Smart and Human ^{常翔学園} 摂南大学

Monte Carlo Studies of Dynamical Compactification of Extra Dimensions in a Model of Non-perturbative String Theory (arXiv:1509.05079)

Takehiro Azuma (Setsunan Univ.) with Konstantinos N. Anagnostopoulos and Jun Nishimura

Tea Duality seminar at TIFR, 10:00-11:00 Dec. 31, 2015

1. Introduction

Difficulties in putting complex partition functions on computers.

$$Z = \int dA \exp(-S_0 + i\Gamma), \ Z_0 = \int dA e^{-S_0}$$

e.g. lattice QCD, matrix models for superstring theory

- 1. Sign problem: The reweighting $\langle \mathscr{O} \rangle = \frac{\langle \mathscr{O} e^{i\Gamma} \rangle_0}{\langle e^{i\Gamma} \rangle_0}$ requires configs. exp[O(N²)] $\langle * \rangle_0 = (V.E.V.$ for the phase-quenched partition function Z_0)
- 2. Overlap problem: Discrepancy of important configs. between Z_0 and Z.

2. Factorization method

Method to sample important configurations for Z.

[J. Nishimura and K.N. Anagnostopoulos, hep-th/0108041 K.N. Anagnostopoulos, T.A. and J. Nishimura, arXiv:1009.4504]

We constrain the observables $\Sigma = \{ \mathscr{O}_k | k = 1, 2, \cdots, n \}$ correlated with the phase Γ .

They are normalized as $\tilde{\mathscr{O}}_k = \mathscr{O}_k / \langle \mathscr{O}_k \rangle_0$

SETSUNAN UNIVERSITY 🌽

- Simulation of Z_x with a proper choice of the set Σ \Rightarrow sample the important region for Z.
- Evaluation of the observables $\langle \tilde{\mathscr{O}}_k \rangle$
 - Peak of the distribution function ρ at V=(system size) $\rightarrow \infty$. = Minimum of the free energy $\mathscr{F} = -\frac{1}{N^2}\log\rho$
- $\Rightarrow \text{Solve the saddle-point equation } \frac{1}{N^2} \frac{\partial}{\partial x_n} \log \rho^{(0)} = -\frac{\partial}{\partial x_n} \frac{1}{N^2} \log w$

Applicable to general systems with sign problem.

3. The model

IKKT model (or the IIB matrix model)

⇒Promising candidate for nonperturbative string theory

[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

Euclidean case after the Wick rotation $A_0 \rightarrow iA_{10}$, $\Gamma^0 \rightarrow -i\Gamma_{10}$. \Rightarrow Path integral is finite without cutoff.

[W. Krauth, H. Nicolai and M. Staudacher, hep-th/9803117, P. Austing and J.F. Wheater, hep-th/0103059]

A_µ, Ψ_α ⇒N×N Hemitian matrices (µ=1,2,...,d=10, α,β=1,2,...,16) Ψ_α : Majorana-Weyl fermion

Matrix regularization of the type IIB string action: $S_{Sh} = \int d^2 \sigma \left\{ \sqrt{g} \alpha \left(\frac{1}{4} \{ X_{\mu}, X_{\nu} \}^2 - \frac{i}{2} \bar{\psi} \Gamma^{\mu} \{ X_{\mu}, \psi \} \right) + \beta \sqrt{g} \right\}.$ $-i[,] \leftrightarrow \{,\}, \quad \text{tr} \leftrightarrow \int d^2 \sigma \sqrt{g}.$ N=2 supersymmetry

$$\begin{split} \tilde{\delta}_{\varepsilon}^{(1)} &= \delta_{\varepsilon}^{(1)} + \delta_{\varepsilon}^{(2)} \quad \tilde{\delta}_{\varepsilon}^{(2)} = i(\delta_{\varepsilon}^{(1)} - \delta_{\varepsilon}^{(2)}) \quad \text{where} \\ \delta_{\varepsilon}^{(1)} A_{\mu} &= i\varepsilon(\mathscr{C}\Gamma_{\mu})\psi, \ \delta_{\varepsilon}^{(1)}\psi = \frac{i}{2}[A_{\mu}, A_{\nu}]\Gamma^{\mu\nu}\varepsilon, \ \delta_{\varepsilon}^{(2)}A_{\mu} = 0, \ \delta_{\varepsilon}^{(2)}\psi = \varepsilon. \end{split}$$

$$[\tilde{\delta}_{\varepsilon}^{(a)}, \tilde{\delta}_{\xi}^{(b)}]A_{\mu} = -2i\delta^{ab}\varepsilon(\mathscr{C}\Gamma_{\mu})\xi, \ [\tilde{\delta}_{\varepsilon}^{(a)}, \tilde{\delta}_{\xi}^{(b)}]\psi = 0, \ (a, b = 1, 2).$$

Eigenvalues of $A_{\mu} \Rightarrow$ spacetime coordinate.

