Smart and Human

常翔学園
 摂南大学

Monte Carlo Studies of Dynamical

 Compactification of Extra Dimensions in a Model of Non－perturbative String Theory（arXiv：1509．05079）Takehiro Azuma（Setsunan Univ．）
with Konstantinos N．Anagnostopoulos and Jun Nishimura

Tea Duality seminar at TIFR， 10：00－11：00 Dec．31， 2015

1. Introduction

Difficulties in putting complex partition functions on computers.

$$
Z=\int d A \exp \left(-S_{0}+i \Gamma\right), Z_{0}=\int d A e^{-S_{0}}
$$

e.g. lattice QCD, matrix models for superstring theory

1. Sign problem:

The reweighting $\langle\mathscr{O}\rangle=\frac{\left\langle\mathscr{O} e^{i \Gamma}\right\rangle_{0}}{\left\langle e^{i}\right\rangle_{0}}$ requires configs. $\exp \left[\mathrm{O}\left(\mathrm{N}^{2}\right)\right]$ $\left\langle^{*}\right\rangle_{0}=\left(\mathrm{V} . \mathrm{E} . \mathrm{V}\right.$. for the phase-quenched partition function $\left.\mathrm{Z}_{0}\right)$
2. Overlap problem:

Discrepancy of important configs. between Z_{0} and Z .

2. Factorization method

Method to sample important configurations for Z.
[J. Nishimura and K.N. Anagnostopoulos, hep-th/0108041
K.N. Anagnostopoulos, T.A. and J. Nishimura, arXiv:1009.4504]

We constrain the observables $\Sigma=\left\{\mathscr{O}_{k} \mid k=1,2, \cdots, n\right\}$ correlated with the phase Γ.

They are normalized as $\tilde{\mathscr{O}}_{k}=\mathscr{O}_{k} /\left\langle\mathscr{O}_{k}\right\rangle_{0}$

The distribution function factorizes as

Partition function in the constrained system.

$$
\begin{aligned}
& \rho\left(x_{1}, \cdots, x_{n}\right) \stackrel{\text { def }}{=}\left\langle\prod_{k=1}^{n} \delta\left(x_{k}-\tilde{O}_{k}\right)\right\rangle \stackrel{\text { reweighting }}{=} \frac{\left\langle\prod_{k=1}^{n} \delta\left(x_{k}-\tilde{O}_{k}\right) e^{i \Gamma}\right\rangle_{0}}{\left\langle e^{I \Gamma}\right\rangle_{0}} \\
& =\frac{1}{\left\langle e^{i \Gamma}\right\rangle_{0}} \times\left\langle\prod_{k=1}^{n} \delta\left(x_{k}-\tilde{\mathscr{O}}_{k}\right)\right\rangle_{0} \times \frac{\left\langle\prod_{k=1}^{n} \delta\left(x_{k}-\tilde{\mathscr{O}}_{k}\right) e^{i \Gamma}\right\rangle_{0}}{\left\langle\prod_{k=1}^{n} \delta\left(x_{k}-\tilde{\mathscr{O}}_{k}\right)\right\rangle_{0}} \\
& =\frac{1}{\left\langle e^{i \Gamma}\right\rangle_{0}} \times\left\langle\prod_{k=1}^{n} \delta\left(x_{k}-\tilde{\mathscr{O}}_{k}\right)\right\rangle_{0} \times \frac{\int d A e^{-S_{0}} \prod_{k=1}^{n} \boldsymbol{\delta}\left(x_{k}-\tilde{\mathscr{O}}_{k}\right) e^{i \Gamma}}{\int d A e^{-S_{0}}} \div \frac{\int d A e^{-S_{0}} \prod_{k=1}^{n} \delta\left(x_{k}-\tilde{\mathscr{O}}_{k}\right)}{\int d A e^{-S_{0}}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { I } \\
\text { I }
\end{array}\left(\langle *\rangle_{x}=\left\{\text { V.E.V. for } Z_{x}=\int d A e^{-S_{0}} \prod_{k=1}^{n} \delta\left(x_{k}-\tilde{\mathscr{O}}_{k}\right)\right\}\right)
\end{aligned}
$$

Simulation of Z_{x} with a proper choice of the set Σ \Rightarrow sample the important region for Z.

