Smart and Human

"Phase Transitions of a (Super)

 Quantum Mechanical Matrix Model with a Chemical Potential in terms of partial deconfinement" (arXiv:1707.02898)Takehiro Azuma (Setsunan Univ.)
TIFR seminar 2020/1/2, 14:30-15:30 with Pallab Basu (Wits) and Prasant Samantray (IUCAA)

1. Introduction

$Z_{g}=\int d U e^{-S_{g}}$, where $S_{g}=N \mu\left(\operatorname{tr} U+\operatorname{tr} U^{\dagger}\right) . \quad U=\mathcal{P} \exp \left(i \int_{0}^{\beta} d t A(t)\right)$.
Static diagonal gauge: $A(t)=\frac{1}{\beta} \operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right),\left(\left|\alpha_{k}\right|<\pi\right) \quad u_{n}=\frac{1}{N} \sum_{a=1}^{N} e^{i n \alpha_{a}}$.

Gross-Witten-Wadia (GWW) third-order phase transition
[D.J. Gross and E. Witten, Phys. Rev. D21 (1980) 446, S.R. Wadia, Phys. Lett. B93 (1980) 403]

1. Introduction

Partial deconfinement

[M. Hanada, G. Ishiki and H. Watanabe, arXiv:1812.05494, 1911.11465] Mixture of M " α_{j} 's " in the deconfinement phase and (N-M) " α_{j} 's " in the confinement phase

$$
\rho(\theta)=\frac{N-M}{N} \underbrace{\rho_{\text {confine }}(\theta)}_{=1 / 2 \pi}+\frac{M}{N} \rho_{\text {deconfine }}(\theta)
$$

[Quoted from arXiv:1911.11465]

2. BFSS model

Finite-temperature matrix quantum mechanics with a chemical potential $S=S_{b}+S_{f}+S_{g}$, where $(\mu=1,2, \ldots . D, \beta=1 / T)$

$$
\begin{aligned}
& S_{\mathrm{b}}=N \int_{0}^{\beta} \operatorname{tr}\left\{\frac{1}{2} \sum_{\mu=1}^{D}\left(D_{t} X_{\mu}(t)\right)^{2}-\frac{1}{4} \sum_{\mu, v=1}^{D}\left[X_{\mu}(t), X_{v}(t)\right]^{2}\right\} d t \\
& D_{t} X_{\mu}(t)=\partial_{t} X_{\mu}(t)-i\left[A(t), X_{\mu}(t)\right] \\
& S_{\mathrm{f}}=N \int_{0}^{\beta} \operatorname{tr}\left\{\sum_{\alpha=1}^{D} \bar{\psi}_{\alpha}(t) D_{t} \psi_{\alpha}(t)-\sum_{\mu=\alpha}^{D} \sum_{\alpha, \eta=1}^{D} \bar{\psi}_{\alpha}(t)\left(\Gamma_{\mu}\right)_{\alpha \eta}\left[X_{\mu}(t), \psi_{\eta}(t)\right]\right\} d t \\
& S_{\mathrm{g}}=N \mu\left(\operatorname{tr} U+\operatorname{tr} U^{\dagger}\right) \quad U=\mathcal{P} \exp \left(i \int_{0}^{\beta} A(t) d t\right)
\end{aligned}
$$

- Bosonic $\left(S=S_{b}+S_{g}\right)$: $D=2,3,4,5 \ldots$
- Fermionic $\left(S=S_{b}+S_{f}+S_{g}\right):(D, p)=(3,2),(5,4),(9,16)$ (For $D=9$, the fermion is Majorana-Weyl $(\Psi \rightarrow \Psi)$
In the following, we focus on $D=3$.)

2. BFSS model

$\mathrm{A}(\mathrm{t}), \mathrm{X}_{\mu}(\mathrm{t}), \Psi(\mathrm{t}): \mathrm{N} \times \mathrm{N}$ Hermitial $\left(\omega=\frac{2 \pi}{\beta}\right)$
Boundary conditions: $A(t+\beta)=A(t), \quad X_{\mu}(t+\beta)=X_{\mu}(t) \quad \psi(t+\beta)=-\psi(t)$ Static diagonal gauge:

$$
A(t)=\frac{1}{\beta} \operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right) \quad-\pi \leqq \alpha_{k}<\pi
$$

\Rightarrow Add the gauge-fixing term $\quad S_{\text {g.f. }}=-\sum_{k . l=1, k \neq l}^{N} \log \left|\sin \frac{\alpha_{k}-\alpha_{l}}{2}\right|$ Under this gauge $u_{n}=\frac{1}{N} \operatorname{tr} U^{n}=\frac{1}{N} \sum_{k=1}^{N} e^{e^{m o n}}$
Supersymmetry for $S=S_{b}+S_{f}(\mu=0)$, broken at $\mu \neq 0$.