Dynamical emergence of the spacetime due to the Spontaneous Symmetry Breaking (SSB) of SO(10).

Result of Gaussian Expansion Method (GEM)

Order parameter of the SO(10) rotational symmetry breaking $\lambda_n(\lambda_1 \ge \cdots \ge \lambda_{10})$: eigenvalues of $T_{\mu\nu} = \frac{1}{N} \operatorname{tr}(A_{\mu}A_{\nu})$

$$\langle \lambda_1 \rangle = \cdots = \langle \lambda_d \rangle (= R^2) \gg \langle \lambda_{d+1} \rangle = \cdots = \langle \lambda_{10} \rangle (= r^2)$$

Extended d-dim. and shrunken (10-d) dim. at $N \rightarrow \infty$ SSB SO(10) \rightarrow SO(d)

Main Results of GEM

[J. Nishimura, T. Okubo and F. Sugino, arXiv:1108.1293]

- •Universal compactification scale $r^2 \cong 0.15$ for SO(d) ansatz (d=2,3,...7).
- -Constant volume property except d=2 $V=R^d \times r^{10-d}=I^{10}$, $I^2\cong 0.38$
- •SSB SO(10) \rightarrow SO(3).

10 dim. volume V=R^d × r^{10-d}

Extended d dim. (10-d) dim.

Partition function of the model:

$$Z = \int dA \ e^{-S_B} \left(\int d\psi e^{-S_F} \right) = \int dA \ \underbrace{e^{-S_0}}_{=e^{-S_B}|\text{Pf}\mathcal{M}|} e^{i\Gamma}$$
$$\mathscr{M}_{a\alpha,b\beta} = -if_{abc} (\mathscr{C}\Gamma)_{\alpha\beta} (A_{\mu})^c \ (a,b,c=1,2,\cdots,N^2-1,\ \alpha,\beta=1,2,\cdots,16)$$

 $16(N^2-1) \times 16(N^2-1)$ anti-symmetric matrix

The Pfaffian PfM is complex in the Euclidean case ⇒Complex phase Γ is crucial for the SSB of SO(10). [J. Nishimura and G. Vernizzi hep-th/0003223]

Under the parity transformation $A_{10} \Rightarrow -A_{10}$, PfM is complex conjugate \Rightarrow PfM is real for $A_{10}=0$ (hence 9-dim config.).

For the d-dim config,

$$\frac{\partial^m \Gamma}{\partial A_{\mu_1} \cdots \partial A_{\mu_m}} = 0$$

Up to m=9-d, the config. is at most 9-dim.

The phase is more stationary for lower d.

No SSB with the phase-quenched partition function. $Z_0 = \int dAe^{-S_0} <*>_0 = V.E.V.$ for Z_0

[J. Ambjorn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,0005147]

SETSUNAN UNIVERSITY 🗸

4. Results of the Monte Carlo simulation

It turns out sufficient to constrain only one eigenvalue λ_{d+1} $\Sigma = \{\lambda_{d+1} \text{ only}\}$ Corresponds to the SO(d) vacuum $\langle \lambda_1 \rangle = \cdots = \langle \lambda_d \rangle (= R^2) \gg \langle \lambda_{d+1} \rangle = \cdots = \langle \lambda_{10} \rangle (= r^2)$

 $\tilde{\lambda}_n \stackrel{\text{def}}{=} \lambda_n / \langle \lambda_n \rangle_0$ corresponds to $(r/l)^2 \simeq 0.15/0.38 = 0.40$ (GEM)]

$$\begin{cases} \frac{1}{N^2} f_n^{(0)}(x) = -\frac{d}{dx} \frac{1}{N^2} \log w_n(x) \text{ where } n=d+1\\ f_n^{(0)}(x) \stackrel{\text{def}}{=} \frac{d}{dx} \log \langle \delta(x-\tilde{\lambda}_n) \rangle_0, \ w_n(x) \stackrel{\text{def}}{=} \langle e^{i\Gamma} \rangle_{n,x} = \langle \cos \Gamma \rangle_{n,x}\\ \langle * \rangle_{n,x} = \left\{ \text{V.E.V. for } Z_{n,x} = \int dA e^{-S_0} \delta(x-\tilde{\lambda}_n) \right\} \end{cases}$$

$$S_0 \text{ and } T_{\mu\nu} = \frac{1}{N} \text{tr}(A_{\mu}A_{\nu}) \text{ (hence } \lambda_n \text{) are invariant under } A_{10} \Rightarrow -A_{10}.$$

The solution \bar{x}_n corresponds to $\bar{x}_n = \langle \tilde{\lambda}_{d+1} \rangle_{\text{SO}(d)}$
in the SO(d) vacuum.