Evaluation of the observables $\left\langle\tilde{\mathscr{O}}_{k}\right\rangle$
Peak of the distribution function ρ at $\mathrm{V}=($ system size) $\rightarrow \infty$.
$=$ Minimum of the free energy $\mathscr{F}=-\frac{1}{N^{2}} \log \rho$
\Rightarrow Solve the saddle-point equation $\frac{1}{N^{2}} \frac{\partial}{\partial x_{n}} \log \rho^{(0)}=-\frac{\partial}{\partial x_{n}} \frac{1}{N^{2}} \log w$
Applicable to general systems with sign problem.

3. The model

IKKT model (or the IIB matrix model)

\Rightarrow Promising candidate for nonperturbative string theory
[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]

$$
S=\underbrace{-\frac{N}{4} \operatorname{tr}\left[A_{\mu}, A_{\nu}\right]^{2}}_{=S_{B}}+\underbrace{\frac{N}{2} \operatorname{tr} \bar{\psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]}_{=S_{F}}
$$

Euclidean case after the Wick rotation $\mathrm{A}_{0} \rightarrow \mathrm{i} \mathrm{A}_{10}, \Gamma^{0} \rightarrow-\mathrm{i} \Gamma_{10}$. \Rightarrow Path integral is finite without cutoff.
[W. Krauth, H. Nicolai and M. Staudacher, hep-th/9803117,
P. Austing and J.F. Wheater, hep-th/0103059]
$\mathrm{A}_{\mu}, \Psi_{\alpha} \Rightarrow \mathrm{N} \times \mathrm{N}$ Hemitian matrices $(\mu=1,2, \ldots, \mathrm{~d}=10, \alpha, \beta=1,2, \ldots, 16)$

Matrix regularization of the type IIB string action:

$$
\begin{aligned}
& S_{\mathrm{Sh}}=\int d^{2} \sigma\left\{\sqrt{g} \alpha\left(\frac{1}{4}\left\{X_{\mu}, X_{\nu}\right\}^{2}-\frac{i}{2} \bar{\psi} \Gamma^{\mu}\left\{X_{\mu}, \psi\right\}\right)+\beta \sqrt{g}\right\} . \\
&-i[,] \leftrightarrow\{,\}, \operatorname{tr} \leftrightarrow \int d^{2} \sigma \sqrt{g} .
\end{aligned}
$$

$\mathrm{N}=2$ supersymmetry

$$
\begin{aligned}
& \tilde{\delta}_{\varepsilon}^{(1)}=\delta_{\varepsilon}^{(1)}+\delta_{\varepsilon}^{(2)} \quad \tilde{\delta}_{\varepsilon}^{(2)}=i\left(\delta_{\varepsilon}^{(1)}-\delta_{\varepsilon}^{(2)}\right) \quad \text { where } \\
& \delta_{\varepsilon}^{(1)} A_{\mu}=i \varepsilon\left(\mathscr{C} \Gamma_{\mu}\right) \psi, \delta_{\varepsilon}^{(1)} \psi=\frac{i}{2}\left[A_{\mu}, A_{v}\right] \Gamma^{\mu \nu} \varepsilon, \delta_{\varepsilon}^{(2)} A_{\mu}=0, \delta_{\varepsilon}^{(2)} \psi=\varepsilon . \\
& {\left[\tilde{\delta}_{\varepsilon}^{(a)}, \tilde{\delta}_{\xi}^{(b)}\right] A_{\mu}=-2 i \delta^{a b} \varepsilon\left(\mathscr{C} \Gamma_{\mu}\right) \xi,\left[\tilde{\delta}_{\varepsilon}^{(a)}, \tilde{\delta}_{\xi}^{(b)}\right] \psi=0,(a, b=1,2) .}
\end{aligned}
$$

Eigenvalues of $\mathrm{A}_{\mu} \Rightarrow$ spacetime coordinate.
Dynamical emergence of the spacetime due to the Spontaneous Symmetry Breaking (SSB) of SO(10).

