Smart and Human

常翔学園
 摂南大学

Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally－reduced super－Yang－Mills models
（arXiv：1712．07562）
Takehiro Azuma（Setsunan Univ．） TIFR seminar Aug 21st 2018，10：30－11：30 with Konstantinos N．Anagnostopoulos（NTUA），Yuta Ito（KEK）， Jun Nishimura（KEK，SOKENDAI），Toshiyuki Okubo（Meijo Univ．） and Stratos Kovalkov Papadoudis（NTUA）

1. Introduction

Difficulties in simulating complex partition functions.

$$
Z=\int d A \exp \left(-S_{0}+i \Gamma\right), Z_{0}=\int d A e^{-S_{0}}
$$

Sign problem:
The reweighting $\langle\theta\rangle=\frac{\left\langle\theta e^{T}\right\rangle_{0}}{\left\langle e^{T}\right\rangle_{0}}$ requires configs. $\exp \left[\mathrm{O}\left(\mathrm{N}^{2}\right)\right]$
$\left\langle^{*}\right\rangle_{0}=\left(\right.$ V.E.V. for the phase-quenched partition function $\left.Z_{0}\right)$
Various methods to address the sign problem:
(Complex Langevin Method (CLM), factorization method, Lefschetz-thimble method...)
In the following, we discuss CLM.

2. The Euclidean IKKT model

IKKT model [N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115]
\Rightarrow Promising candidate for nonperturbative string theory

$$
\begin{aligned}
& Z=\int_{\mathrm{N}} d A d \psi e^{-\left(S_{\mathrm{b}}+S_{\mathrm{f}}\right)} \\
& S_{\mathrm{b}}=-\frac{N}{4} \operatorname{tr}\left[A_{\mu}, A_{\nu}\right]^{2}, \quad S_{\mathrm{f}}=N \operatorname{tr} \bar{\psi}_{\alpha}\left(\Gamma^{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]
\end{aligned}
$$

Euclidean case after Wick rotation $A_{0} \rightarrow i A_{D}, \Gamma^{0} \rightarrow-i \Gamma_{D}$. \Rightarrow Path integral is finite without cutoff.
[W. Krauth, H. Nicolai and M. Staudacher, hep-th/9803117, P. Austing and J.F. Wheater, hep-th/0103059]

- $\mathrm{A}_{\mu}, \Psi_{\alpha} \Rightarrow \mathrm{N} \times \mathrm{N}$ Hermitian traceless matrices.

$$
\mu=1,2, \cdots, D, \alpha, \beta= \begin{cases}1,2,3,4 & (D=6) \\ 1,2, \cdots, 16 & (D=10)\end{cases}
$$

- Originally defined in D=10 (ψ : Majonara-Weyl) We consider the simplified $D=6$ case as well
$(\psi:$ Weyl, not Majorana $\mathrm{d} \psi \rightarrow \mathrm{d} \psi \mathrm{d} \bar{\Psi})$

2. The Euclidean IKKT model

- Matrix regularization of the type IIB string action:

$$
\begin{aligned}
& S_{\mathrm{Sh}}=\int d^{2} \sigma\left\{\sqrt{g} \alpha\left(\frac{1}{4}\left\{X_{\mu}, X_{\nu}\right\}^{2}-\frac{i}{2} \bar{\psi} \Gamma^{\mu}\left\{X_{\mu}, \psi\right\}\right)+\beta \sqrt{g}\right\} . \\
& -i[X, Y] \leftrightarrow\{X, Y\}=\frac{1}{\sqrt{g}} \varepsilon^{a b} \partial_{a} X \partial_{b} Y, \operatorname{tr} \leftrightarrow \int d^{2} \sigma \sqrt{g} .
\end{aligned}
$$

- Eigenvalues of A_{μ} : spacetime coordinate $\Rightarrow \mathscr{N}=2$ SUSY

$$
\begin{aligned}
& \tilde{\delta}_{\varepsilon}^{(1)}=\delta_{\varepsilon}^{(1)}+\delta_{\varepsilon}^{(2)} \quad \tilde{\delta}_{\varepsilon}^{(2)}=i\left(\delta_{\varepsilon}^{(1)}-\delta_{\varepsilon}^{(2)}\right) \quad \text { where } \\
& \delta_{\varepsilon}^{(1)} A_{\mu}=i \varepsilon\left(\mathscr{E} \Gamma_{\mu}\right) \psi, \quad \delta_{\varepsilon}^{(1)} \psi=\frac{i}{2}\left[A_{\mu}, A_{\nu}\right] \Gamma^{\mu \nu} \varepsilon, \delta_{\varepsilon}^{(2)} A_{\mu}=0, \quad \delta_{\varepsilon}^{(2)} \psi=\varepsilon .
\end{aligned}
$$

$$
\left[\tilde{\delta}_{\varepsilon}^{(a)}, \tilde{\delta}_{\xi}^{(b)}\right] A_{\mu}=-2 i \delta^{a b} \varepsilon\left(\mathscr{C} \Gamma_{\mu}\right) \xi,\left[\tilde{\delta}_{\varepsilon}^{(a)}, \tilde{\delta}_{\xi}^{(b)}\right] \psi=0,(a, b=1,2) .
$$

2. The Euclidean IKKT model

- Result of Gaussian Expansion Method (GEM)
[T.Aoyama, J.Nishimura, and T.Okubo, arXiv:1007.0883, J.Nishimura, T.Okubo and F.Sugino, arXiv:1108.1293]

SSB SO(6) \rightarrow SO(3) (In D=10, too, SO(10) \rightarrow SO(3)) Dynamical compactification to 3 -dim spacetime.