SETSUNAN UNIVERSITY

 $\frac{1}{N^2} \log w_n(x)$ is almost constant at large x.

No need to constrain the larger eigenvalues $\lambda_{1\sim d}$.

The phase $w_n(x)$ scales at large N as $\Phi_n(x) = \lim_{N \to \infty} \frac{1}{N^2} \log w_n(x) \simeq -a_n x^{10-(n-1)} - b_n \quad (x < 1)$ For the d=(n-1) dim. config, $\frac{\partial^m \Gamma}{\partial A_{\mu_1} \cdots \partial A_{\mu_m}} = 0$ up to m=9-d.

 $\Rightarrow \text{The fluctuation of the phase is } \delta \Gamma \propto (\delta A/|A|)^{10-d} \propto (\sqrt{x})^{10-d}$ (x corresponds to the eigenvalues of $T_{\mu\nu} = \frac{1}{N} \text{tr}(A_{\mu}A_{\nu}) = O(A^2)$)

Assume that Γ's distribution is Gaussian:

$$\langle e^{i\Gamma} \rangle = \int d\Gamma \frac{1}{\sqrt{2\pi\sigma}} e^{-\Gamma^2/(2\sigma^2)} e^{i\Gamma} = e^{-\sigma^2/2}$$

We have $\log w_n(x) = -\frac{\sigma^2}{2} = -O(x^{10-d}) = -O(x^{10-(n-1)})$

SETSUNAN UNIVERSITY

Around x \cong 1: $f_n^{(0)}(x)/N$ scales at large N: $\frac{x}{N}f_n^{(0)}(x) \simeq g_n(x) = c_{1,n}(x-1) + c_{2,n}(x-1)^2$

Around x<0.4: $f_n^{(0)}(x)/N^2$ scales at large N \rightarrow existence of the hardcore potential.

GEM suggests $\bar{x}_n = \langle \tilde{\lambda}_{d+1} \rangle_{\text{SO}(d)} \simeq 0.40$

SETSUNAN UNIVERSITY 🤌

Comparison of the free energy

SETSUNAN UNIVERSIT

X

5. Similar toy models

(1) Gaussian toy model

$$S = \frac{N}{2} \operatorname{tr}(A_{\mu})^{2} - \bar{\psi}_{\alpha}^{f}(\Gamma_{\mu})_{\alpha\beta} A_{\mu} \psi_{\beta}^{f}$$

 $(\mu = 1, 2, 3, 4, \alpha, \beta = 1, 2, f = 1, 2, ..., N_f$, Euclidean)

[J. Nishimura, hep-th/0108070, K.N. Anagnostopoulos, T.A. and J. Nishimura arXiv:1009.4504,1108.1534]

- Fermion Ψ : N-dim. vector (not adjoint) \rightarrow CPU cost of det M is O(N³).
- No supersymmetry
- Severe overlap problem
- \rightarrow constrain all eigenvalues $\Sigma = \{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$
- Effect of including other observables $\mathscr{O} = -\frac{1}{N} tr[A_{\mu}, A_{\nu}]^2$ in Σ \Rightarrow Without O, the remaining overlap problem is small.

- (2) 6-dim Euclidean IKKT model with supersymmetry det M is complex in 6d (real in 4d).
- dynamics similar to that of 10d IKKT model. \rightarrow constrain only one eigenvalue $\Sigma = \{\lambda_{d+1} \text{ only}\}$
 - One-loop effective action: CPU power O(N³)
 [K.N. Anagnostopoulos and J. Nishimura hep-th/0108041]
 full model : CPU power O(N⁵) with RHMC
 [K.N. Anagnostopoulos, T.A. and J. Nishimura arXiv:1306.6135]
 ⇒ captures the short-distance effect
 - crucial for qualitative agreement with GEM

In both (1)(2), the free energy was difficult to evaluate.

6. Summary

We have studied the dynamical compactification of the spacetime in the Euclidean IKKT model.

Monte Carlo simulation via factorization method ⇒We have obtained the results consistent with GEM:

Universal compactification scale for SO(2,3,4) vacuum.
SO(2) vacuum is disfavored.

