Smart and Human

常翔学園
 摂南大学

＂Phase diagram of the GWW phase transition of the matrix quantum mechanics with a chemical potential＂
Takehiro Azuma（Setsunan Univ．）
From Strings to LHC IV，Sinclairs Retreat，Chalsa Mar．10th 2017，14：25－14：50
with Pallab Basu（ICTS，TIFR）and Prasant Samantray（IIT，Indore）

1. Introduction

Thermodynamic aspects of quantum gravity in AdS spacetime:

- Small blackhole (SBH):

Unstable. Horizon radius smaller than AdS

- Big blackhole (BBH):

Stable. Horizon radius comparable to AdS
Gross-Witten-Wadia (GWW) phase transition of the gauge theory and the blackhole phase transition
[L. Alvarez-Gaume, C. Gomez, H. Liu and S.R. Wadia, hep-th/0502227]

2. The model

Finite-temperature matrix quantum mechanics with a chemical potential $S=S_{b}+S_{f}+S_{g}$, where $(\mu=1,2, \ldots . D, \beta=1 / T)$

$$
\begin{aligned}
& S_{\mathrm{b}}=N \int_{0}^{\beta} \operatorname{tr}\left\{\frac{1}{2} \sum_{\mu=1}^{D}\left(D_{t} X_{\mu}(t)\right)^{2}-\frac{1}{4} \sum_{\mu, v=1}^{D}\left[X_{\mu}(t), X_{v}(t)\right]^{2}\right\} d t \\
& D_{t} X_{\mu}(t)=\partial_{t} X_{\mu}(t)-i\left[A(t), X_{\mu}(t)\right] \\
& S_{\mathrm{f}}=N \int_{0}^{\beta} \operatorname{tr}\left\{\sum_{\alpha=1}^{D} \bar{\psi}_{\alpha}(t) D_{t} \psi_{\alpha}(t)-\sum_{\mu=\{\alpha, \eta=+1}^{D} \sum_{\alpha}^{D} \bar{\psi}_{\alpha}(t)\left(\Gamma_{\mu}\right)_{\alpha l}\left[X_{\mu}(t), \psi_{\eta}(t)\right]\right\} d t \\
& S_{\mathrm{g}}=N \mu\left(\operatorname{tr} U+\operatorname{tr} U^{\dagger}\right) \quad U=\mathcal{P} \exp \left(i \int_{0}^{\beta} A(t) d t\right)
\end{aligned}
$$

- Bosonic $\left(S=S_{b}+S_{g}\right)$: D is an arbitrary integer $D=2,3, \ldots$
- Fermionic $\left(S=S_{b}+S_{f}+S_{g}\right):(D, p)=(3,2),(5,4),(9,16)$ (For $D=9$, the fermion is Majorana-Weyl $(\bar{\Psi} \rightarrow \Psi)$
In the following, we focus on $D=3$.)

2. The model

$A(t), X_{\mu}(t), \Psi(t): N \times N$ Hermitian matrix
Boundary conditions: $\begin{gathered}A(t+\beta)=A(t), \quad X_{\mu}(t+\beta)=X_{\mu}(t) \\ \psi(t+\beta)=-\psi(t)\end{gathered}$
Static diagonal gauge:
$A(t)=\frac{1}{\beta} \operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right) \quad-\pi \leqq \alpha_{k}<\pi$
\Rightarrow Add the gauge-fixing term $S_{g . f .}=-\sum_{k . l=1, k \neq l}^{N} \log \left|\sin \frac{\alpha_{k}-\alpha_{l}}{2}\right|$
Under this gauge $u_{n}=\frac{1}{N} \operatorname{tr} U^{n}=\frac{1}{N} \sum_{k=1}^{N} e^{i n a_{k}}$
Supersymmetry for $S=S_{b}+S_{f}(\mu=0)$, broken at $\mu \neq 0$.