$\lambda_{n}\left(\lambda_{1} \geq \cdots \geq \lambda_{D}\right)$: eigenvalues of $T_{\mu v}=\frac{1}{N} \operatorname{tr}\left(A_{\mu} A_{v}\right)$

$$
\rho_{\mu}=\frac{\left\langle\lambda_{\mu}\right\rangle}{\left.\left.\sum_{v=1}^{D}\right\rangle \lambda_{\nu}\right\rangle}= \begin{cases}\begin{array}{ll}
0.30 & (\mu=1,2,3) \\
\hline 0.035 & (\mu=4,5,6)
\end{array}\end{cases}
$$

$$
(D=6) \text { arXiv:1007.0883 (D=6) }
$$

Shrunken
(D-d) dim.

2. The Euclidean IKKT model

$Z=\int d A d e^{-S_{\mathrm{b}}} \underbrace{\left(\int d \psi e^{-S_{\mathrm{f}}}\right)}=\int d A \underbrace{e^{-S}}_{e^{-\left\{\left\{_{\mathrm{b}}-\log (\text { deevPf } / / R)\right\}\right.}}$
$=\operatorname{det} / \operatorname{Pf} \mathscr{M}=|\operatorname{det} / \operatorname{Pf} \mathscr{M}| e^{i \Gamma}$.

- Integrating out ψ yields det \mathscr{M} in $\mathrm{D}=6$ ($\mathrm{Pf} \mathscr{M}$ in $\mathrm{D}=10$)
- det/Pf \mathscr{M} 's complex phase contributes to the Spontaneous Symmetry Breaking (SSB) of SO(D). Under the parity transformation $A_{D} \Rightarrow-A_{D}$, det/PfM is complex conjugate \Rightarrow det/PfM is real for $A_{D}=0$ (hence ($D-1$)-dim config.).
For the d-dim config, $\frac{\partial^{m} \Gamma}{\partial A_{\mu_{1}} \cdots \partial A_{\mu_{m}}}=0(\mathrm{~m}=1,2, \ldots,(\mathrm{D}-1)-\mathrm{d})$
The phase is more stationary for lower d.

2. The Euclidean IKKT model

No SSB with the phase-quenched partition function.

$$
Z_{0}=\int d A e^{-S_{0}}=\int d A e^{-S_{b}}|\operatorname{det} / / P f \mathscr{M}| \quad<^{\star}>_{0}=\text { V.E.V. for } Z_{0}
$$

[J. Ambjorn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, hep-th/0003208,0005147, K.N. Anagnostopoulos, T. Azuma, J.Nishimura arXiv:1306.6135, 1509.05079]

3. Complex Langevin Method

Complex Langevin Method (CLM)
\Rightarrow Solve the complex version of the Langevin equation.
[Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036]

"Real" case

$x_{k}(\mathrm{t})$ and the action S are real (t : fictitious time)

$$
\dot{x}_{k}^{(\eta)}(t)=-\underbrace{\frac{\partial S}{\partial x_{k}(t)}}_{\text {drift term }}+\eta_{k}(t)
$$

$\cdot \eta_{\mu}$: White noise obeying the probability distribution

$$
\exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)
$$

3. Complex Langevin Method

Probability distribution of $x^{(\eta)}{ }_{k}(t)$

$$
\begin{aligned}
& P(x ; t)=\left\langle\prod_{k} \delta\left(x_{k}-x_{k}^{(\eta)}(t)\right)\right\rangle_{\eta} \text { where } \\
& \langle\cdots\rangle_{\eta}=\frac{\int \mathscr{D} \eta \cdots \exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)}{\int \mathscr{D} \eta \exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)}\left\langle\eta_{k}\left(t_{1}\right) \eta_{l}\left(t_{2}\right)\right\rangle_{\eta}=2 \delta_{k l} \delta\left(t_{1}-t_{2}\right)
\end{aligned}
$$

This obeys the Fokker-Planck (FP) equation

$$
\frac{\partial P}{\partial t}=\frac{\partial}{\partial x_{k}}\left(\frac{\partial S}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\right) P
$$

Time-independent solution $P_{\text {time-indep. }}(x) \propto e^{-S}$
Equivalent to the path integral.

3. Complex Langevin Method

Putting the real Langevin equation on a computer
\Rightarrow discretized version $\quad=\sqrt{\Delta t} \tilde{\eta}_{k}(t)$

$$
x_{k}^{(\eta)}(t+\Delta t)=x_{k}^{(\eta)}(t)-(\Delta t) \frac{\partial S}{\partial x_{k}}+\overbrace{(\Delta t) \eta_{k}(t)}
$$