Result of Gaussian Expansion Method (GEM)

Order parameter of the $\mathrm{SO}(10)$ rotational symmetry breaking

$$
\lambda_{n}\left(\lambda_{1} \geq \cdots \geq \lambda_{10}\right): \text { eigenvalues of } T_{\mu \nu}=\frac{1}{N} \operatorname{tr}\left(A_{\mu} A_{v}\right)
$$

$\left\langle\lambda_{1}\right\rangle=\cdots=\left\langle\lambda_{d}\right\rangle\left(=R^{2}\right) \gg\left\langle\lambda_{d+1}\right\rangle=\cdots=\left\langle\lambda_{10}\right\rangle\left(=r^{2}\right)$
Extended d-dim. and shrunken (10-d) dim. at $\mathrm{N} \rightarrow \infty$ SSB SO(10) \rightarrow SO(d)

Main Results of GEM
[J. Nishimura, T. Okubo and F. Sugino, arXiv:1108.1293]

- Universal compactification scale $r^{2} \cong 0.15$ for SO(d) ansatz ($d=2,3, \ldots 7$).
- Constant volume property except d=2
$V=R^{d} \times r^{10-d}=I^{10}, 1^{2} \cong 0.38$
$-\mathrm{SSB} \mathrm{SO}(10) \rightarrow \mathrm{SO}(3)$.

10 dim . volume $V=R^{d} \times r^{10-d}$
 Extended d dim. (10-d) dim.

Mechanism of SSB in Euclidean case

Partition function of the model:
$\mathscr{M}_{a \alpha, b \beta}=-i f_{a b c}(\mathscr{C} \Gamma)_{\alpha \beta}\left(A_{\mu}\right)^{c}{ }_{\left(a, b, c=1,2, \cdots, N^{2}-1, \alpha, \beta=1,2, \cdots, 16\right)}$
$16\left(\mathrm{~N}^{2}-1\right) \times 16\left(\mathrm{~N}^{2}-1\right)$ anti-symmetric matrix
The Pfaffian PfM is complex in the Euclidean case \Rightarrow Complex phase Γ is crucial for the SSB of $\mathrm{SO}(10)$.
[J. Nishimura and G. Vernizzi hep-th/0003223]

Under the parity transformation $A_{10} \Rightarrow-A_{10}$,
PfM is complex conjugate
$\Rightarrow \mathrm{PfM}$ is real for $\mathrm{A}_{10}=0$ (hence 9-dim config.).
For the d-dim config, $\frac{\partial^{m} \Gamma}{\partial A_{\mu_{1}} \cdots \partial A_{\mu_{m}}}=0$
Up to $m=9-d$, the config. is at most 9-dim.
The phase is more stationary for lower d.

No SSB with the phase-quenched partition function.

$$
Z_{0}=\int^{0} d A e^{-S_{0}} \quad<^{*}>_{0}=\text { V.E.V. for } \mathrm{Z}_{0}
$$

[J. Ambjorn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,0005147]

