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1. Introduction 2

Static diagonal gauge: 

d2<|u1|>/dμ2 is discontinuous at μ=1/2

Gross-Witten-Wadia (GWW) third-order phase transition
[D.J. Gross and E. Witten, Phys. Rev. D21 (1980) 446, S.R. Wadia, Phys. Lett. B93 (1980) 403]



1. Introduction 3

Partial deconfinement 
[M. Hanada, G. Ishiki and H. Watanabe, arXiv:1812.05494, 1911.11465]

Mixture of M "αj's " in the deconfinement phase and

(N-M) "αj's " in the confinement phase 

[Quoted from arXiv:1911.11465]
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2. BFSS model

Finite-temperature matrix quantum mechanics

with a chemical potential 

4

S = Sb + Sf + Sg, where (μ=1,2,….D, β=1/T)  

・Bosonic (S=Sb+Sg): D=2,3,4,5…

・Fermionic(S=Sb+Sf+Sg): (D,p)=(3,2),(5,4),(9,16) 

(For D=9, the fermion is Majorana-Weyl ( Ψ→Ψ )

In the following, we focus on D=3.)



2. BFSS model

Non-lattice simulation for SUSY case

(lattice regularization for the bosonic case) 

5

⇒ Add the gauge-fixing term 

A(t), Xμ(t), Ψ(t) : N×N Hermitian matrix

Boundary conditions:

Supersymmetry for S=Sb+Sf (μ=0), broken at μ≠0. 

Under this gauge 

Static diagonal gauge: 



2. BFSS model 6

Previous works for μ=0 (without Sg)

Bosonic (S=Sb)

confinement

de-confinement

Confinement-deconfinement

phase transition at T=Tc0

[Quoted for D=9 from N. Kawahara, J. Nishimura 

and S. Takeuchi, arXiv:0706.3517]

SUSY (S=Sb+Sf)

[Quoted for D=9 from K.N. Anagnostopoulos, M. Hanada, 

J. Nishimura and S. Takeuchi, arXiv:0707.4454]
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First-order phase transition at D≦20 for bosonic μ=0 (S=Sb)
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]

Tc=1.3175

Tc=1.3175

Susceptibility
p=1 at critical temperature Tc

⇒ suggests first-order phase transition.
[M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett.65, 816 (1990)]

at critical temperature Tc

D 2 3 9 15 20

Tc 1.3175 1.0975 0.901 0.884 0.884

p 1.05(3) 1.00(1) 1.01(4) 1.12(14) 0.92(9)

first-order up to D≦20

D=2 D=2

3. Result of the BFSS model
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D=2

D=20 second

-order
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Density distribution of |u1| at T=Tc
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First-order phase transition at D≦20 for bosonic μ=0 (S=Sb)
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]

flat, but not 

single peak

3. Result of the BFSS model
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Result of D=3, N=16, after large-Λ extrapolation:

3. Result of the BFSS model

large-Λ 

extrapolation 

<|u1|>

<|u1|>

<|u1|>

Gapped⇔
Ungapped

Possible phase 

transitions at 

（μc,Tc) where 

<|u1|>=0.5,

including μ=0.

Λ=8
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Result of D=3, N=16, after large-Λ extrapolation:

3. Result of the BFSS model

History of 

at Λ=3 

No instability in the typical 

(μ,T) region.  



3. Result of the BFSS model

Bosonic model without fermion S=Sb+Sg
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D=3,N=48

[T. Azuma, P. Basu and S.R. Wadia, arXiv:0710.5873]

D=3,N=48

D=3,N=48

<|u1|>
ρ(θ)

D=3,N=48

(μc,Tc)=(0.2,0.7)

develops a gap.

d<|u1|>/dμ d<|u1|>/dT



3. Result of the BFSS model

Bosonic model without fermion S=Sb+Sg
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[T. Azuma, P. Basu and S.R. Wadia, arXiv:0710.5873]

Critical points (μc, Tc) at <|u1|>=1/2

At (μc, Tc), d<|u1,2|>/dμ and d<|u1,2|>/dT are not smooth

(d2<|u1,2|>/dμ2 and d2<|u1,2|>/dT2 are discontinuous)

⇒ suggests third-order phase transition.

Results of D=3 (D=2,6,9 cases are similar）
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When μ=0, at the critical point Tc0=1.1,

there is a first-order phase transition at small D.
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]

p=1 ⇒ suggests first-order phase transition.

μc 0.00 0.004 0.01

Tc 1.095 1.085 1.070

p 1.14(4) 0.94(3) 0.42(10)

first-order not first-order

D=3

3. Result of the BFSS model
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Phase diagram for D=2,3,6,9 (boson) and D=3(fermion) .   

Fitting of the

critical point by 

Tc=a(0.5-μc)
b . 

D 2(boson) 3(boson) 6(boson) 9(boson) 3(fermion)

a 1.36(12) 1.01(15) 0.91(9) 0.90(8) 1.39(72)

b 0.55(6) 0.34(7) 0.25(4) 0.23(4) 2.30(59)

D=3 SUSY, μ=0:

<|u1|>= a0 exp(-a1/T) 

a0=1.03(1), a1=0.19(1)

⇒<|u1|>=0.5 at T=0.28.
[M. Hanada, S. Matsuura, J. Nishimura and 

D. Robles-Llana, arXiv:1012.2913]

μ=0: <|u1|>= 0.5 at 

Tc=1.39×0.52.30≃0.28

Some phase transitions at (μc ,Tc) where <|u1|>=0.5   

0<b<1: convex upward   b>1: convex downward   

3. Result of the BFSS model
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Generalization of the Gross-Witten-Wadia (GWW) model

Lattice regularization of the temporal direction: 

t=0, (Δt), 2(Δt), …, (nt-1)(Δt),  nt(Δt)=β 

a,b are not necessarily the same or real⇒sign problem

Invariant under the gauge transformation 

⇒

U :  N×N unitary matrix

Solve this model by Complex Langevin Method (CLM).