Non-lattice simulation for SUSY case (lattice regularization for the bosonic case)

2. BFSS model

Previous works for $\mu=0$ (without S_{g})

finite-N effect $\mathrm{O}(1 / \mathrm{N})$
[Quoted for D=9 from N. Kawahara, J. Nishimura and S. Takeuchi, arXiv:0706.3517]
$\operatorname{SUSY}\left(\mathrm{S}=\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{t}}\right)$

[Quoted for D=9 from K.N. Anagnostopoulos, M. Hanada,
J. Nishimura and S. Takeuchi, arXiv:0707.4454]

Confinement-deconfinement $<\left|\mathrm{u}_{1}\right|>=\mathrm{a}_{0} \exp \left(-\mathrm{a}_{1} / \mathrm{T}\right)$ phase transition at $T=T_{c 0}$

3. Result of the BFSS model

First-order phase transition at $\mathrm{D} \leqq 20$ for bosonic $\mu=0\left(\mathrm{~S}=\mathrm{S}_{\mathrm{b}}\right)$
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]
Susceptibility $\left.\chi=N^{2}\left\{\left.\langle | u_{1}\right|^{2}\right\rangle-\left(\langle | u_{1}| \rangle\right)^{2}\right\}=\gamma V^{p}+c\left(V=N^{2}\right)$ $\mathrm{p}=1$ at critical temperature T_{c}
\Rightarrow suggests first-order phase transition.
[M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett.65, 816 (1990)]

D	2	3	9	15	20
T_{C}	1.3175	1.0975	0.901	0.884	0.884
p	$1.05(3)$	$1.00(1)$	$1.01(4)$	$1.12(14)$	$0.92(9)$

3. Result of the BFSS model

First-order phase transition at $\mathrm{D} \leqq 20$ for bosonic $\mu=0\left(\mathrm{~S}=\mathrm{S}_{\mathrm{b}}\right)$
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]
Density distribution of $\left|\mathrm{u}_{1}\right|$ at $\mathrm{T}=\mathrm{T}_{\mathrm{c}}$

Two peaks \Rightarrow existence of metastable states
First-order phase transition.

3. Result of the BFSS model

Result of $\mathrm{D}=3, \mathrm{~N}=16$, after large- \wedge extrapolation:

3. Result of the BFSS model

Result of $D=3, N=16$, after large- \wedge extrapolation:

History of $R^{2}=\frac{1}{N \beta} \int_{0}^{\beta} d t \operatorname{tr} X_{\mu}(t)^{2}$ at $\Lambda=3$

No instability in the typical (μ, T) region.

3. Result of the BFSS model

Bosonic model without fermion $S=S_{b}+S_{g}$
[T. Azuma, P. Basu and S.R. Wadia, arXiv:0710.5873]

3. Result of the BFSS model

Bosonic model without fermion $\mathrm{S}=\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{g}$
[T. Azuma, P. Basu and S.R. Wadia, arXiv:0710.5873]
Results of $D=3$ ($D=2,6,9$ cases are similar)
Critical points $\left(\mu_{c}, T_{c}\right)$ at $<\left|u_{1}\right|>=1 / 2$
At $\left(\mu_{c}, T_{c}\right), d<\left|u_{1,2}\right|>/ d \mu$ and $d<\left|u_{1,2}\right|>/ d T$ are not smooth ($\mathrm{d}^{2}<\left|\mathrm{u}_{1,2}\right|>/ \mathrm{d} \mu^{2}$ and $\mathrm{d}^{2}<\left|\mathrm{u}_{1,2}\right|>/ \mathrm{dT}^{2}$ are discontinuous)
\Rightarrow suggests third-order phase transition.

3. Result of the BFSS model

When $\mu=0$, at the critical point $T_{c 0}=1.1$, there is a first-order phase transition at small D.
[T. Azuma, T. Morita and S. Takeuchi, arXiv:1403.7764]

$$
\left.\chi=N^{2}\left\{\left.\langle | u_{1}\right|^{2}\right\rangle-\left(\langle | u_{1}| \rangle\right)^{2}\right\}=\gamma V^{p}+c\left(V=N^{2}\right)
$$

$\mathrm{p}=1 \Rightarrow$ suggests first-order phase transition.

