Emergence of an expanding (3+1)-dimensional spacetime in the type IIB matrix model

Konstantinos N. Anagnostopoulos, Takehiro Azuma, Kohta Hatakeyama, Mitsuaki Hirasawa, Jun Nishimura, Stratos Papadoudis and Asato Tsuchiya (Feb. 2023)

1. Introduction

Type IIB matrix model (a.k.a. IKKT model)
Promising candidate for nonperturbative string theory
[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

$$
S=\underbrace{\frac{-N}{4} \operatorname{tr}\left[A_{\mu}, A_{\nu}\right]^{2}}_{=S_{\mathrm{b}}}+\underbrace{\frac{-N}{2} \operatorname{tr} \bar{\psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]}_{=S_{\mathrm{f}}}
$$

-Dimensional reduction of the $\mathrm{D}=10 \mathrm{SYM}$ theory to Odim.
$-\mathrm{A}_{\mu}, \Psi_{\mathrm{a}} \Rightarrow \mathrm{N} \times \mathrm{N}$ Hermitian traceless matrices.
$\cdot \mathrm{N}=2$ supersymmetry \Rightarrow eigenvalues of A_{μ} are interpreted as the spacetime coordinate.

How does our ($3+1$)-dim spacetime emerge dynamically?

2. Lorentzian type IIB matrix model

Lorentzian version [s.w. Kim, J. Nishimura and A. Tsuchiya, arxiv:1108. 1540]
\Rightarrow indices are contracted by Lorentzian metric $\eta=\operatorname{diag}(-1,1,1, \cdots, 1)$
Time evolution: gauge fixing to diagonalize A_{0}
$A_{0}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)$, where $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N}$.
Band-diagonal structure of A_{1} $(v=1,2, \ldots, N-n$, and $p, q=1,2, \ldots, n)$
$\mathrm{n} \times \mathrm{n}$ matrix for time $\left(\bar{A}_{I}\right)_{p q}(t)=\left(A_{I}\right)_{\nu+p, \nu+q}$

$t_{\nu}=\sum_{k=1}^{\nu}\left|\bar{\alpha}_{k+1}-\bar{\alpha}_{k}\right|$, where $\bar{\alpha}_{k}=\frac{1}{n} \sum_{i=1}^{n} \alpha_{k+i}$
Sign problem of the Lorentzian version \mathcal{M} is a $16\left(\mathrm{~N}^{2}-1\right) \times 16\left(\mathrm{~N}^{2}-1\right)$
$Z=\int \begin{gathered}d A\left(e^{i S_{\mathrm{b}}}\right. \\ \text { complex } \\ \text { real } \\ \underbrace{\int d \psi e^{i S_{\mathrm{f}}}}_{=\operatorname{Pf} \mathcal{M}})\end{gathered}$ sparse matrix
\Rightarrow We employ the
Complex Langevin
Method (CLM)
J. Nishimura and A. Tsuchiya, arxiv:1904.05919]

Results with the approximation to avoid the sign problem

Equivalence between the Lorentzian and Euclidean version Contour deformation $A_{0}=e^{-3 i \pi u / 8} \tilde{A}_{0}, A_{I}=e^{i \pi u / 8} \tilde{A}_{I}$ $S_{\mathrm{b}} \rightarrow \underset{\text { w.r.t worldsheet }}{\tilde{S}_{\mathrm{b}}}=\stackrel{e^{i \pi u / 2}\{ }{ }\left\{\frac{-N}{4} \operatorname{tr}\left[\tilde{A}_{I}, \tilde{A}_{J}\right]^{2}+\frac{N}{2} \underset{e_{\text {w.r.t. target space }}^{-i \pi u}}{\operatorname{en}}\left[\tilde{A}_{0}, \tilde{A}_{I}\right]^{2}\right\}$

 Cauchy's theorem: $\left\langle\mathcal{O}\left(e^{-3 i \pi u / 8} \tilde{A}_{0}, e^{i \pi u / 8} \tilde{A}_{I}\right)\right)_{u}$ is independent of u.

Equivalence of the Euclidean ($u=1$) and Lorentzian (u $\rightarrow+0$) model \Rightarrow The spacetime is Euclidean.
[K. Hatakeyama et. al. arXiv:2112.15368]

