Complex Langerin studies of the continuum limit of the Lorentzian type IIB matrix model

The 2nd R-CCS International Symposium Feb 17 ${ }^{\text {th }} 2020$ (Mon)

Konstantinos N. Anagnostopoulos, Toshihiro Aoki, Takehiro Azuma, Mitsuaki Hirasawa, Yuta Ito,

 Jun Nishimura, Stratos Kovalkov Papadoudis and Asato Tsuchiya
1. Introduction

Type IIB matrix model (a.k.a. IKKT model)
Promising candidate for nonperturbative string theory
[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

$$
S=\underbrace{-\frac{1}{4 g^{2}} \operatorname{tr}\left[A_{\mu}, A_{v}\right]^{2}}_{=S_{\mathrm{b}}}+\underbrace{\frac{1}{g^{2}} \operatorname{tr} \bar{\psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]}_{=S_{\mathrm{f}}}
$$

- Dimensional reduction of the $\mathrm{D}=10$ super-Yang-Mills theory to 0 dimension
- $\mathrm{A}_{\mu}, \Psi_{\alpha} \Rightarrow \mathrm{N} \times \mathrm{N}$ Hermitian traceless matrices.
$\cdot \mathrm{N}=2$ supersymmetry \Rightarrow eigenvalues of A_{μ} are interpreted as the spacetime coordinate.

How does our (3+1)-dim spacetime emerge dynamically?

2. Lorentzian type IIB matrix model
 Lorentzian version [s.w. Kim, J. Nishimura and A. Tsuchiy, arxi:1108.1540]

\Rightarrow indices are contracted by Lorentzian metric $\eta=\operatorname{diag}(-1,1,1, \cdots, 1)$ Time development: gauge fixing to diagonalize A_{0}
$A_{0}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)$, where $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N}$. Band-diagonal structure of A_{i} ($v=0,1,2, \ldots, N-n$, and $I, J=1,2, \ldots, n$) $\mathrm{n} \times \mathrm{n}$ matrix for time $t=\frac{1}{n} \sum_{i=1}^{n} \alpha_{+1}$ $\left(\bar{A}_{i}\right)_{\mu, l}(t)=\left(A_{i}\right)_{v+l, v+J}$

Original Lorentzian works on $\mathrm{D}=10, \mathrm{~N}=16$, supersymmetric (no sign problem).
Order parameter of the breakdown of spatial symmetry:
(D-1) eigenvalues of $T_{i j}(t)=\frac{1}{n} \operatorname{tr}\left(\bar{A}_{i}(t) \bar{A}_{j}(t)\right)$
Dynamical emergence of $(3+1)$-dim spacetime.

Difficulties in putting the Lorentzian version on a computer:

2. The action is not bounded below
bosonic part: $S_{\mathrm{b}}=\frac{N \beta}{4} \operatorname{tr}\left\{2 \sum_{i=1}^{D-1}\left[A_{0}, A_{i}\right]^{2}-\sum_{i, j=1}^{D-1}\left[A_{i}, A_{j}\right]^{2}\right\} \quad\left(\frac{1}{g^{2} N}=\beta\right)$ \Rightarrow Infrared cutoff: $\frac{1}{N} \operatorname{tr}\left(A_{0}\right)^{2}=\kappa \quad \frac{1}{N} \operatorname{tr}\left(A_{i}\right)^{2}=1$

$R^{2}(t)=\left\langle\left\langle\frac{1}{n}{ }^{n} \sum_{i=1}^{n-1}\left(\alpha_{1}(t)\right)^{2}\right\rangle v=\left(\right.\right.$ number of α_{i} in $\left.t_{c}<t \leq t_{\text {peak }}\right)$
$\Delta=\frac{\begin{array}{c}t_{\text {peak }}-t_{c} \\ R\left(t_{c}\right)\end{array}}{n}$ volume of temporal direction $\quad \varepsilon=\frac{\Delta}{v}$: lattice space
In the following, we study the $\mathrm{D}=6$ bosonic model: Similar emergence of the spacetime for $\mathrm{D}=6,10$, and
bosonic/supersymmetric model. [Y. Ito, J. Nishimura and A. Tsuchiya, arXiv:1506.04795]

1. Sign problem [J. Nishimura and A. Tsuchiya, arxiv:1904.05919]

Parameters of Wick rotation: $z=\int d A e^{-s_{8}}$ where

multiply $e^{i s \pi / 2}$ (world sheet Wick rotation)
$A_{0} \rightarrow A_{0} e^{-i k \pi / 2}$ (target space Wick rotation)
$\tilde{S}_{\mathrm{b}}=-\frac{N \beta}{4} \operatorname{tr}\left\{2 e^{i(1+s-2 k) \pi / 2} \sum_{i=1}^{D-1}\left[A_{0}, A_{i}\right]^{2}+e^{i(s-1) \pi / 2} \sum_{i, j=1}^{D-1}\left[A_{i}, A_{j}\right]^{2}\right\}$