3. Result of the BFSS model

Phase diagram for $\mathrm{D}=2,3,6,9$ (boson) and $\mathrm{D}=3$ (fermion) .
Some phase transitions at (μ_{c}, T_{c}) where $\langle | u_{1}| \rangle=0.5$
Fitting of the critical point by $\mathrm{T}_{\mathrm{c}}=\mathrm{a}\left(0.5-\mu_{\mathrm{c}}\right)^{\mathrm{b}}$.

D	\|2(boson)	3(boson)	6(bosōnt	9(boson)	3 (fermion)
a	:1.36(12)	$1.01(15)$	0.91 (9)	0.90 8 (8) -	1.39(72)
b	$0.505(6)$	0.34(7)	0.25(4)	-23(4)=	2.30 (59)

4. CLM of the (a, b)-model

Generalization of the Gross-Witten-Wadia (GWW) model
$S_{\mathrm{g}}=N\left(a \operatorname{tr} U+b \operatorname{tr} U^{-1}\right) \quad V(n)=e^{i(\Delta t) A(t=n(\Delta t))}$
$U=\mathscr{P} \exp \left(i \int_{0}^{\beta} A(t) d t\right)=V\left(n_{t}\right) V\left(n_{t}-1\right) V\left(n_{t}-2\right) \cdots V(1)$
$\mathrm{U}: \mathrm{N} \times \mathrm{N}$ unitary matrix
a, b are not necessarily the same or real \Rightarrow sign problem
Solve this model by Complex Langevin Method (CLM).
Lattice regularization of the temporal direction:
$t=0,(\Delta t), 2(\Delta t), \ldots,\left(n_{t}-1\right)(\Delta t), n_{t}(\Delta t)=\beta$
Invariant under the gauge transformation $A(t) \rightarrow g(t) A(t) g^{-1}+i g(t) \partial_{t} g^{-1}(t) \Rightarrow V(n) \rightarrow g(n+1) V(n) g^{-1}(n)$

4. CLM of the (a, b)-model

Complex Langevin Method (CLM)

\Rightarrow Solve the complex version of the Langevin equation.
[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]
The action $S(x)$ is complex for real x.
$x(\mathrm{t})$ is complexified as $\mathrm{x} \Rightarrow \mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$
($\mathrm{S}(\mathrm{z})$ is holomorphic by analytic continuation)

$$
\dot{z}_{k}^{(\eta)}(t)=-\underbrace{\frac{\partial S}{\partial z_{k}(t)}}_{\text {difit term }}+\eta_{k}(t)
$$

$\cdot \eta_{\mu}$: real white noise obeying $\exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)$
Probability distribution $P(x, y ; t)=\left\langle\prod_{k} \delta\left(x_{k}-x_{k}^{(\eta)}(t)\right) \delta\left(y_{k}-y_{k}^{(\eta)}(t)\right)\right\rangle_{\eta}$ $\langle\cdots\rangle_{\eta}=\frac{\int \mathscr{D} \eta \cdots \exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)}{\int \mathscr{D} \eta \exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)} \quad\left\langle\eta_{k}\left(t_{1}\right) \eta_{l}\left(t_{2}\right)\right\rangle_{\eta}=2 \delta_{k l} \delta\left(t_{1}-t_{2}\right)$

4. CLM of the (a, b)-model

$\mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t})$ satisfies $\frac{\partial P}{\partial t}=L^{\top} P$
When the boundary term vanishes,

$$
\begin{aligned}
& \int(L f(x, y)) g(x, y) d x d y=\int f(x, y)\left(L^{\top} g(x, y)\right) d x d y \\
& L^{\top}=\frac{\partial}{\partial x_{k}}\left\{\operatorname{Re}\left(\frac{\partial S}{\partial z_{k}}\right)+\frac{\partial}{\partial x_{k}}\right\}+\frac{\partial}{\partial y_{k}}\left\{\operatorname{Im}\left(\frac{\partial S}{\partial z_{k}}\right)\right\} \\
& L=\left\{-\operatorname{Re}\left(\frac{\partial S}{\partial z_{k}}\right)+\frac{\partial}{\partial x_{k}}\right\} \frac{\partial}{\partial x_{k}}+\left\{-\operatorname{Im}\left(\frac{\partial S}{\partial z_{k}}\right)\right\} \frac{\partial}{\partial y_{k}}
\end{aligned}
$$