4. CLM of the (a,b)-model
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The action S(x) is complex for real x. 

x(t) is complexified as x⇒z=x+iy

(S(z) is holomorphic by analytic continuation)

・ημ: real white noise obeying  

Probability distribution

Complex Langevin Method (CLM)

⇒Solve the complex version of the Langevin equation.
[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]

4. CLM of the (a,b)-model
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To justify the CLM, does the following actually hold? 

⇒

P(x,y;t) satisfies           

When the boundary term vanishes,            

4. CLM of the (a,b)-model
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Time evolution at t>0: we define an observable O(z;t)          

S(z) is holomorphic ⇒ O(z;t) remains holomorphic.         

f(z)'s 

holomorphy

At t=0, we choose           

Setting y=0,        

4. CLM of the (a,b)-model
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Similarly,           

integration

by part 

Interpolating function            

Integration by part 

w.r.t. real x only.

1. Is the integration by part w.r.t. (x,y) justified?

2. Is           well-defined at large t?

4. CLM of the (a,b)-model
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[K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627]

This series should have a finite convergence radius

⇒Probability of the drift term should fall exponentially.

Look at the drift term ⇒ Get the drift of CLM!!

1. Integration by part is justified when P(x,y;t) damps rapidly

・in the imaginary direction

・around the singularity of the drift term       
[G. Aarts, F.A. James, E. Seiler and O. Stamatescu, arXiv:1101.3270, 

K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1508.02377]

2. 

4. CLM of the (a,b)-model
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Discretized Complex Langevin equation for unitary matrices:       

(henceforth,    is the fictitious Langevin time)       

λa :  basis of SU(N) Lie algebra       

Drift norm 

4. CLM of the (a,b)-model
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Excursion problem: V(n) gets too far from unitary       

4. CLM of the (a,b)-model

Gauge cooling minimizes the unitary norm

NV≧0 (the equality holds only if V is unitary).

Gauge transformation after each step of discretized Langevin equation 

(γV: real parameter such that NV is minimized) 



234. CLM of the (a,b)-model

(a,b)-model 

N=16, T=2.0, b=2a, SU(N)
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5. Summary 24

We have studied the matrix quantum mechanics

with a chemical potential

・bosonic model ⇒ GWW-type third-order phase transition

(except for very small μ)

・phase diagram of the bosonic/fermionic model

Future works:

Use of Complex Langevin Method for sign problem: 

・supersymmetric quantum mechanics 

・Generalization to  
[P. Basu, K. Jaswin and A. Joseph arXiv:1802.10381]

[A. Joseph and A. Kumar,  arXiv:1908.04153]
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Example：
Gaussian action

backup: example of the sign problem

large β⇒mimics large DOF(β～V)

Necessary config.:

(Standard deviation of )  

highly oscillatory at large β

[Suri Kagaku2023/1 p14]

V.E.V. w.r.t. ReS
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Example：
Gaussian action

backup: example of the sign problem

[Suri Kagaku2023/1 p14]

RezO

i

Contour→: 

Contour→: x→z=u+i (-∞<u<+∞) No oscillation

highly

oscillatory

Cauchy's theorem⇒both are equivalent

Imz
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Example [G. Aarts, arXiv:1512.05145]

S(x) is complex for real x.  

Complexify to z=x+iy.

Complex Langevin equation for this action

The real white noise satisfies

backup: example of CLM
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Solution of the Langevin equation

Similarly,

This replicates

backup: example of CLM
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Fokker-Planck equation

where

Ansatz for its static solution:

Using we have

backup: example of CLM
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Simulation via Rational Hybrid Monte Carlo (RHMC) 

algorithm.

F: bosonic N0-dim vector (called pseudofermion) 

[Chap 6,7 of B.Ydri, arXiv:1506.02567, for a review]

We exploit the rational approximation

after a proper rescaling.

(typically Q=15⇒valid at 10-12c<x<c)

ak, bk come from Remez algorithm.
[M. A. Clark and A. D. Kennedy,

https://github.com/mikeaclark/AlgRemez]

backup: RHMC



31backup: RHMC

Hot spot (most time-consuming part) of RHMC:

⇒Solving 

by conjugate gradient (CG) method.

(while direct calculation of     -1 costs O(N6).)

Multimass CG solver:

Solve                           only for the smallest bk

⇒The rest can be obtained  as a byproduct, 

which saves O(Q) CPU cost.

[B. Jegerlehner, hep-lat/9612014 ]

Multiplication           ⇒
is a very sparse matrix. No need to build explicitly.

⇒CPU cost is O(N3) per CG iteration

The required CG iteration time depends on T.

31



backup: RHMC 32

Conjugate Gradient (CG) method 

Iterative algorithm to solve the linear equation Ax=b

(A: symmetric, positive-definite n×n matrix)   

The approximate answer of Ax=b is x=xk+1.             

Iterate this until              

Initial config.              

(for brevity, no preconditioning on x0 here)              