2. The model

Previous works for $\mu=0$ (without S_{g})

$\operatorname{SUSY}\left(S=S_{b}+S_{f}\right)$

[Quoted for D=9 from N. Kawahara, J. Nishimura and S. Takeuchi, arXiv:0706.3517]
[Quoted for D=9 from K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, arXiv:0707.4454]

Confinement-deconfinement Absence of phase transition phase transition at $\mathrm{T}=\mathrm{T}_{\mathrm{c}}$

3. Result of the bosonic model

Bosonic model without fermion $\mathrm{S}=\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{g}}$
[T. Azuma, P. Basu and S.R. Wadia, arxi:0710.5873]
Result of $D=3$ ($D=2,6,9$ cases are similar)

 1
0.8
0.4
0.2
0
0
0
Critical points $\left(\mu_{c}, T_{c}\right)$ at $\langle | u_{1}| \rangle=1 / 2$

At $\left(\mu_{c}, T_{c}\right), d<\left|u_{1,2}\right|>/ d \mu$ and $d<\left|u_{1,2}\right|>/ d T$ are not smooth ($\mathrm{d}^{2}<\left|\mathrm{u}_{1,2}\right|>/ \mathrm{d} \mu^{2}$ and $\mathrm{d}^{2}<\left|\mathrm{u}_{1,2}\right|>/ \mathrm{dT}^{2}$ are discontinuous) \Rightarrow suggests third-order phase transition.

3. Result of the bosonic model

3. Result of the bosonic model

3. Result of the bosonic model

When $\mu=0$, at the critical point $T_{c 0}=1.1$, there is a first-order phase transition at small D.
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]
We fit the susceptibility with (γ, p, c) as

$$
\left.\chi=N^{2}\left\{\left.\langle | u_{1}\right|^{2}\right\rangle-\left(\langle | u_{1}| \rangle\right)^{2}\right\}=\gamma V^{p}+c\left(V=N^{2}\right)
$$

$\mathrm{p}=1 \Rightarrow$ suggests first-order phase transition.
[M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett.65, 816 (1990)]

4. Result of the fermionic model

The model with fermion $(D=3) S=S_{b}+S_{f}+S_{g}$

$$
\Gamma_{\mu}=\sigma_{\mu}(\mu=1,2,3) \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Non-lattice simulation with Fourier expansion
[K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, arXiv:0707.4454]

$$
X_{\mu}^{k l}(t)=\sum_{n=-\Lambda}^{\Lambda} \tilde{X}_{\mu, n}^{k l} e^{i \omega n t}, \quad \psi_{\alpha}^{k l}(t)=\sum_{r=-\Lambda+\frac{1}{2}}^{\Lambda-\frac{1}{2}} \tilde{\psi}_{\alpha, r}^{k l} r^{i \omega r t}, \quad \bar{\psi}_{\alpha}^{k l}(t)=\sum_{r=-\Lambda+\frac{1}{2}}^{\Lambda-\frac{1}{2}} \tilde{\bar{\psi}}_{\alpha,-r}^{k l} e^{i \omega r t} . \quad\left(\omega=\frac{2 \pi}{\beta}\right)
$$

$$
S_{\mathrm{F}, \text { Fourier }}=N \beta \sum_{r=-\Lambda+\frac{1}{2}}^{\Lambda-\frac{1}{2}}\left\{i\left\{r \omega-\frac{\alpha_{k}-\alpha_{l}}{\beta}\right\} \tilde{\tilde{\psi}}_{\alpha, r}^{l k} \tilde{\psi}_{\alpha, r}^{k l}-\left(\sigma_{\mu}\right)_{\alpha \eta} \operatorname{tr}\left\{\left[\tilde{\bar{\psi}}_{\alpha, r}\left(\left[\tilde{X}_{\mu}, \tilde{\psi}_{\eta}\right]\right)_{r}\right\}\right\}\right.
$$

Integrating out $\Psi \Rightarrow \mathrm{N}_{0} \times \mathrm{N}_{0}$ matrix \mathscr{M}
 Gamma matix [4(D=5), 16(D=9)] $r=-\Lambda+1 / 2, \ldots \Lambda-1 / 2$
$\mathrm{D}=3$: $\operatorname{det} \mathscr{M}$ is real \Rightarrow no sign problem.