To justify the CLM, does the following actually hold?
$\underbrace{\mathscr{O}(x+i y)} P(x, y ; t) d x d y \stackrel{?}{=} \int \mathscr{O}(x) \rho(x ; t) d x$
holomorphic $=L_{0}^{\top}$

$$
\frac{\partial \rho(x, t)}{\partial t}=\overbrace{\frac{\partial}{\partial x_{k}}\left(\frac{\partial S}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\right)} \rho(x, t) \Rightarrow \rho_{\text {time-indep. }}(x) \propto e^{-S}
$$

4. CLM of the (a,b)-model

At $\mathrm{t}=0$, we choose $P(x, y ; t=0)=\rho(x ; t=0) \delta(y)$
Time evolution at $\mathrm{t}>0$: we define an observable $\mathrm{O}(z ; \mathrm{t})$
$\begin{array}{ll}\frac{\partial}{\partial t} \mathscr{O}(z ; t)=\underbrace{\left(\frac{\partial}{\partial z_{k}}-\frac{\partial S}{\partial z_{k}}\right) \frac{\partial}{\partial z_{k}}}_{=\tilde{L}} \mathscr{O}(z ; t) \quad \text { [initial condition } \mathscr{O}(z ; t=0)=\mathscr{O}(z)] \\ \text { Setting y=0, } \quad \frac{\partial}{\partial t} \mathcal{O}(x, t)=\overbrace{\left(\frac{\partial}{\partial x_{k}}-\frac{\partial S}{\partial x_{k}}\right) \frac{\partial}{\partial x_{k}}}^{=L_{k}(x ; t)} & {[\mathscr{O}(x ; t=0)=\mathscr{O}(x)]} \\ \int\left(L_{f} f(x)\right) \&(x) d x=\int f(x)\left(L_{L}^{\top} g(x)\right) d x\end{array}$
$S(z)$ is holomorphic $\Rightarrow \mathrm{O}(z ; t)$ remains holomorphic.
$L f(z)=\{-\operatorname{Re}\left(\frac{\partial S}{\partial z_{k}}\right)+\underbrace{\frac{\partial}{\partial x_{k}}}_{=\partial \partial \partial_{z k}}\} \underbrace{\frac{\partial f(z)}{\partial x_{k}}}_{=\partial f(z) / \partial z_{k}}+\left\{-\operatorname{Im}\left(\frac{\partial S}{\partial z_{k}}\right)\right\} \underbrace{\frac{\partial f(z)}{\partial y_{k}}}_{=i \partial f(z) / \partial z_{k}}$

4. CLM of the (a, b)-model

Interpolating function $F(t, \tau)=\int d x d y \mathscr{O}(x+i y ; \tau) P(x, y ; t-\tau)$

$$
\begin{aligned}
\frac{\partial F(t, \tau)}{\partial \tau} & =\int d x d y\left\{\frac{\partial \mathscr{O}(x+i y ; \tau)}{\partial \tau} P(x, y ; t-\tau)+\mathscr{O}(x+i y ; \tau) \frac{\partial P(x, y ; \bar{t}-\tau)}{\partial \tau}\right\} \\
& =\int d x d y(\tilde{L} \mathscr{O}(x+i y ; \tau)) P(x, y ; t-\tau)=\int d x d y \mathscr{O}(x+i y ; \tau) L^{\top} P(x, y ; t-\tau)
\end{aligned}
$$

integration

Similarly, $\frac{\partial}{\partial} \int d x \mathscr{O}(x ; \tau) \rho(x ; \tau-\tau){ }_{=} 0$ Integration by part Similarly, $\overline{\partial \tau} \underbrace{\int d x \mathscr{O}(x ; \tau) \rho(x, t-\tau)}_{:=G(1, \tau)} \equiv 0$ w.r.t. real \times only.