The white noise obeys $\exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right) \rightarrow \exp (-\frac{1}{4} \sum_{t} \overbrace{(\Delta t) \eta_{k}^{2}(t)}^{=\eta_{k}^{2}(t)})$
Derivation of the Fokker-Planck equation
$\left\langle f\left(x^{(n)}(t+\Delta t)\right)\right\rangle_{\eta}-\left\langle f\left(x^{(\eta)}(t)\right)\right\rangle_{\eta}=\int f(x) \underline{P(x, t+\Delta t)-P(x, t))} d x$
$=-(\Delta t)\left\langle\frac{\partial f}{\partial x_{k}} \frac{\partial S}{\partial x_{k}}\right\rangle_{\eta}+\frac{1}{2} \sqrt{(\Delta t)^{2}} 2^{2}\left\langle\frac{\partial^{2} f}{\partial x_{k} \partial x_{k}} \tilde{\eta}_{k}(t) \tilde{\eta}_{k}(t)\right\rangle_{\eta}+\mathrm{O}\left((\Delta t)^{2}\right)$
$=(\Delta t)\{-\left\langle\frac{\partial f}{\partial x_{k}} \frac{\partial S}{\partial x_{k}}\right\rangle_{\eta}+\frac{1}{2}\langle\underbrace{\frac{\partial^{2} f}{\partial x_{k} \partial x_{l}}}_{\text {depends on } \eta(0), \cdots, \eta(t-\Delta t)}\rangle_{\eta} \underbrace{\left\langle\tilde{\eta}_{k}(t) \tilde{n}_{l}(t)\right\rangle_{\eta}}_{=2 \delta_{k l}}\}+\mathrm{O}\left((\Delta t)^{2}\right)$ Integration by part
$=(\Delta t)\left\{\int\left(-\frac{\partial f}{\partial x_{k}} \frac{\partial S}{\partial x_{k}}+\frac{\partial^{2} f}{\partial x_{k}^{2}}\right) P(x ; t) d x\right\}+\mathrm{O}\left((\Delta t)^{2}\right)=(\Delta t)\left\{\int f(x)\left\{\frac{\partial}{\partial x_{k}}\left(\frac{\partial S}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\right) P(x ; t)\right\} d x\right\}+\mathrm{O}\left((\Delta t)^{2}\right)$

3. Complex Langevin Method

Extension to complex actions

The action $S(x)$ is complex for real x.
$x(\mathrm{t})$ is complexified as $\mathrm{x} \Rightarrow \mathrm{z}=\mathrm{x}+\mathrm{iy}$
($\mathrm{S}(\mathrm{z})$ is holomorphic by analytic continuation)

$$
\dot{z}_{k}^{(\eta)}(t)=-\underbrace{\frac{\partial S}{\partial z_{k}(t)}}_{\text {drift term }}+\eta_{k}(t)
$$

$\cdot \eta_{\mu}$: real white noise obeying $\exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)$
Probability distribution $P(x, y ; t)=\left\langle\prod_{k} \delta\left(x_{k}-x_{k}^{(\eta)}(t)\right) \delta\left(y_{k}-y_{k}^{(\eta)}(t)\right)\right\rangle_{\eta}$
$\langle\cdots\rangle_{\eta}=\frac{\int \mathscr{D} \eta \cdots \exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)}{\int \mathscr{D} \eta \exp \left(-\frac{1}{4} \int \eta_{k}^{2}(t) d t\right)}\left\langle\eta_{k}\left(t_{1}\right) \eta_{l}\left(t_{2}\right)\right\rangle_{\eta}=2 \delta_{k l} \delta\left(t_{1}-t_{2}\right)$

3. Complex Langevin Method

$\mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t})$ satisfies $\frac{\partial P}{\partial t}=L^{\top} P$
When the boundary term vanishes,

$$
\begin{aligned}
& \int(L f(x, y)) g(x, y) d x d y=\int f(x, y)\left(L^{\top} g(x, y)\right) d x d y \\
& L^{\top}=\frac{\partial}{\partial x_{k}}\left\{\operatorname{Re}\left(\frac{\partial S}{\partial z_{k}}\right)+\frac{\partial}{\partial x_{k}}\right\}+\frac{\partial}{\partial y_{k}}\left\{\operatorname{Im}\left(\frac{\partial S}{\partial z_{k}}\right)\right\} \\
& L=\left\{-\operatorname{Re}\left(\frac{\partial S}{\partial z_{k}}\right)+\frac{\partial}{\partial x_{k}}\right\} \frac{\partial}{\partial x_{k}}+\left\{-\operatorname{Im}\left(\frac{\partial S}{\partial z_{k}}\right)\right\} \frac{\partial}{\partial y_{k}}
\end{aligned}
$$

To justify the CLM, does the following actually hold?
$\underbrace{\mathscr{O}(x+i y)} P(x, y ; t) d x d y \stackrel{?}{=} \int \mathscr{O}(x) \rho(x ; t) d x$
holomorphic $=_{L_{0}^{\top}}$

$$
\frac{\partial \rho(x, t)}{\partial t}=\overbrace{\frac{\partial}{\partial x_{k}}\left(\frac{\partial S}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\right)} \rho(x ; t) \Rightarrow \rho_{\text {time-indep. }}(x) \propto e^{-S}
$$