4. Result of the fermionic model

Result of $\mathrm{D}=3, \mathrm{~N}=16$, after large- \wedge extrapolation:

4. Result of the fermionic model

Result of $\mathrm{D}=3, \mathrm{~N}=16$, after large- \wedge extrapolation:

History of $R^{2}=\frac{1}{N \beta} \int_{0}^{\beta} d t \operatorname{tr} X_{\mu}(t)^{2}$ at $\Lambda=3$

No instability in the typical (μ, T) region.

4. Result of the fermionic model

Phase diagram for $\mathrm{D}=2,3,6,9$ (boson) and $\mathrm{D}=3$ (fermion) . Some phase transitions at (μ_{c}, T_{c}) where $\langle | u_{1}| \rangle=0.5$

$$
\begin{aligned}
& D=3 \text { SUSY, } \mu=0: \\
& <\left|u_{1}\right|>=a_{0} \exp \left(-a_{1} / T\right) \\
& a_{0}=1.03(1), a_{1}=0.19(1) \\
& \Rightarrow<\left|u_{1}\right|>=0.5 \text { at } T=0.28 .
\end{aligned}
$$

[M. Hanada, S. Matsuura, J. Nishimura and D. Robles-Llana, arXiv:1012.2913]

$$
\bar{\mu}=0:\langle | u_{1}| \rangle=0.5 \mathrm{at}
$$

$$
T_{c}=1.39 \times 0.5^{2.30} \simeq 0.28
$$

Fitting of the critical point by $\mathrm{T}_{\mathrm{c}}=\mathrm{a}\left(0.5-\mu_{\mathrm{c}}\right)^{\mathrm{b}}$.

D	2 (boson)	3 (boson)	6 (boson)	9 (boson)	3 (fermion)
a	$1.36(12)$	$1.01(15)$	$0.91(9)$	$0.90(8)$	$1.39(72)$
b	$0.55(6)$	$0.34(7)$	$0.25(4)$	$0.23(4)$	$2.30(59)$

5. Summary

We have studied the matrix quantum mechanics with a chemical potential $S_{\mathrm{g}}=N \mu\left(\operatorname{tr} U+\operatorname{tr} U^{\dagger}\right)$
-bosonic model \Rightarrow GWW-type third-order phase transition (except for very small μ)

- phase diagram of the bosonic/fermionic model

backup: GWW phase transition

$$
S=\underbrace{2 N \mu \sum_{k=1}^{N} \cos \alpha_{k}}_{=S_{\mathrm{g}}=N \mu\left(\mathrm{tr} U+\mathrm{tr} U^{\dagger}\right)}+\underbrace{\left(-\sum_{k, l=1, k \neq l}^{N} \log \sin \left|\frac{\alpha_{k}-\alpha_{l}}{2}\right|\right)}_{=S_{\mathrm{g} . \mathrm{f} .}} .
$$

[D.J. Gross and E. Witten, Phys. Rev. D21 (1980) 446, S.R. Wadia, Phys. Lett. B93 (1980) 403] Gross-Witten-Wadia (GWW) type third-order phase transition

backup: GWW phase transition

Continuous at $\mu=1 / 2$.

$$
\begin{gathered}
\langle | u_{1}| \rangle=\left\{\begin{array}{ll}
\mu & \left(0 \leqq \mu \leqq \frac{1}{2}\right) \\
1-\frac{1}{4 \mu}\left(\mu \geqq \frac{1}{2}\right)
\end{array}, \quad\langle | u_{2}| \rangle= \begin{cases}0 & \left(0 \leqq \mu \leqq \frac{1}{2}\right) \\
\left(1-\frac{1}{2 \mu}\right)^{2} & \left(\mu \geqq \frac{1}{2}\right)\end{cases} \right. \\
\frac{d\langle | u_{1}| \rangle}{d \mu}=\left\{\begin{array}{l}
1 \\
\frac{1}{4 \mu^{2}}\left(\begin{array}{ll}
0 & \left(\mu \geqq \frac{1}{2}\right)
\end{array},\right.
\end{array}, \frac{d^{2}\langle | u_{1}| \rangle}{d \mu^{2}}= \begin{cases}0 & \left(0 \leqq \mu \leqq \frac{1}{2}\right) \\
-\frac{1}{2 \mu^{3}} & \left(\mu \geqq \frac{1}{2}\right)\end{cases} \right.
\end{gathered}
$$

