tau_i} | A_0 = \text{diag}(\alpha_{1,}\alpha_{2,}...,\alpha_N)$$

• Mass term to avoid the near-zero modes of the Dirac operator: $\Pr \mathcal{M}_{m_{\mathrm{f}}} = \int d\psi e^{iS_{m_{\mathrm{f}}}},$ $S_{m_{\mathrm{f}}} = \frac{-N}{2} \operatorname{tr} \{ \bar{\psi}_{\alpha} (\Gamma^{\mu})_{\alpha\beta} [A_{\mu}, \psi_{\beta}] + m_{\mathrm{f}} \bar{\psi}_{\alpha} (\Gamma^{7} \Gamma^{8\dagger} \Gamma^{9})_{\alpha\beta} \psi_{\beta} \}$ Effective action $Z = \int dA e^{-S_{\mathrm{eff}}},$ $S_{\mathrm{eff}} = -i(S_{\mathrm{b}} + S_{\gamma}) - \log \operatorname{Pf} \mathcal{M}_{m_{\mathrm{f}}} - \log \prod_{1 \le a \le b \le N} (\alpha_{a} - \alpha_{b})^{2} - \sum_{a=1}^{N-1} \tau_{a}$

3. Complex Langevin Method

•A₁ : Hermitian \rightarrow general complex traceless matrices. • τ_a : Real number \rightarrow complex number.

The drift term involves
$$\frac{d}{d(A_I)_{ba}} \{-\log \operatorname{Pf} \mathcal{M}_{m_{\mathrm{f}}}\} = -\frac{1}{2} \operatorname{Tr} \left(\frac{d\mathcal{M}_{m_{\mathrm{f}}}}{d(A_I)_{ba}} \mathcal{M}_{m_{\mathrm{f}}}^{-1} \right)$$

- $\mathcal{M}_{m_{\mathrm{f}}}$'s near-zero modes \Rightarrow singular drift problem.
- •We use conjugate gradient (CG) method and noisy estimator.
- Large-scale numerical simulation using supercomputers.

3. Complex Langevin Method

The condition to justify the CLM: [K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627] The probability distribution of the drift norms falls exponentially or faster.

$$u_A = \sqrt{\frac{1}{9N^3} \sum_{I=1}^9 \sum_{a,b=1}^N \left| \frac{dS_{\text{eff}}}{d(A_I)_{ba}} \right|^2}, \ u_\alpha = \sqrt{\frac{1}{N} \sum_{a=1}^{N-1} \left| \frac{dS_{\text{eff}}}{d\tau_a} \right|^2}$$

Look at the drift terms \Rightarrow Get the drift of the CLM.

Dynamical stabilization: [F. Attanasio and B. Jäger arXiv:1808.04400] After each Langevin step, $A_I \rightarrow A_I + \eta A_I^{\dagger}$ Here, $\eta=0.01$. $1+\eta$ ($\eta=0$: do nothing, $\eta=1$:Hermitize completely)

4. Result

SUSY (include S_f), N=32, n=8, u=0, m_f=3.5 (preliminary)

4. Result

SUSY (include S_f), N=32, n=8, u=0, m_f=3.5 (preliminary) 9×9 tensor $T_{IJ} = \frac{1}{n} \operatorname{tr}(\bar{A}_I(t)\bar{A}_J(t))$

4. Result

5. Conclusion

- Complex Langevin Method (CLM) for the type IIB matrix model.
- Equivalence of the Euclidean and Lorentzian model without the Lorentzian mass term.
- Introduce a Lorentzian mass term ⇒emergence of 3dim space.
- At larger N, and smaller γ and m_f: Can we observe the transition from Euclidean to Lorentzian geometry? Large-scale numerical simulation
- at larger N is important.