3. Complex Langevin Method

At $\mathrm{t}=0$, we choose $P(x, y ; t=0)=\rho(x ; t=0) \delta(y)$
Time evolution at $\mathrm{t}>0$: we define an observable $\mathrm{O}(z ; \mathrm{t})$
$\begin{array}{ll}\frac{\partial}{\partial t} \mathscr{O}(z ; t)=\underbrace{\left(\frac{\partial}{\partial z_{k}}-\frac{\partial S}{\partial z_{k}}\right) \frac{\partial}{\partial z_{k}}}_{=\tilde{L}} \mathscr{O}(z ; t) \quad \text { [initial condition } \mathscr{O}(z ; t=0)=\mathscr{O}(z)] \\ \text { Setting y=0, } \quad \frac{\partial}{\partial t} \mathcal{O}(x ; t)=\overbrace{\left(\frac{\partial}{\partial x_{k}}-\frac{\partial S}{\partial x_{k}}\right) \frac{\partial}{\partial x_{k}}}^{=L_{0}} \boldsymbol{O}(x ; t) & {[\mathscr{O}(x ; t=0)=\mathscr{O}(x)]} \\ \int\left(L_{0} f(x)\right) \&(x) d x=\int f(x)\left(L_{0}^{\top} g(x) d x\right.\end{array}$
$S(z)$ is holomorphic $\Rightarrow O(z ; t)$ remains holomorphic.
$L f(z)=\{-\operatorname{Re}\left(\frac{\partial S}{\partial z_{k}}\right)+\underbrace{\frac{\partial}{\partial x_{k}}}_{=\partial \partial \partial z_{k}}\} \underbrace{\frac{\partial f(z)}{\partial x_{k}}}_{\partial \partial f(z) / \partial z_{k}}+\left\{-\operatorname{Im}\left(\frac{\partial S}{\partial z_{k}}\right)\right\} \underbrace{\frac{\partial f(z)}{\partial y_{k}}}_{=i \partial f(z) / \partial z_{k}}$

3. Complex Langevin Method

Interpolating function $F(t, \tau)=\int d x d y \mathcal{O}(x+i y ; \tau) P(x, y ; t-\tau)$

$$
\begin{aligned}
\frac{\partial F(t, \tau)}{\partial \tau} & =\int d x d y\left\{\frac{\partial \mathscr{O}(x+i y ; \tau)}{\partial \tau} P(x, y ; t-\tau)+\mathscr{O}(x+i y ; \tau) \frac{\partial P(x, y ; t-\tau)}{\partial \tau}\right\} \\
& =\int d x d y(\tilde{L} \mathscr{O}(x+i y ; \tau)) P(x, y ; t-\tau)-\int d x d y \mathscr{O}(x+i y ; \tau) L^{\top} P(x, y ; t-\tau)
\end{aligned}
$$

integration
by part $\overbrace{=}^{\nabla} \int d x d y \overbrace{\{(\tilde{L}-L) \mathcal{O}(x+i y ; \tau)\}}^{=0} P(x, y ; t-\tau)=0$
Similarly, $\quad \frac{\partial}{\partial \tau} \int d x \mathscr{O}(x ; \tau) \rho(x ; t-\tau) \triangleq 0_{\text {w.r.t. real } x}$ Integly.

Integration by part is justified when
$\mathrm{P}(\mathrm{x}, \mathrm{y} ; \mathrm{t})$ damps rapidly

- in the imaginary direction
- around the singularity of the drift term
[G. Aarts, F.A. James, E. Seiler and O. Stamatescu, arXiv:1101.3270,
K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1508.02377]

3. Complex Langevin Method

at large t?
$\frac{\partial \mathscr{O}(z ; t)}{\partial t}=\tilde{L} \mathscr{O}(z ; t) \Rightarrow \mathscr{O}(z ; t)=e^{t \tilde{L}} \mathscr{O}(z)$
$\int d x d y\left\{e^{\tau \tilde{L}} \mathscr{O}(z)\right\} P(x, y ; t)=\sum_{n=0}^{+\infty} \frac{\tau^{n}}{n!} \int d x d y\left\{\tilde{L}^{n} \mathscr{O}(z)\right\} P(x, y ; t)$
This series should have a finite convergence radius
\Rightarrow Probability of the drift term should fall exponentially.
[K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627]
Look at the drift term \Rightarrow Get the drift of CLM!!

3. Complex Langevin Method

Complex Langevin equation for the IKKT model:
$\frac{d\left(A_{\mu}\right)_{i j}}{d t}=-\frac{\partial S}{\partial\left(A_{\mu}\right)_{j i}}+\eta_{\mu, i j}(t)$
$\frac{\partial S}{\partial\left(A_{\mu}\right)_{j i}}=\frac{\partial S_{\mathrm{b}}}{\partial\left(A_{\mu}\right)_{j i}}-c_{d} \operatorname{Tr}\left(\frac{\partial \mathscr{M}}{\partial\left(A_{\mu}\right)_{j i}} \mathscr{M}^{-1}\right) \quad c_{d}= \begin{cases}1 & (D=6 \rightarrow \operatorname{det} \mathscr{M}) \\ \frac{1}{2} & (D=10 \rightarrow \operatorname{Pf} \mathscr{M})\end{cases}$

- A_{μ} : Hermitian \rightarrow general comlex traceless matrices.
$\cdot \eta_{\mu}$: Hermitian white noise obeying $\exp \left(-\frac{1}{4} \int \operatorname{tr}^{2}(t) d t\right)$

3. Complex Langevin Method

CLM does not work when it encounters these problems:
(1) Excursion problem: A_{μ} is too far from Hermitian \Rightarrow Gauge Cooling minimizes the Hermitian norm
$\mathscr{N}=\frac{-1}{D N} \sum^{D} \operatorname{tr}\left[\left(A_{\mu}-\left(A_{\mu}\right)^{\dagger}\right)^{2}\right] \quad$ [K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1604.07717]
$A_{\mu}:$ Hermitian \rightarrow general complex traceless matrices.
\Rightarrow We make use of this extra symmetry:
After each step of discretized Langevin equation,

$$
A_{\mu} \rightarrow g A_{\mu} g^{-1}, g=e^{\alpha H}, \quad H=\frac{-1}{N} \sum_{\mu=1}^{D}\left[A_{\mu}, A_{\mu}^{\dagger}\right]
$$

a: real parameter, such that \mathscr{N} is minimized.