Discontinuous at $\mu=1 / 2$.
\Rightarrow For free energy, $\mathrm{d}^{3} \mathrm{~F} / \mathrm{d} \mu^{3}$ is discontinuous.

backup: RHMC

Simulation via Rational Hybrid Monte Carlo (RHMC)

 algorithm. [Chap 6,7 of B.Ydri, arXiv:1506.02567, for a review]We exploit the rational approximation

$$
x^{-1 / 2} \simeq a_{0}+\sum_{k=1}^{Q} \frac{a_{k}}{x+b_{k}}
$$

after a proper rescaling. (typically $\mathrm{Q}=15 \Rightarrow$ valid at $10^{-12} \mathrm{C}<\mathrm{x}<\mathrm{c}$) a_{k}, b_{k} come from Remez algorithm. [M. A. Clark and A. D. Kennedy, https://github.com/mikeaclark/AlgRemez]
 $S_{0}=S_{\mathrm{b}}+S_{\mathrm{g}}-\log |\operatorname{det} \mathscr{M}|$ $|\operatorname{det} \mathscr{M}|=(\operatorname{det} \mathscr{D})^{1 / 2} \simeq \int d F d F^{*} \exp \left(-F^{*} \mathscr{D}^{-1 / 2} F\right) \simeq \int d F d F^{*} e^{-S_{\mathrm{PF}}}$ $S_{\mathrm{PF}}=a_{0} F^{*} F+\sum_{k=1}^{Q} a_{k} F^{*}\left(\mathscr{D}+b_{k}\right)^{-1} F, \quad\left(\right.$ where $\left.\mathscr{D}=\mathscr{M}^{\dagger} \mathscr{M}\right)$
F: bosonic N_{0}-dim vector (called pseudofermion)

backup: RHMC

Hot spot (most time-consuming part) of RHMC:
\Rightarrow Solving $\left(\mathscr{D}+b_{k}\right) \chi_{k}=F \quad(k=1,2, \cdots, Q)$ by conjugate gradient (CG) method.

Multiplication $\mathscr{M} \chi_{k} \Rightarrow$
\mathscr{M} is a very sparse matrix. No need to build \mathscr{M} explicitly.
\Rightarrow CPU cost is $\mathrm{O}\left(\mathrm{N}^{3}\right)$ per CG iteration
The required CG iteration time depends on T . (while direct calculation of \mathscr{M}^{-1} costs $\mathrm{O}\left(\mathrm{N}^{6}\right)$.)

Multimass CG solver: [B. Jegerlehner, hep-lat/9612014]
Solve $\left(\mathscr{D}+b_{k}\right) \chi_{k}=F$ only for the smallest b_{k}
\Rightarrow The rest can be obtained as a byproduct, which saves $\mathrm{O}(\mathrm{Q}) \mathrm{CPU}$ cost.

backup: RHMC

Conjugate Gradient (CG) method:
Iterative algorithm to solve the linear equation $A x=b$ (A: symmetric, positive-definite $\mathrm{n} \times \mathrm{n}$ matrix)
Initial config. $\mathbf{x}_{0}=0 \quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} \quad \mathbf{p}_{0}=\mathbf{r}_{0}$
(for brevity, no preconditioning on x_{0} here)
$\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \quad \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} \quad \alpha_{k}=\frac{\left(r_{k}, r_{k}\right)}{\left(p_{k}, A p_{k}\right)}$
$\mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{k}, \mathbf{r}_{k}\right)} \mathbf{p}_{k}$
Iterate this until $\sqrt{\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{0}, \mathbf{r}_{0}\right)}}<$ (tolerance) $\simeq 10^{-4}$
The approximate answer of $A x=b$ is $x=x_{k+1}$.