4. Results of the Monte Carlo simulation

It turns out sufficient to constrain only one eigenvalue λ_{d+1}
$\Sigma=\left\{\lambda_{d+1}\right.$ only $\}$ Corresponds to the $\mathrm{SO}(\mathrm{d})$ vacuum
$\left\langle\lambda_{1}\right\rangle=\cdots=\left\langle\lambda_{d}\right\rangle\left(=R^{2}\right) \gg\left\langle\lambda_{d+1}\right\rangle=\cdots=\left\langle\lambda_{10}\right\rangle\left(=r^{2}\right)$
$\tilde{\lambda}_{n} \xlongequal{\text { def }} \lambda_{n} /\left\langle\lambda_{n}\right\rangle_{0}$ corresponds to $(\mathrm{r} /)^{2}[\simeq 0.15 / 0.38=0.40$ (GEM)]

$$
\begin{aligned}
& \frac{1}{N^{2}} f_{n}^{(0)}(x)=-\frac{d}{d x} \frac{1}{N^{2}} \log w_{n}(x) \text { where } \mathrm{n}=\mathrm{d}+1 \\
& f_{n}^{(0)}(x) \stackrel{\text { def }}{=} \frac{d}{d x} \log \left\langle\delta\left(x-\tilde{\lambda}_{n}\right)\right\rangle_{0}, w_{n}(x) \stackrel{\text { def }}{=}\left\langle e^{i \Gamma}\right\rangle_{n, x} \Theta\langle\cos \Gamma\rangle_{n, x} \\
& \langle *\rangle_{n, x}=\left\{\text { v.E.V. for } Z_{n, x}=\int d A e^{-S_{0}} \delta\left(x-\tilde{\lambda}_{n}\right)\right\}
\end{aligned}
$$

S_{0} and $T_{\mu \nu}=\frac{1}{N} \operatorname{tr}\left(A_{\mu} A_{\nu}\right)\left(\right.$ hence $\left.\lambda_{\mathrm{n}}\right)$ are invariant under $\mathrm{A}_{10} \Rightarrow-\mathrm{A}_{10}$.
The solution \bar{x}_{n} corresponds to $\bar{x}_{n}=\left\langle\tilde{\lambda}_{d+1}\right\rangle_{\mathrm{SO}(\mathrm{d})}$ in the $S O(d)$ vacuum.

The phase $\mathrm{w}_{\mathrm{n}}(\mathrm{x})$ scales at large N as

$$
\Phi_{n}(x)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log w_{n}(x) \simeq-a_{n} x^{10-(n-1)}-b_{n}(x<1)
$$

For the $\mathrm{d}=(\mathrm{n}-1)$ dim. config, $\frac{\partial^{m} \Gamma}{\partial A_{\mu_{1}} \cdots \partial A_{\mu_{m}}}=0$ up to $\mathrm{m}=9-\mathrm{d}$.
\Rightarrow The fluctuation of the phase is $\delta \Gamma \propto(\delta A /|A|)^{10-d} \propto(\sqrt{x})^{10-d}$ (x corresponds to the eigenvalués of $T_{\mu \nu}=\frac{1}{N} \operatorname{tr}\left(A_{\mu} A_{\nu}\right)=\mathrm{O}\left(A^{2}\right)$)

Assume that Γ 's distribution is Gaussian:

$$
\left\langle e^{i \Gamma}\right\rangle=\int d \Gamma \frac{1}{\sqrt{2 \pi} \sigma} e^{-\Gamma^{2} /\left(2 \sigma^{2}\right)} e^{i \Gamma}=e^{-\sigma^{2} / 2}
$$

We have $\log w_{n}(x)=-\frac{\sigma^{2}}{2}=-\mathrm{O}\left(x^{10-d}\right)=-\mathrm{O}\left(x^{10-(n-1)}\right)$

Around $\mathrm{x} \cong 1: \mathrm{f}_{\mathrm{n}}{ }^{(0)}(\mathrm{x}) / \mathrm{N}$ scales at large N :

$$
\frac{x}{N} f_{n}^{(0)}(x) \simeq g_{n}(x)=c_{1, n}(x-1)+c_{2, n}(x-1)^{2}
$$

Around $x<0.4: f_{n}{ }^{(0)}(x) / N^{2}$ scales at large N GEM suggests \rightarrow existence of the hardcore potential. $\quad \bar{x}_{n}=\left\langle\tilde{\lambda}_{d+1}\right\rangle_{\text {So(d) }} \simeq 0.40$