3. Complex Langevin Method

(2) Singular drift problem:

The drift term dS/d $\left(\mathrm{A}_{\mu}\right)_{\mathrm{ji}}$ diverges due to \mathscr{M} 's near-zero eigenvalues.

We trust CLM when the distribution $p(u)$ of the drift norm $u=\sqrt{\frac{1}{D N^{3}} \sum^{D} \sum^{N}\left|\frac{\partial s}{\partial(A))^{2}}\right|^{2}}$ falls exponentially as $\mathrm{p}(\mathrm{u}) \propto \mathrm{e}^{-\mathrm{au}}$.
[K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627]

3. Complex Langevin Method

Mass deformation [Y. Ito and J. Nishimura, arXiv:1609.04501]

- $\mathrm{SO}(\mathrm{D})$ symmetry breaking term $\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2}$

Order parameters for SSB of SO(D): $\lambda_{\mu}=\operatorname{Re}\left\{\frac{1}{N} \operatorname{tr}\left(A_{\mu}\right)^{2}\right\}$

- Fermionic mass term:

$$
\Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha} \gamma_{\alpha \beta} \psi_{\beta}\right), \gamma= \begin{cases}\Gamma_{6} & (D=6) \\ i \Gamma_{8} \Gamma_{9}^{\dagger} \Gamma_{10} & (D=10)\end{cases}
$$

Avoids the singular eigenvalue distribution of \mathscr{M}.
This breaks $\mathrm{SO}(6) \rightarrow \mathrm{SO}(5)(\mathrm{SO}(10) \rightarrow \mathrm{SO}(7))$
We study the SSB of the remaining symmetry.
Extrapolation (i) $\mathrm{N} \rightarrow \infty \Rightarrow$ (ii) $\varepsilon \rightarrow 0 \Rightarrow$ (iii) $\mathrm{m}_{\mathrm{f}} \rightarrow 0$.

4. Result for $\mathrm{D}=6$

The effect of adding these mass terms

Scattering plots of the eigenvalues of the $4\left(\mathrm{~N}^{2}-1\right) \times 4\left(\mathrm{~N}^{2}-1\right)$ matrix \mathscr{M} for $\mathrm{D}=6, \mathrm{~N}=24$.
$\Delta \mathrm{S}_{\mathrm{b}}$ narrows the eigenvalue distribution.
ΔS_{f} shifts the eigenvalues, to evade the origin.

4. Result for $\mathrm{D}=6$

$$
\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{u=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)
$$

$$
\mathrm{m}_{\mu}=(0.5,0.5,1,2,4,8)
$$

$$
u=\sqrt{\frac{1}{D N^{3}} \sum_{\mu=1, i, j=1}^{D} \sum_{j \mid}^{N}\left|\frac{\partial S}{\partial\left(A_{\mu}\right)_{i i}}\right|^{2}} \text { 's distribution p(u) (log-log) }
$$

4. Result for $\mathrm{D}=6$

$\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)$

$$
m_{\mu}=(0.5,0.5,1,2,4,8)
$$

(i) $\mathrm{N} \rightarrow \infty$ limit for fixed $\left(\varepsilon, \mathrm{m}_{\mathrm{f}}\right)$
$(\varepsilon, \mathrm{mf})=(0.25,0.65)$

$\left(\varepsilon, m_{f}\right) \rightarrow(0,0)$ extrapolation for finite N
\Rightarrow We cannot observe SSB of $\mathrm{SO}(\mathrm{D})$.
$\left\langle\lambda_{\mu}\right\rangle_{\varepsilon, m_{\mathrm{f}}}$ at large N

4. Result for $\mathrm{D}=6$

$\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)$
(ii) $\varepsilon \rightarrow 0$ after $\mathrm{N} \rightarrow \infty$
 $\mathrm{m}_{\mu}=(0.5,0.5,1,2,4,8)$

$$
\left.\begin{array}{l}
\rho_{\mu}\left(\varepsilon, \varepsilon_{m}\right) \\
\hline
\end{array}\right) \frac{\left\langle\lambda_{\mu}\right\rangle_{\varepsilon, m_{f}}}{\sum_{v=1}^{D}\left\langle\lambda_{\nu}\right\rangle_{\varepsilon, m_{\mathrm{m}}}}
$$

- $\mathrm{m}_{\mathrm{f}} \rightarrow \infty: \Psi$ decouples from A_{μ} and reduces to the bosonic IKKT.
- The bosonic IKKT S_{b} does not break $\mathrm{SO}(\mathrm{D})$.
[T. Hotta, J. Nishimura and A. Tsuchiya, hep-th/9811220]
-The SSB of $S O(D)$ is not an artifact of $\varepsilon \rightarrow 0$ but a physical effect.