Adding the Lorentzian mass term
$Z=\int d A d \psi e^{i\left(S+S_{\gamma}\right)}, S_{\gamma}=\frac{-N \gamma}{2} \operatorname{tr}\left(A^{\mu} A_{\mu}\right)=\frac{N \gamma}{2}\left\{\operatorname{tr}\left(A_{0}\right)^{2}-\operatorname{tr}\left(A_{I}\right)^{2}\right\}$ $\left.e^{i S_{\gamma}(A)}=e^{-S_{\gamma}(\tilde{A})}, \quad S_{\gamma}(\tilde{A})=\frac{N \gamma}{2}\left\{\begin{array}{l}e^{-i \pi(2+3 u) / 4} \operatorname{tr} \\ \text { reap pari } \\ \text { nis negative }(0<u \leq 1)\end{array} \tilde{e}_{0}\right)^{2 \pi(2+u) / 4} \operatorname{tr}\left(\tilde{A}_{I}\right)^{2}\right\}$
At $\gamma>0$, we cannot define the model by contour deformation
\Rightarrow Equivalence to the Euclidean model $(u=1)$ is violated.
We consider the limit $\mathrm{N} \rightarrow \infty \Rightarrow \gamma \rightarrow 0$.
3. Complex Langevin Method (CLM)

Promising method to solve complex-action systems. [Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036] - Introduce $\tau_{a} \Rightarrow$ time order $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N}$ for complexified α_{i}. $\alpha_{1}=0, \alpha_{k}=\sum_{i=1}^{k-1} e^{\tau_{i}} \quad(\mathrm{k}=2,3, \cdots, \mathrm{~N}), \mathrm{A}_{0}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\mathrm{N}}\right)$ - Mass term to avoid the near-zero modes of the Dirac operator: $\operatorname{Pf} \mathcal{M}_{m_{\mathrm{f}}}=\int d \psi e^{i S_{m_{\mathrm{f}}},} S_{m_{\mathrm{f}}}=\frac{-N}{2} \operatorname{tr}\left\{\bar{\psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]+m_{\mathrm{f}} \bar{\psi}_{\alpha}\left(\Gamma^{7} \Gamma^{8 \dagger} \Gamma^{9}\right)_{\alpha \beta} \psi_{\beta}\right\}$ $Z=\int d A e^{-S_{\text {eff }}}, S_{\text {eff }}=-i\left(S_{\mathrm{b}}+S_{\gamma}\right)-\log \operatorname{Pf} \mathcal{M}_{m_{f}}-\log \prod_{1 \leq b \leq N}\left(\alpha_{a}-\alpha_{b}\right)^{2}-\sum_{a=1}^{N-1} \tau_{a}$

- Gauge is already fixed \Rightarrow No gauge cooling. - Gauge is already fixed \Rightarrow No gauge cooling. ${ }^{1 \leq a<b \leq N}$
 - A_{1} : Hermitian \rightarrow general complex traceless matrices.
$-\tau_{a}$: Real number \rightarrow complex number.
The drift term involves $\frac{d}{d\left(A_{I}\right)_{b a}}\left\{-\log \operatorname{Pf} \mathcal{M}_{\left.m_{t}\right\}}\right\}=-\frac{1}{2} \operatorname{Tr}\left(\frac{d \mathcal{M}_{m_{t}}}{d\left(A_{t} b_{a}\right.} \mathcal{M}_{m_{t}}^{-1}\right)$
- $\mathcal{M}_{m_{f}}$'s near-zero modes cause the singular drift problem. -We use conjugate gradient (CG) method and noisy estimator. \Rightarrow Large-scale numerical simulation using supercomputers.
The condition to justify the CLM:IK. Nagata, J. Nishimura and s. Shimasaki, axivi:1600.07627] $\begin{aligned} & \text { The probability dist. of } \\ & \text { the drift norms falls } u_{A} \\ & \text { exponentially or faster. }\end{aligned}$
$\begin{aligned} & \frac{1}{9 N^{3}} \sum_{I=1}^{9} \sum_{a, b=1}^{N}\left|\frac{d S_{\text {eff }}}{d\left(A_{I}\right)_{b a}}\right|^{2}\end{aligned}, u_{\alpha}=\sqrt{\frac{1}{N} \sum_{a=1}^{N-1}\left|\frac{d S_{\text {eff }}}{d \tau_{a}}\right|^{2}}$

Dynamical stabilization: IF. Attanasio and B. Jäger axtiv: 1808.04400]
After each Langevin step, $A_{1} \rightarrow \frac{A_{1}+\eta A_{1}^{\dagger}}{1+\eta}$
Atter eac Langrep, $A_{1} \rightarrow \frac{A_{1}+\eta}{1+\eta}$ (here, $\left.\eta=0.01\right)_{\text {departure from }}$ 4. Results $N=32, n=8, u=0, m_{f}=3.5$ (preliminary) $\begin{aligned} & \text { Paulian structure } \\ & \text { (similarly for } y=9 \text {) }\end{aligned}$

5. Discussions

At larger N , and smaller y and m_{f} : Can we observe the transition from Euclidean to Lorentzian geometry?
Large-scale numerical simulation at larger N is important.

expanding 3dim space
(similarly for $\gamma=9$)
shrunken 6dim space