Comparison of the free energy

Free energy for the $\mathrm{SO}(\mathrm{d})$ vacuum:
$\left.\mathscr{F}_{\mathrm{SO}(d)}=f_{\bar{x}_{2}} \frac{\mathrm{~T}}{N^{2}} f_{n}^{(0)}(x) d \dot{x}\right)-\frac{1}{N^{2}} \log w_{n}\left(\bar{x}_{n}\right)$, where $n=d+1$
$\rightarrow 0$ at large N

The $\mathrm{SO}(2)$ vacuum is disfavored.
$\mathscr{F}_{\mathrm{SO}(3,4)} \ll \mathscr{F}_{\mathrm{SO}(2)}$

5. Similar toy models

(1) Gaussian toy model

$$
S=\frac{N}{2} \operatorname{tr}\left(A_{\mu}\right)^{2}-\bar{\psi}_{\alpha}^{f}\left(\Gamma_{\mu}\right)_{\alpha \beta} A_{\mu} \psi_{\beta}^{f}
$$

$\left(\mu=1,2,3,4, \quad \alpha, \beta=1,2, f=1,2, \ldots, N_{f}\right.$, Euclidean)
[J. Nishimura, hep-th/0108070, K.N. Anagnostopoulos, T.A. and J. Nishimura arXiv:1009.4504,1108.1534]

- Fermion $\Psi: N$-dim. vector (not adjoint) \rightarrow CPU cost of det M is $\mathrm{O}\left(\mathrm{N}^{3}\right)$.
- No supersymmetry

Severe overlap problem
\rightarrow constrain all eigenvalues $\Sigma=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$
Effect of including other observables $\theta=-\frac{1}{N} \operatorname{tr}\left[A_{\mu}, A_{v}\right]^{2}$ in Σ \Rightarrow Without O , the remaining overlap problem is small.
(2) 6-dim Euclidean IKKT model with supersymmetry det M is complex in 6d (real in 4d). dynamics similar to that of 10d IKKT model. \rightarrow constrain only one eigenvalue $\Sigma=\left\{\lambda_{d+1}\right.$ only $\}$

- One-loop effective action: CPU power O(N ${ }^{3}$)
[K.N. Anagnostopoulos and J. Nishimura hep-th/0108041]
- full model : CPU power $\mathrm{O}\left(\mathrm{N}^{5}\right)$ with RHMC
[K.N. Anagnostopoulos, T.A. and J. Nishimura arXiv:1306.6135]
\Rightarrow captures the short-distance effect crucial for qualitative agreement with GEM

In both (1)(2), the free energy was difficult to evaluate.

6. Summary

We have studied the dynamical compactification of the spacetime in the Euclidean IKKT model.

Monte Carlo simulation via factorization method \Rightarrow We have obtained the results consistent with GEM:

- Universal compactification scale for $\operatorname{SO}(2,3,4)$ vacuum.
- $\mathrm{SO}(2)$ vacuum is disfavored.

Future prospects

Euclidean IKKT model:

- In 10d model, the finite-N effect seems severer.

The volume is $N^{2}=L^{6}(6 d)$ while $N^{2}=L^{10}(10 d)$
\Rightarrow it is important to pursue large- N simulation.

Parallelization by Message Passing Interface (MPI).
Each node works on each block in matrix multiplication.

Better preconditioning for the CG method
\Rightarrow reduce the iteration

Future prospects

Factorization method is applicable to general systems with sign problem.