$\underbrace{\int \overbrace{\mathscr{O}(x+i y ; t=0)}^{=\mathscr{O}(z)} P(x, y ; t) d x d y}_{=F(t, 0)}(\underline{\nabla}) \underbrace{\int \overbrace{\mathscr{O}(x+i y ; t)}^{\left\lvert\,=\frac{e^{i} \bar{L}}{\bar{O}}(\overline{x+i y})\right.}=\rho(x ; t=0) \delta(y)}_{=F(t, t)} \overbrace{P(x, y ; t=0)} d x d y=\underbrace{\int \mathscr{O}(x ; t) \rho(x ; t=0) d x}_{=G(t, t)} \underbrace{\int \overbrace{\mathscr{O}(x ; t=0)}^{=\mathscr{O}(x)} \rho(x ; t) d x}_{=G(t, 0)}$			

1. Is the integration by part w.r.t. (x, y) justified?
2. Is $e^{i \tilde{L}} \mathcal{O}(z)$ well-defined at large t ? $\frac{\partial \theta(z t)}{\partial t}=\tilde{L} O(z, t) \Rightarrow O(z, t)=e^{i} \theta(z)$

4. CLM of the (a, b)-model

1. Integration by part is justified when $\mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t})$ damps rapidly

- in the imaginary direction
- around the singularity of the drift term
[G. Aarts, F.A. James, E. Seiler and O. Stamatescu, arXiv:1101.3270,
K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1508.02377]

2. $\int d x d y\left\{e^{\tau \tilde{L}} \mathscr{O}(z)\right\} P(x, y ; t)=\sum_{n=0}^{+\infty} \frac{\tau^{n}}{n!} \int d x d y\left\{\tilde{L}^{n} \mathscr{O}(z)\right\} P(x, y ; t)$

This series should have a finite convergence radius \Rightarrow Probability of the drift term should fall exponentially. [K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627]

Look at the drift term \Rightarrow Get the drift of CLM!!

4. CLM of the (a, b)-model

Discretized Complex Langevin equation for unitary matrices: (henceforth, l is the fictitious Langevin time)

$$
V(n, l+(\Delta l))=\exp (i \sum_{a=1}^{\mathscr{G}} \lambda_{a}(-(\Delta l) \times \underbrace{v_{a}(V(n, l))}_{\left.=\frac{d}{d \alpha} S\left[e^{\left[\alpha \alpha_{a}\right.} V(n)\right]\right]_{a=0}}+\sqrt{(\Delta l)} \eta_{a}(n, l))) V(n, l) \text { where }
$$

$\left\langle\eta_{a}(n, l) \eta_{a^{\prime}}\left(n^{\prime}, l^{\prime}\right)\right\rangle=2 \delta_{a a^{\prime}} \delta_{l l^{\prime \prime}} \delta_{n n^{\prime}}, \mathscr{G}=N^{2}-1(\mathrm{SU}(N))$
$\lambda^{\text {a }}$: basis of $\operatorname{SU}(\mathrm{N})$ Lie algebra $\operatorname{tr}\left(\lambda_{a} \lambda_{b}\right)=\delta_{a b}(a, b=1,2, \cdots, \mathscr{G})$

$$
\begin{aligned}
v_{a}(V(n, l)) & =i N a \operatorname{tr}\left(\lambda_{a} V(n, l) V(n-1, l) \cdots V(1, l) V\left(n_{t}, l\right) \cdots V(n+1, l)\right) \\
& -i N b \operatorname{tr}\left(\lambda_{a} V^{-1}(n+1, l) \cdots V^{-1}\left(n_{t}, l\right) V^{-1}(1, l) \cdots V^{-1}(n, l)\right)
\end{aligned}
$$

Drift norm $u_{A}=\sqrt{\frac{1}{N^{3} n_{t}} \sum_{n=1}^{n_{t}} \sum_{a=1}^{\mathscr{G}}\left|v_{a}(V(n, l))\right|^{2}}$

4. CLM of the (a, b)-model

Excursion problem: $\mathrm{V}(\mathrm{n})$ gets too far from unitary Gauge cooling minimizes the unitary norm

$$
\begin{aligned}
\mathscr{N}_{V} & =\sum_{n=1}^{n_{1}} \operatorname{tr}\left[V(n) V^{\dagger}(n)+V^{-1}(n)\left(V^{-1}(n)\right)^{\dagger}-2 E\right] \\
& =\sum_{n=1}^{n_{i}} \operatorname{tr} \underbrace{\left[\left(V^{-1}(n)\right)^{\dagger}\left\{E-V(n)^{\dagger} V(n)\right\}\right]}_{=W} \underbrace{\left[\left\{E-V(n) V(n)^{\dagger}\right\} V^{-1}(n)\right]}_{=\left[(V-1(n))^{\dagger}\left\{E-V(n)^{\dagger} V(n)\right\}\right]^{\dagger}=W^{\dagger}} .
\end{aligned}
$$

