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1. Introduction

Difficulties in putting complex partition functions on computers.

1. Sign problem:

The reweighting                      requires configs.  exp[O(N2)]

2. Overlap problem:

Discrepancy of important configs. between Z0 and Z.

<*>0 = (V.E.V. for the phase-quenched partition function Z0) 

e.g. lattice QCD,  matrix models for superstring theory 
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2. Factorization method

[J. Nishimura and K.N. Anagnostopoulos, hep-th/0108041

K.N. Anagnostopoulos, T.A. and J. Nishimura, arXiv:1009.4504]

Method to sample important configurations for Z.

We constrain the observables

correlated with the phase Γ.

They are normalized as 
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The distribution function  factorizes as

Partition function in the constrained system.
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Simulation of Zx with a proper choice of the set Σ

⇒sample the important region for Z. 

Peak of the distribution function ρ at V=(system size)→∞.

= Minimum of the free energy  

⇒Solve the saddle-point equation   

Evaluation of the observables   

Applicable to general systems with sign problem. 
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3. The model

IKKT model (or the IIB matrix model)

⇒Promising candidate for nonperturbative string theory 

[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

Euclidean case after the Wick rotation A0→iA 10, Γ
0→-iΓ 10.

⇒Path integral is finite without cutoff.
[W. Krauth, H. Nicolai and M. Staudacher, hep-th/9803117, 

P. Austing and J.F. Wheater, hep-th/0103059]

Aμ, Ψα⇒N×N Hemitian matrices (μ=1,2,…,d=10, α,β=1,2,…,16)

Ψα : Majorana-Weyl fermion
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Matrix regularization of the type IIB string action:

N=2 supersymmetry

Eigenvalues of Aμ⇒spacetime coordinate.

Dynamical emergence of the spacetime due to the

Spontaneous Symmetry Breaking (SSB) of SO(10).

where
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Result of Gaussian Expansion Method (GEM) 

Order parameter of the SO(10) rotational symmetry breaking

Extended d-dim. and shrunken (10-d) dim. at N→∞

SSB SO(10)→SO(d)

Main Results of GEM
[J. Nishimura, T. Okubo and F. Sugino, arXiv:1108.1293]

・Universal compactification scale

r2 ≅0.15 for SO(d) ansatz (d=2,3,…7).

・Constant volume property except d=2

V=Rd×r10-d=l10, l2≅0.38

・SSB SO(10)→SO(3).

10 dim. volume V=Rd×r10-d

Extended d dim.

R
r

Shrunken

(10-d) dim.
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Mechanism of SSB in Euclidean case 

Partition function of the model:

16(N2-1)×16(N2-1) anti-symmetric matrix

The Pfaffian PfM is complex in the Euclidean case

⇒Complex phase Γ is crucial for the SSB of SO(10).
[J. Nishimura and G. Vernizzi hep-th/0003223]
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Under the parity transformation A10⇒－A10,

PfM is complex conjugate 

⇒ PfM is real for  A10=0 (hence 9-dim config.).

Up to m=9-d, the config. is at most 9-dim.

The phase is more stationary for lower d.

For the d-dim config,                            
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No SSB with the phase-quenched partition function.

<*>0=V.E.V. for Z0

[J. Ambjorn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,0005147]

Result of the Euclidean 

IKKT model for N≦32.

The N→∞ limit is 

consistent with the 

constant volume 

property l2=0.38.
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It turns out sufficient to constrain only one eigenvalue λd+1

where n=d+1

The solution    corresponds to 

in the SO(d) vacuum.

4. Results of the Monte Carlo simulation

Corresponds to the SO(d) vacuum

corresponds to (r/l)2[≃0.15/0.38=0.40 (GEM)]

S0 and                  (hence λn) are invariant under A10⇒－A10.

12



is almost constant 

at large x.

No need to constrain the

larger eigenvalues λ1～d. 
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The phase wn(x) scales at large N as

For the d=(n-1) dim. config,                                up to m=9-d.