Euclidean IKKT model:

In 10d model, the finite-N effect seems severer.
 The volume is N²=L⁶ (6d) while N²=L¹⁰ (10d)
 ⇒it is important to pursue large-N simulation.

Parallelization by Message Passing Interface (MPI). Each node works on each block in matrix multiplication.

Better preconditioning for the CG method ⇒reduce the iteration

Factorization method is applicable to general systems with sign problem.

Random matrix model

[J. Ambjorn, K.N. Anagnostopoulos, J. Nishimura and J.J.M. Verbaarschot, hep-lat/0208025]

Application to various other systems

Analysis with Complex Langevin Method \Rightarrow works well for the Gaussian Toy Model.

[Y. Ito and J. Nishimura, arXiv:1609.04501]

backup: RHMC

Simulation of Z₀ via Rational Hybrid Monte Carlo (RHMC) algorithm. [Chap 6,7 of B.Ydri, arXiv:1506.02567, for a review]

We exploit the rational approximation 0.0002 $x^{-1/4} \simeq a_0 + \sum_{k=1}^{Q} \frac{a_k}{x+b_k}$ 0.0001 0 -0.0001 (x^{-1/4}-rational)/x -0.0002 after a proper rescaling. -0.0003(typically Q=15 \Rightarrow valid at 10⁻¹²c<x<c) -0.0004 -0.0005 0.01% accuracy at a_k , b_k come from Remez algorithm. -0.0006 10⁻¹²<x<1 (c=1) -0.0007 -0.0008

[M. A. Clark and A. D. Kennedy, https://github.com/mikeaclark/AlgRemez]

$$S_{0} = S_{B} - \log |Pf\mathcal{M}||$$

$$|Pf\mathcal{M}| = |\det\mathcal{M}|^{1/2} = (\det\mathcal{D})^{1/4} \simeq \int dFdF^{*} \exp\left(-F^{*}\mathcal{D}^{-1/4}F\right) \simeq \int dFdF^{*}e^{-S_{PF}}$$

$$S_{PF} = a_{0}F^{*}F + \sum_{k=1}^{Q} a_{k}F^{*}(\mathcal{D} + b_{k})^{-1}F, \quad (\text{where } \mathcal{D} = \mathcal{M}^{\dagger}\mathcal{M})$$

-0.0009

0

0.2

0.4

0.6

0.8

1.2

F: bosonic 16(N²-1)-dim vector (called pseudofermion)

backup: RHMC

Hot spot (most time-consuming part) of RHMC: \Rightarrow Solving $(\mathscr{D} + b_k)\chi_k = F$ $(k = 1, 2, \dots, Q)$ by conjugate gradient (CG) method.

Multiplication $\mathscr{M}\chi_k \Rightarrow$ use the expression $\Gamma^{\mu}[A_{\mu},\chi_k]$ (\mathscr{M} is a very sparse matrix. No need to build \mathscr{M} explicitly.) \Rightarrow CPU cost is O(N³)

The iteration for CG method is $O(N^2)$ in the IKKT model. In total, the CPU cost is $O(N^5)$ (while direct calculation of \mathcal{M}^{-1} costs $O(N^6)$.)

Multimass CG solver: [B. Jegerlehner, hep-lat/9612014] Solve $(\mathscr{D} + b_k)\chi_k = F$ only for the smallest b_k \Rightarrow The rest can be obtained as a byproduct, setsunan university & which saves O(Q) CPU cost.

backup: RHMC

Conjugate Gradient (CG) method: Iterative algorithm to solve the linear equation Ax=b

(A: symmetric, positive-definite n × n matrix)

Initial config. $\mathbf{x}_0 = 0$ $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$ $\mathbf{p}_0 = \mathbf{r}_0$ (for brevity, no preconditioning on \mathbf{x}_0 here)

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \boldsymbol{\alpha}_k \mathbf{p}_k \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \boldsymbol{\alpha}_k \mathbf{A} \mathbf{p}_k \quad \boldsymbol{\alpha}_k = \frac{(r_k, r_k)}{(p_k, A p_k)}$$
$$\mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \frac{(\mathbf{r}_{k+1}, \mathbf{r}_{k+1})}{(\mathbf{r}_k, \mathbf{r}_k)} \mathbf{p}_k$$
Iterate this until $\sqrt{\frac{(\mathbf{r}_{k+1}, \mathbf{r}_{k+1})}{(\mathbf{r}_0, \mathbf{r}_0)}} < (\text{tolerance}) \simeq 10^{-4}$

The approximate answer of Ax=b is $x=x_{k+1}$.

SETSUNAN UNIVERSITY