$\mathrm{N}_{\mathrm{V}} \geqq 0$ (the equality holds only if V is unitary).
Gauge transformation after each step of discretized Langevin equation (r_{V} : real parameter such that N_{V} is minimized)

$$
\begin{aligned}
& V(n) \rightarrow e^{\gamma_{V} H_{V}(n+1)} V(n) e^{-\gamma_{V} H_{V}(n)} \\
& H_{V}(n)=\sum_{a=1}^{B} \underbrace{\left\{2 t \lambda^{a}\left\{-V(n-1) V^{*}(n-1)+V^{\dagger}(n) V(n)+\left(V^{-1}(n-1)\right)^{*} V^{-1}(n-1)-V^{-1}(n)\left(V^{-1}(n)\right)^{+}\right\}\right.}_{=C^{a}(n)}\}
\end{aligned} .
$$

4. CLM of the (a, b)-model

(a, b)-model $S_{\mathrm{g}}=N\left(a \operatorname{tr} U+b \operatorname{tr} U^{-1}\right) \quad U=\mathscr{P} \exp \left(i \int_{0}^{\beta} A(t) d t\right)=V\left(n_{n}\right) V\left(n_{t}-1\right) V\left(n_{t}-2\right) \cdots V(1)$

5. Summary

We have studied the matrix quantum mechanics with a chemical potential $S_{\mathrm{g}}=N \mu\left(\operatorname{tr} U+\operatorname{tr} U^{\dagger}\right)$
-bosonic model \Rightarrow GWW-type third-order phase transition (except for very small μ)

- phase diagram of the bosonic/fermionic model

Future works:
Use of Complex Langevin Method for sign problem:

- Generalization to $S_{\mathrm{g}}=N\left(a \operatorname{tr} U+b \operatorname{tr} U^{\dagger}\right)$
[P. Basu, K. Jaswin and A. Joseph arXiv:1802.10381]
-supersymmetric quantum mechanics
[A. Joseph and A. Kumar, arXiv:1908.04153]

backup: example of the sign problem 25

Example:
Gaussian action

$$
\begin{array}{r}
S(x)=\frac{\beta}{2}(x-i)^{2}= \\
\text { [Suri Kagaku2023/1 p14] } \underbrace{\frac{\beta}{2}\left(x^{2}-1\right)}_{=\operatorname{Re} S(x)}+i \underbrace{(-\beta x)}_{=\operatorname{Im} S(x)}, ~
\end{array}
$$

large $\beta \Rightarrow$ mimics large $\operatorname{DOF}(\beta \sim \mathrm{V})$
highly oscillatory at large β
$=\frac{\left(\beta^{-1}-1\right) e^{-\beta / 2}}{e^{-\beta / 2}} \stackrel{\text { numeric }}{\simeq} \frac{\left(\beta^{-1}-1\right) e^{-\beta / 2} \pm \mathrm{O}\left(1 / \sqrt{N_{\text {config. }}}\right)}{e^{-\beta / 2} \pm \mathrm{O}\left(1 / \sqrt{N_{\text {config. }}}\right)}$.
(Standard deviation of $\left.\bar{x}=\frac{1}{N_{\text {confer }}} \sum_{k=1}^{N_{\text {oms }}} x_{k}\right) \propto O\left(\frac{1}{\sqrt{N_{\text {config. }}}}\right)$
Necessary config.:
$N_{\text {config. }} \geq e^{\mathrm{O}(\beta)}$

backup: example of the sign problem 26

Example: Gaussian action \uparrow Imz

$$
\begin{gathered}
S(x)=\frac{\beta}{2}(x-i)^{2}=\underbrace{\frac{\beta}{2}\left(x^{2}-1\right)}+i \underbrace{(-\beta x)}_{=\operatorname{Im} S(x)} \\
\text { [Suri Kagaku2023/1 p14] }
\end{gathered}
$$