$\cdot(\mathrm{s}, \mathrm{k})=(-1,0)!$ Original Lorentzian works $\int d e^{s_{5}} \rightarrow \int d \lambda e^{\beta_{5}}$ \rightarrow no sign problem [s.w. Kim, J. . . ishinimura and A. Tsuchiya, arxiv:1 108. 1540] $\cdot(\mathrm{s}, \mathrm{k})=\left(1, \lambda^{\prime}\right)$: Euclidean version (Pf $\mathscr{M}\left(e^{-i k \pi / 2} A_{0}, A_{i}\right)$ has sign problem) $\cdot \mathrm{k}=(1+\mathrm{s}) / 2$: minimize noncommutativity $\left[\mathrm{A}_{0}, \mathrm{~A}_{\mathrm{i}}\right]$
Paulian-matrix structure of the space at $(s, k)=(-1,0)$ [T. Aoki, M. Hirasawa, Y. Ito, J. Nishimura and A. Tsuchiya, arXiv:1904.05914] $\bar{A}_{i}(t) \propto \sigma_{i} \oplus 0_{n-2}(i=1,2,3)$
2 of the n eigenvalues of $Q(t)=\sum^{D-1}\left(\bar{A}_{i}(t)\right)^{2}$ grow.
\Rightarrow sphere whose inside is empty $y^{i=}$
2. Infrared cutoff $z=\int d A e^{-\delta_{0}(A)} \delta\left(\frac{1}{N} \mathbb{t r}\left(A_{0}\right)^{2}-\kappa\right) \delta\left(\frac{1}{N} \mathrm{tr}\left(A_{A}\right)^{2}-1\right)$ Change variables $A_{0} \rightarrow \sqrt{\frac{K}{U^{4}}} A_{0}, A_{i} \rightarrow \frac{1}{\sqrt{v}} A_{i} \Rightarrow$ integrate out u, v $z=\int d A e^{-S_{\mathrm{eff}}}$ where $S_{\mathrm{eff}}=\tilde{S}_{\mathrm{b}}\left(Y_{0}, Y_{i}\right)+\frac{N}{2}\left\{t \mathrm{tr}\left(A_{0}\right)^{2}+\mathrm{tr}\left(A_{i}\right)^{2}\right\} \quad Y_{0}=A_{0} \sqrt{\frac{\kappa N}{\mathrm{r}\left(A_{0}\right)^{2}}} \quad Y_{i}=A_{i} \sqrt{\frac{N}{\mathrm{Ur}\left(A_{i}\right)^{2}}}$

3. Complex Langevín Method (CLM)

Promising method to solve complex-action systems.
[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]
Introducing time order $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{N}$ for complexified α_{i}

$$
A_{0}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right) \quad \alpha_{1}=0, \alpha_{k}=\sum_{k}^{k-1} e^{t_{i}}(k=2,3, \cdots, N)
$$

Render A_{0} traceless $A_{0} \rightarrow \tilde{A}_{0}=A_{0}-\mathbf{1}\left(\frac{1}{\mathrm{~N}} \mathrm{H}=1\left(A_{0}\right)\right)$

Gauge is already fixed \Rightarrow No gauge cooling

- A_{i} : Hermitian \rightarrow general complex traceless matrices.
- $\tau_{a}:$ Real number \rightarrow complex number.

4. Results (prefiminary) $Y=\left\{\ln ^{n} \frac{n}{\sqrt{n}+m a n d ~}\right\}$

 Y_{i} are not Hermitian $\rightarrow \mathrm{n} \times \mathrm{n}$ Hermitian matrices $\bar{H}_{i}(t)=\frac{1}{2}\left(\bar{Y}_{i}(t)+\bar{Y}_{i}^{+}(t)\right)$ $\mathrm{D}=6, \mathrm{~N}=128$, bosonic, $\mathrm{n}=18,(\beta, \mathrm{k})=(8.0,0.02),(\mathrm{s}, \mathrm{k})=(-1.0,0.0),(-0.7,0.0)$(D-1) eigenvalues of $T_{j j}(t)=\frac{1}{n} \operatorname{tr}\left(\bar{H}_{i}(t) \bar{H}_{j}(t)\right) \quad \mathrm{n}$ eigenvalues of $Q(t)=\sum_{i=1}^{D-1}\left(\bar{H}_{i}(t)\right)^{2}$
$(\mathrm{s}, \mathrm{k})=(-1.0,0.0)$
and