⇒The fluctuation of the phase is 

Assume that Γ’s distribution is Gaussian: 

We have 

(x corresponds to the eigenvalues of                                ) 
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Around x≅1: fn
(0)(x)/N scales at large N:

Around x<0.4: fn
(0)(x)/N2 scales at large N

→ existence of the hardcore potential.

n=3

SO(2)

GEM suggests

≃0.40
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n=4

SO(3)

n=5

SO(4)
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Comparison of the free energy

The SO(2) vacuum is 

disfavored.

Free energy for the SO(d) vacuum:

→0 at large N

SO(2)

SO(3)

SO(4)
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(1) Gaussian toy model

(μ=1,2,3,4,  α,β=1,2,  f=1,2,…,Nf , Euclidean)
[J. Nishimura, hep-th/0108070, K.N. Anagnostopoulos, T.A. and  J. Nishimura arXiv:1009.4504,1108.1534]

Severe overlap problem 

→ constrain all eigenvalues

 Fermion Ψ : N-dim. vector (not adjoint)

→ CPU cost of det M is O(N3).

 No supersymmetry 

5. Similar toy models

Effect of including other observables                       in Σ

⇒Without O, the remaining overlap problem is small.
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(2) 6-dim Euclidean IKKT model with supersymmetry

dynamics similar to that of 10d IKKT model.

→ constrain only one eigenvalue

In both (1)(2), the free energy was difficult to evaluate.

det M is complex in 6d (real in 4d).

 One-loop effective action: CPU power O(N3)
[K.N. Anagnostopoulos and J. Nishimura hep-th/0108041]

 full model : CPU power O(N5) with RHMC
[K.N. Anagnostopoulos, T.A. and J. Nishimura arXiv:1306.6135]

⇒captures the short-distance effect

crucial for qualitative agreement with GEM 
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6. Summary

We have studied the dynamical compactification 

of the spacetime in the Euclidean IKKT model. 

Monte Carlo simulation via factorization method

⇒We have obtained the results consistent with GEM:

・Universal compactification scale for SO(2,3,4) vacuum.

・SO(2) vacuum is disfavored.
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Future prospects

Euclidean IKKT model:

 In 10d model, the finite-N effect seems severer.

The volume is N2=L6 (6d) while N2=L10 (10d)

⇒it is important to pursue large-N simulation.

Parallelization by Message Passing

Interface (MPI).

Each node works on each block

in matrix multiplication.

Better preconditioning for the CG method

⇒reduce the iteration
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Future prospects

Factorization method is applicable to general

systems with sign problem.

 Random matrix model
[J. Ambjorn, K.N. Anagnostopoulos, J. Nishimura and J.J.M. Verbaarschot, hep-lat/0208025]

 Application to various other systems

Analysis with Complex Langevin Method

⇒ works well for the Gaussian Toy Model.
[Y. Ito and J. Nishimura, arXiv:1609.04501]
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Simulation of  Z0 via Rational Hybrid Monte Carlo (RHMC) 

algorithm.

F: bosonic 16(N2-1)-dim vector (called pseudofermion) 

[Chap 6,7 of B.Ydri, arXiv:1506.02567, for a review]

We exploit the rational approximation

after a proper rescaling.

(typically Q=15⇒valid at 10-12c<x<c)

ak, bk come from Remez algorithm.

[M. A. Clark and A. D. Kennedy,

https://github.com/mikeaclark/AlgRemez]

0.01% accuracy at

10-12<x<1 (c=1)
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Hot spot (most time-consuming part) of RHMC:

⇒Solving 

by conjugate gradient (CG) method.

The iteration for CG method is O(N2) in the IKKT model.

In total, the CPU cost is O(N5) 

(while direct calculation of     -1 costs O(N6).)

Multimass CG solver:

Solve                           only for the smallest bk

⇒The rest can be obtained  as a byproduct, 

which saves O(Q) CPU cost.

[B. Jegerlehner, hep-lat/9612014 ]

Multiplication           ⇒ use the expression  

(      is a very sparse matrix. No need to build explicitly.)

⇒CPU cost is O(N3)
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Conjugate Gradient (CG) method:

Iterative algorithm to solve the linear equation Ax=b

(A: symmetric, positive-definite n×n matrix)   

The approximate answer of Ax=b is x=xk+1.

Iterate this until              

Initial config.              

(for brevity, no preconditioning on x0 here)              