- Random matrix model
[J. Ambjorn, K.N. Anagnostopoulos, J. Nishimura and J.J.M. Verbaarschot, hep-lat/0208025]
- Application to various other systems

Analysis with Complex Langevin Method \Rightarrow works well for the Gaussian Toy Model.
[Y. Ito and J. Nishimura, arXiv:1609.04501]

backup: RHMC

Simulation of Z_{0} via Rational Hybrid Monte Carlo (RHMC)

 algorithm. [Chap 6,7 of B.Ydri, arXiv: 1506.02567 , for a review]We exploit the rational approximation

$$
x^{-1 / 4} \simeq a_{0}+\sum_{k=1}^{Q} \frac{a_{k}}{x+b_{k}}
$$

after a proper rescaling. (typically $\mathrm{Q}=15 \Rightarrow$ valid at $10^{-12} \mathrm{C}<\mathrm{x}<\mathrm{C}$) a_{k}, b_{k} come from Remez algorithm. [M. A. Clark and A. D. Kennedy, https://github.com/mikeaclark/AlgRemez]

$$
\begin{aligned}
& S_{0}=S_{\mathrm{B}}-\log |\operatorname{Pf} \mathscr{M}| \\
& |\operatorname{Pf} \mathscr{M}|=|\operatorname{det} \mathscr{M}|^{1 / 2}=(\operatorname{det} \mathscr{D})^{1 / 4} \simeq \int d F d F^{*} \exp \left(-F^{*} \mathscr{D}^{-1 / 4} F\right) \simeq \int d F d F^{*} e^{-S_{\mathrm{PF}}} \\
& S_{\mathrm{PF}}=a_{0} F^{*} F+\sum_{k=1}^{\ell} a_{k} F^{*}\left(\mathscr{D}+b_{k}\right)^{-1} F, \underbrace{}_{\left(\text {where } \mathscr{D}=\mathscr{M}^{\dagger} \mathscr{M}\right)}
\end{aligned}
$$

F: bosonic 16($\left.\mathrm{N}^{2}-1\right)$-dim vector (called pseudofermion)

backup: RHMC

Hot spot (most time-consuming part) of RHMC:
\Rightarrow Solving $\left(\mathscr{D}+b_{k}\right) \chi_{k}=F(k=1,2, \cdots, Q)$ by conjugate gradient (CG) method.

Multiplication $\mathscr{M} \chi_{k} \Rightarrow$ use the expression $\Gamma^{\mu}\left[A_{\mu}, \chi_{k}\right]$
(\mathscr{M} is a very sparse matrix. No need to build \mathscr{M} explicitly.)
$\Rightarrow C P U$ cost is $\mathrm{O}\left(\mathrm{N}^{3}\right)$
The iteration for CG method is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ in the IKKT model.
In total, the CPU cost is $\mathrm{O}\left(\mathrm{N}^{5}\right)$
(while direct calculation of \mathscr{M}^{-1} costs $\mathrm{O}\left(\mathrm{N}^{6}\right)$.)
Multimass CG solver: [B. Jegerlehner, hep-lat/9612014]
Solve $\left(\mathscr{D}+b_{k}\right) \chi_{k}=F$ only for the smallest b_{k} \Rightarrow The rest can be obtained as a byproduct,
setsunan university δ S which saves $O(Q)$ CPU cost.

backup: RHMC

Conjugate Gradient (CG) method:
Iterative algorithm to solve the linear equation $A x=b$ (A: symmetric, positive-definite $\mathrm{n} \times \mathrm{n}$ matrix)
Initial config. $\mathbf{x}_{0}=0 \quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} \quad \mathbf{p}_{0}=\mathbf{r}_{0}$
(for brevity, no preconditioning on x_{0} here)
$\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \quad \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} \quad \alpha_{k}=\frac{\left(r_{k}, r_{k}\right)}{\left(p_{k}, A p_{k}\right)}$
$\mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{k}, \mathbf{r}_{k}\right)} \mathbf{p}_{k}$
Iterate this until $\sqrt{\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{0}, \mathbf{r}_{0}\right)}}<$ (tolerance) $\simeq 10^{-4}$
The approximate answer of $A x=b$ is $x=x_{k+1}$.