4. Result for $\mathrm{D}=6$

$\Delta S_{\mathrm{b}}=\frac{1}{2} N \varepsilon \sum_{\mu=1}^{D} m_{\mu} \operatorname{tr}\left(A_{\mu}\right)^{2} \quad \Delta S_{\mathrm{f}}=N m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{D}\right)_{\alpha \beta} \psi_{\beta}\right)(D=6)$
(ii) $\varepsilon \rightarrow 0$ after $\mathrm{N} \rightarrow \infty \quad \mathrm{m}_{\mu}=(0.5,0.5,1,2,4,8)$

ε

4. Result for $\mathrm{D}=6$

25

(dotted line: $\mathrm{m}_{\mathrm{f}} \rightarrow 0$ limit fixed to GEM results) SSB SO(6) \rightarrow at most SO(3) Consistent with GEM.

5. Result for $D=10$ (preliminary)

$u=\sqrt{\frac{1}{D N^{3}} \sum_{\mu=1}^{D} \sum_{i, j=1}^{N}\left|\frac{\partial S}{\partial\left(A_{\mu}\right)_{j i}}\right|_{10^{2}}^{10^{-2}}}$

5. Result for $D=10$ (preliminary)

 $\mathrm{m}_{\mu}=(0.5,0.5,0.5,1,2,4,8,8,8,8)$(ii) $\varepsilon \rightarrow 0$ after $\mathrm{N} \rightarrow \infty$

Transition from $\mathrm{SO}(7)$ to $\mathrm{SO}(6)$ at $\mathrm{m}_{\mathrm{f}}<2.0$

6. Summary

Dynamical compactification of the spacetime in the simplified Euclidean IKKT model.
"Complex Langevin Method" \Rightarrow trend of $\mathrm{SO}(\mathrm{D}) \rightarrow \mathrm{SO}(3)$.
Future works
Test various ideas
-Reweighting method [J. Bloch, arxiv:1701.00986]

- Other deformations than the mass deformation
($\mathrm{z}=1$:original Euclidean, pure imaginary z : fermion det/Pf is real)
$N \operatorname{tr}\left(\bar{\psi}\left(z \Gamma_{D}\right)\left[A_{D}, \psi\right]+\sum_{k=1}^{D-1} \bar{\psi}_{k}\left[A_{k}, \psi\right]\right)$ [Y. Ito, J. Nishimura, arXiv:1710.07929]

6. Summary

Future works
Application of CLM to other cases
Lorentzian version of the IKKT model generalization to Gross-Witten-Wadia model

BFSS model $S=S_{b}+S_{f}$ ($D=5,9 \Rightarrow d e t / P f M$ is complex $)$

$$
\begin{aligned}
& S_{b}=N \int_{0}^{\beta} \operatorname{tr}\left\{\frac{1}{2} \sum_{\mu=1}^{D}\left(D_{l} X_{\mu}(t)\right)^{2}-\frac{1}{4} \sum_{\mu, v=1}^{D}\left[X_{\mu}(t), X_{\nu}(t)\right]^{2}\right\} d t \\
& S_{\mathrm{f}}=N \int_{0}^{B} \mathrm{rr}\left\{\sum_{\alpha=1}^{p} \bar{\psi}_{\alpha}(t) D_{H} \psi_{\alpha}(t)-\sum_{\mu=1}^{p} \sum_{\alpha, n=1}^{p} \bar{\psi}_{\alpha}(t)\left(\Gamma_{\mu}\right) \alpha_{n}\left[X_{\mu}(t), \psi_{n}(t)\right\}\right\} d t
\end{aligned}
$$

backup: example of CLM

Example [G. Aarts, arXiv:1512.05145]
$S(x)=\frac{1}{2} \underbrace{(a+i b)} x^{2},(a, b \in \mathbf{R}, a>0) \mathrm{S}(\mathrm{X})$ is complex for real x . Complexify to $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$.
$S(z)=\frac{1}{2} \sigma z^{2}=\frac{1}{2}(a+i b) \overbrace{(x+i y)^{2}}^{==^{2}}=\frac{a\left(x^{2}-y^{2}\right)}{2}+i b x y, \frac{\partial S}{\partial z}=\sigma z=(a+i b)(x+i y)$
Complex Langevin equation for this action $\dot{x}(t)=-\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)+\eta(t)=(-a x+b y)+\eta(t) \quad \dot{y}(t)=-\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)=(-a y-b x)$
The real white noise satisfies
$\left\langle\eta\left(t_{1}\right) \eta\left(t_{2}\right)\right\rangle=2 \delta\left(t_{1}-t_{2}\right) \quad\langle\cdots\rangle=\frac{\int \mathscr{P} \eta \cdots \exp \left(-\frac{1}{4} \int \eta^{2}(t) d t\right)}{\int \mathscr{D} \eta \exp \left(-\frac{1}{4} \eta^{2}(t) d t\right)}$

backup: example of CLM

Solution of the Langevin equation

$$
\begin{aligned}
x(t)= & e^{-a t} \underbrace{[x(0) \cos b t+y(0) \sin b t]}_{=A(t)}+\int_{0}^{t} \eta(s) e^{-a(t-s)} \cos [b(t-s)] d s \\
y(t)= & e^{-a t}[y(0) \cos b t-x(0) \sin b t]-\int_{0}^{t} \eta(s) e^{-a(t-s)} \sin [b(t-s)] d s \\
\left\langle x^{2}\right\rangle= & \lim _{t \rightarrow+\infty}\left\langle x^{2}(t)\right\rangle=\lim _{t \rightarrow+\infty}\{\underbrace{e^{-2 a t} A(t)^{2}}_{\rightarrow 0}+2 e^{-a t} A(t) \int_{0}^{t} \underbrace{\langle\eta(s)\rangle}_{=0} e^{-a(t-s)} \cos [b(t-s)] d s \\
& +\int_{0}^{t} \int_{0}^{t} \underbrace{\left.\left\langle\eta(s) \eta\left(s^{\prime}\right)\right\rangle\right\rangle}_{=2 \delta\left(s-s^{\prime}\right)} e^{-a\left(2 t-s-s^{\prime}\right)} \cos [b(t-s)] \cos \left[b\left(t-s^{\prime}\right)\right] d s d s^{\prime}\}
\end{aligned}
$$

$$
=\lim _{t \rightarrow+\infty}\left\{2 \int_{0}^{t} e^{-2 a(t-s)} \cos ^{2}[b(t-s)]\right\} d s=\frac{2 a^{2}+b^{2}}{2 a\left(a^{2}+b^{2}\right)}
$$