Contour $\rightarrow: x \rightarrow z=u+i(-\infty<u<+\infty)$ No oscillation
$\left\langle x^{2}\right\rangle=\left(\int_{-\infty}^{+\infty}(u+i)^{\frac{-}{2}-\frac{s}{2} u^{2}} d u\right) \div\left(\int_{-\infty}^{+\infty} e^{\frac{-\beta}{2} u^{2}} d u\right)$
Cauchy's theorem \Rightarrow both are equivalent

backup: example of CLM

Example [G. Aarts, arXiv:1512.05145]
$S(x)=\frac{1}{2} \underbrace{(a+i b)} x^{2},(a, b \in \mathbf{R}, a>0) S(\mathrm{X})$ is complex for real x . Complexify to $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$.
$S(z)=\frac{1}{2} \sigma z^{2}=\frac{1}{2}(a+i b) \overbrace{(x+i y)^{2}}^{==^{2}}=\frac{a\left(x^{2}-y^{2}\right)}{2}+i b x y, \frac{\partial S}{\partial z}=\sigma z=(a+i b)(x+i y)$
Complex Langevin equation for this action $\dot{x}(t)=-\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)+\eta(t)=(-a x+b y)+\eta(t) \quad \dot{y}(t)=-\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)=(-a y-b x)$
The real white noise satisfies
$\left\langle\eta\left(t_{1}\right) \eta\left(t_{2}\right)\right\rangle=2 \delta\left(t_{1}-t_{2}\right) \quad\langle\cdots\rangle=\frac{\int \mathscr{P} \eta \cdots \exp \left(-\frac{1}{4} \int \eta^{2}(t) d t\right)}{\int \mathscr{D} \eta \exp \left(-\frac{1}{4} \int \eta^{2}(t) d t\right)}$

backup: example of CLM

Solution of the Langevin equation

$$
\begin{aligned}
x(t)= & e^{-a t} \underbrace{[x(0) \cos b t+y(0) \sin b t]}_{=A(t)}+\int_{0}^{t} \eta(s) e^{-a(t-s)} \cos [b(t-s)] d s \\
y(t)= & e^{-a t}[y(0) \cos b t-x(0) \sin b t]-\int_{0}^{t} \eta(s) e^{-a(t-s)} \sin [b(t-s)] d s \\
\left\langle x^{2}\right\rangle= & \lim _{t \rightarrow+\infty}\left\langle x^{2}(t)\right\rangle=\lim _{t \rightarrow+\infty}\{\underbrace{e^{-2 a t} A(t)^{2}}_{\rightarrow 0}+2 e^{-a t} A(t) \int_{0}^{t} \underbrace{\langle\eta(s)\rangle}_{=0} e^{-a(t-s)} \cos [b(t-s)] d s \\
& +\int_{0}^{t} \int_{0}^{t} \underbrace{\left\langle\eta(s) \eta\left(s^{\prime}\right)\right\rangle}_{=2 \delta\left(s-s^{\prime}\right)} e^{-a\left(2 t-s-s^{\prime}\right)} \cos [b(t-s)] \cos \left[b\left(t-s^{\prime}\right)\right] d s d s^{\prime}\}
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty}\left\{2 \int_{0}^{t} e^{-2 a(t-s)} \cos ^{2}[b(t-s)]\right\} d s=\frac{2 a^{2}+b^{2}}{2 a\left(a^{2}+b^{2}\right)}
$$

Similarly, $\left\langle y^{2}\right\rangle=\frac{b^{2}}{2 a\left(a^{2}+b^{2}\right)},\langle x y\rangle=\frac{-b}{2\left(a^{2}+b^{2}\right)}$
This replicates $\left\langle z^{2}\right\rangle=\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle+2 i\langle x y\rangle=\frac{a-i b}{a^{2}+b^{2}}=\frac{1}{\sigma}$

backup: example of CLM

Fokker-Planck equation
$\frac{\partial P}{\partial t}=L^{\top} P$ where $L^{\top}=\frac{\partial}{\partial x}\{\underbrace{\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)}_{=a x-b y}+\frac{\partial}{\partial x}\}+\frac{\partial}{\partial y}\{\underbrace{\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)}_{=a y+b x}\}$
Ansatz for its static solution:
$P(x, y)=N \exp \left(-\alpha x^{2}-\beta y^{2}-2 \gamma x y\right)=N \exp (-\beta\left(y+\frac{\gamma x}{\beta}\right)^{2}-\overbrace{\left(\alpha-\frac{\gamma^{2}}{\beta}\right)}^{x^{2}})$
$0=\partial_{t} P=L^{\top} P=[\underbrace{(2 a-2 \alpha)}_{=0 \rightarrow a=\alpha}+x^{2} \underbrace{\left(4 \alpha^{2}-2 a \alpha-2 b \gamma\right)}_{=0 \rightarrow \gamma=a^{2} / b}+y^{2} \underbrace{\left(4 \gamma^{2}+2 b \gamma-2 a \beta\right)}_{=0 \rightarrow \beta=a\left(1+2 a^{2} / b^{2}\right)}+x y \underbrace{(\underbrace{(2 \alpha-a) \gamma+2 b(\alpha-\beta))}]}_{=0} P$
Using $\frac{\int_{-\infty}^{+\infty} t^{2} e^{-A t^{2}} d t}{\int_{-\infty}^{+\infty} e^{-A t^{2}} d t}=\frac{1}{2 A}(A>0)$ we have
$\left\langle x^{2}\right\rangle=\frac{\iint x^{2} P(x, y) d x d y}{\iint P(x, y) d x d y}=\frac{1}{2} \div \frac{a\left(a^{2}+b^{2}\right)}{2 a^{2}+b^{2}}=\frac{2 a^{2}+b^{2}}{2 a\left(a^{2}+b^{2}\right)}$