Similarly, $\left\langle y^{2}\right\rangle=\frac{b^{2}}{2 a\left(a^{2}+b^{2}\right)},\langle x y\rangle=\frac{-b}{2\left(a^{2}+b^{2}\right)}$
This replicates $\left\langle z^{2}\right\rangle=\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle+2 i\langle x y\rangle=\frac{a-i b}{a^{2}+b^{2}}=\frac{1}{\sigma}$

backup: example of CLM

Fokker-Planck equation
$\frac{\partial P}{\partial t}=L^{\top} P$ where $L^{\top}=\frac{\partial}{\partial x}\{\underbrace{\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)}_{=a x-b y}+\frac{\partial}{\partial x}\}+\frac{\partial}{\partial y}\{\underbrace{\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)}_{=a y+b x}\}$
Ansatz for its static solution:
$P(x, y)=N \exp \left(-\alpha x^{2}-\beta y^{2}-2 \gamma x y\right)=N \exp (-\beta\left(y+\frac{\gamma x}{\beta}\right)^{2}-\overbrace{\left(\alpha-\frac{\gamma^{2}}{\beta}\right)} x^{2})$
$0=\partial_{t} P=L^{\top} P=[\underbrace{(2 a-2 \alpha)}_{=0 \rightarrow a=\alpha}+x^{2} \underbrace{\left(4 \alpha^{2}-2 a \alpha-2 b \gamma\right)}_{=0 \rightarrow \gamma=a^{2} / b}+y^{2} \underbrace{\left(4 \gamma^{2}+2 b \gamma-2 a \beta\right)}_{=0 \rightarrow \beta=a\left(1+2 a^{2} / b^{2}\right)}+x y \underbrace{(4(2 \alpha-a) \gamma+2 b(\alpha-\beta))}_{=0}] P$
Using $\frac{\int_{-\infty}^{+\infty} t^{2} e^{-A t^{2}} d t}{\int_{-\infty}^{+\infty} e^{-A t^{2}} d t}=\frac{1}{2 A}(A>0)$ we have
$\left\langle x^{2}\right\rangle=\frac{\iint x^{2} P(x, y) d x d y}{\iint P(x, y) d x d y}=\frac{1}{2} \div \frac{a\left(a^{2}+b^{2}\right)}{2 a^{2}+b^{2}}=\frac{2 a^{2}+b^{2}}{2 a\left(a^{2}+b^{2}\right)}$

backup: noisy estimator

Noisy estimator: method to calculate $\operatorname{Tr} A$ using Gaussian random numbers (A: $\mathrm{n} \times \mathrm{n}$ matrix)
X_{k}, Y_{k} independently obey the standard normal distribution $N(0,1)$.
$\chi_{k}=\frac{X_{k}+i Y_{k}}{\sqrt{2}} \Rightarrow\left\langle\chi_{j}^{*} \chi_{k}\right\rangle=\delta_{j k}(j, k=1,2, \cdots, n)$
$\sum_{j, k=1}^{n}\left\langle\chi_{j}^{*} A_{j k} \chi_{k}\right\rangle=\sum_{j, k=1}^{n} A_{j k}\left\langle\chi_{j}^{*} \chi_{k}\right\rangle=\sum_{j, k=1}^{n} A_{j k} \delta_{j k}=\operatorname{Tr} A$

backup: noisy estimator

$$
S_{\mathrm{f}}+\Delta S_{\mathrm{f}}=N\left\{\operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\Gamma_{\mu}\right)_{\alpha \beta}\left[A_{\mu}, \psi_{\beta}\right]\right)+m_{\mathrm{f}} \operatorname{tr}\left(\bar{\psi}_{\alpha}\left(\gamma_{\alpha \beta}\right) \psi_{\beta}\right)\right\}
$$

Tracelessness of $\Psi \Rightarrow \mathscr{M}$ is a $\mathrm{p}\left(\mathrm{N}^{2}-1\right) \times \mathrm{p}\left(\mathrm{N}^{2}-1\right)$ matrix

$$
\begin{aligned}
\mathscr{M}_{a_{1} a_{2} \alpha, b_{1} b_{2} \beta} & =\left[\left(a_{1}+\left(a_{2}-1\right) N+(\alpha-1)\left(N^{2}-1\right), b_{1}+\left(b_{2}-1\right) N+(\beta-1)\left(N^{2}-1\right)\right) \text { element }\right] \\
& =\mathscr{M}_{a_{1} a_{2} \alpha, b_{1} b_{2} \beta}^{\prime}-\mathscr{M}_{N N \alpha, b_{1} b_{2} \beta}^{\prime} \delta_{a_{1} a_{2}}-\mathscr{M}_{a_{1} a_{2} \alpha, N N \beta}^{\prime} \delta_{b_{1} b_{2}}+\mathscr{M}_{N N \alpha, N N \beta}^{\prime} \delta_{a_{1} a_{2}} \delta_{b_{1} b_{2}}
\end{aligned}
$$

$$
a_{1}, a_{2}, b_{1}, b_{2}=1,2, \cdots, N, \text { except for }\left(a_{1}, a_{2}\right)=(N, N),\left(b_{1}, b_{2}\right)=(N, N) \quad \alpha, \beta=1,2, \cdots, p
$$

$\mathscr{M}_{a_{1} a_{2} \alpha, b_{1} b_{2} \beta}^{\prime}=\left(\Gamma_{\mu}\right)_{\alpha \beta}\left\{\left(A_{\mu}\right)_{a_{2} b_{1}} \delta_{a_{1} b_{2}}-\left(A_{\mu}\right)_{b_{2} a_{1}} \delta_{a_{2} b_{1}}\right\}+m_{\mathrm{f}} \gamma_{\alpha \beta} \delta_{a_{1} b_{2}} \delta_{a_{2} b_{1}}$. $a_{1}, a_{2}, b_{1}, b_{2}=1,2, \cdots, N$, including $\left(a_{1}, a_{2}\right)=(N, N),\left(b_{1}, b_{2}\right)=(N, N) \quad \alpha, \beta=1,2, \cdots, \dot{p}$
\mathscr{M} in the scattering plots (without altering det/Pf \mathscr{M} up to a constant)

unit matrix

 $\mathscr{M}_{a_{1} a_{2} \alpha, b_{1} b_{2} \beta}^{\prime}=\left(\Gamma_{\mu} \gamma^{-1}\right)_{\alpha \beta}\left\{\left(A_{\mu}\right)_{a_{2} b_{2}} \delta_{a_{1} b_{1}}-\left(A_{\mu}\right) b_{1} a_{1} \delta_{a_{2} b_{2}}\right\}+m_{\mathrm{f}} \delta_{\alpha \beta} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}}$.
backup: noisy estimator

\mathscr{M} is a $\mathrm{p}\left(\mathrm{N}^{2}-1\right) \times \mathrm{p}\left(\mathrm{N}^{2}-1\right)$ matrix ($\mathrm{p}=4$ for $\mathrm{D}=6$ and $\mathrm{p}=16$ for $\mathrm{D}=10$)
\Rightarrow Naively calculating $\operatorname{Tr}\left(\frac{\partial \mathscr{M}}{\partial\left(A_{\mu}\right)_{j i}} \mathscr{M}^{-1}\right)$ takes CPU cost $\mathrm{O}\left(\mathrm{N}^{6}\right)$.
Instead, we use the noisy estimator
$X=($ random number vector)

$$
\operatorname{Tr}\left(\frac{\partial \mathscr{M}}{\partial\left(A_{\mu}\right)_{j i}} \mathscr{M}^{-1}\right)=\langle\chi^{*} \frac{\partial \mathscr{M}}{\partial\left(A_{\mu}\right)_{j i}} \underbrace{\mathscr{M}^{-1} \chi}_{=\zeta}\rangle
$$

$\mathscr{M}^{\dagger} \mathscr{M} \zeta=\mathscr{M}^{\dagger} \chi$ by conjugate gradient (CG) method.
$\cdot \mathscr{M}^{\dagger} \mathscr{M}$ is symmetric and positive definite.

- \mathscr{M} is sparse $\Rightarrow \mathrm{CPU}$ cost $\mathrm{O}\left(\mathrm{N}^{3}\right)$ per CG iteration.
\cdot In solving Langevin eq., we use one noisy estimator $\chi^{*} \frac{\partial \cdot \mathscr{M}}{\partial\left(A_{\mu}\right)_{i i}} \mathscr{M}^{-1} \chi$ instead of the average $\left\langle x^{*} \frac{\partial \mathcal{M}^{1}}{\left(A_{\mu}\right)_{i}} \mu^{-1} x\right\rangle$

backup: noisy estimator

Conjugate Gradient (CG) method:
Iterative algorithm to solve the linear equation $A x=b$ (A: symmetric, positive-definite $\mathrm{n} \times \mathrm{n}$ matrix)
Initial config. $\mathbf{x}_{0}=0 \quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} \quad \mathbf{p}_{0}=\mathbf{r}_{0}$
(for brevity, no preconditioning on x_{0} here)
$\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \quad \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} \quad \alpha_{k}=\frac{\left(r_{k}, r_{k}\right)}{\left(p_{k}, A p_{k}\right)}$
$\mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{k}, \mathbf{r}_{k}\right)} \mathbf{p}_{k}$
Iterate this until $\sqrt{\frac{\left(\mathbf{r}_{k+1}, \mathbf{r}_{k+1}\right)}{\left(\mathbf{r}_{0}, \mathbf{r}_{0}\right)}}<$ (tolerance) $\simeq 10^{-4}$
The approximate answer of $A x=b$ is $x=x_{k+1}$.

backup: noisy estimator

Required CG iteration time ($D=6$)

ε

m f
When we can trust CLM, there is small dependence of CG iter. on N .

In total, the CPU cost for $\operatorname{Tr}\left(\frac{\partial \mathscr{M}}{\partial\left(A_{\mu}\right)_{j i}} \mathscr{M}^{-1}\right)$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$.