backup: RHMC

Simulation via Rational Hybrid Monte Carlo (RHMC)

 algorithm. [Chap 6,7 of B.Ydri, arXiv: 1506.02567 , for a review]We exploit the rational approximation

$$
x^{-1 / 2} \simeq a_{0}+\sum_{k=1}^{Q} \frac{a_{k}}{x+b_{k}}
$$

after a proper rescaling. (typically $\mathrm{Q}=15 \Rightarrow$ valid at $10^{-12} \mathrm{c}<\mathrm{x}<\mathrm{c}$) a_{k}, b_{k} come from Remez algorithm. [M. A. Clark and A. D. Kennedy, https://github.com/mikeaclark/AlgRemez]

$$
S_{0}=S_{\mathrm{b}}+S_{\mathrm{g}}-\log |\operatorname{det} \mathscr{M}|
$$

$$
|\operatorname{det} \mathscr{M}|=(\operatorname{det} \mathscr{D})^{1 / 2} \simeq \int d F d F^{*} \exp \left(-F^{*} \mathscr{D}^{-1 / 2} F\right) \simeq \int d F d F^{*} e^{-S_{\mathrm{PF}}}
$$

$$
S_{\mathrm{PF}}=a_{0} F^{*} F+\sum_{k=1}^{Q} a_{k} F^{*}\left(\mathscr{D}+b_{k}\right)^{-1} F, \quad\left(\text { where } \mathscr{D}=\mathscr{M}^{\dagger} \mathscr{M}\right)
$$

F: bosonic N_{0}-dim vector (called pseudofermion)

backup: RHMC

Hot spot (most time-consuming part) of RHMC:
\Rightarrow Solving $\left(\mathscr{D}+b_{k}\right) \chi_{k}=F \quad(k=1,2, \cdots, Q)$ by conjugate gradient (CG) method.

Multiplication $\mathscr{M} \chi_{k} \Rightarrow$
\mathscr{M} is a very sparse matrix. No need to build \mathscr{M} explicitly.
\Rightarrow CPU cost is $\mathrm{O}\left(\mathrm{N}^{3}\right)$ per CG iteration
The required CG iteration time depends on T . (while direct calculation of \mathscr{M}^{-1} costs $\mathrm{O}\left(\mathrm{N}^{6}\right)$.)

Multimass CG solver: [B. Jegerlehner, hep-lat/9612014]
Solve $\left(\mathscr{D}+b_{k}\right) \chi_{k}=F$ only for the smallest b_{k}
\Rightarrow The rest can be obtained as a byproduct, which saves $O(Q)$ CPU cost.

backup: RHMC

Conjugate Gradient (CG) method
Iterative algorithm to solve the linear equation $A x=b$
(A: symmetric, positive-definite $\mathrm{n} \times \mathrm{n}$ matrix)
Initial config. $\mathbf{x}_{0}=0 \quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} \quad \mathbf{p}_{0}=\mathbf{r}_{0}$
(for brevity, no preconditioning on x_{0} here)
$\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \quad \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} \quad \alpha_{k}=\frac{\left(r_{k}, r_{k}\right)}{\left(p_{k}, A p_{k}\right)}$
$\mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{k}, \mathbf{r}_{k}\right)} \mathbf{p}_{k}$
Iterate this until $\sqrt{\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{0}, \mathbf{r}_{0}\right)}}<$ (tolerance) $\simeq 10^{-4}$
The approximate answer of $A x=b$ is $x=x_{k+1}$.

