Spontaneous breakdown of Lorentz symmetry in a simplified IKKT matrix model

Konstantinos N. Anagnostopoulos, Takehiro Azuma and Jun Nishimura

1. Introduction

Matrix models as a constructive definition of superstring theory
iKKT model (IIB matrix model)
\Rightarrow Promising candidate for constructive definition of superstring theory. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115.
$S=N\left(-\frac{1}{4} \operatorname{tr}\left[A_{\mu}, A_{\nu}\right]^{2}+\frac{1}{2} \operatorname{tr} \bar{\psi} \Gamma^{\mu}\left[A_{\mu}, \psi\right]\right)$.

- Dimensional reduction of $\boldsymbol{\mathcal { N }}=1$ 10d Super-Yang-Mills (SYM) theory to 0d.
$\boldsymbol{A}_{\boldsymbol{\mu}}$ (10d vector) and $\boldsymbol{\psi}$ (10d Majorana-Weyl spinor)
$\Rightarrow N \times N$ matrices .
- Evidences for spontaneous breakdown of $\mathrm{SO}(10) \rightarrow \mathrm{SO}(4)$.
J. Nishimura and F. Sugino, hep-th/0111102,
H. Kawai, et. al. hep-th $/ 0204240,0211272,0602044,0603146$.
- Complex determinant (from integrating out fermions) :
* Crucial for breakdown of rotational symmetry.
J. Nishimura and G. Vernizzi, hep-th/0003223.
* Difficulty of Monte Carlo simulation.

2. Simplified IKKT matrix model

Simplified model with spontaneous rotational symmetry breakdown, J. Nishimura, hep-th/00108070.

$$
S=\underbrace{\frac{N}{2} \operatorname{tr} A_{\mu}^{2}}_{=S_{b}} \underbrace{-\bar{\psi}_{\alpha}^{f}\left(\Gamma_{\mu}\right)_{\alpha \beta} A_{\mu} \psi_{\beta}^{f}}_{=S_{f}}
$$

- $\boldsymbol{A}_{\mu}: \boldsymbol{N} \times \boldsymbol{N}$ hermitian matrices $(\boldsymbol{\mu}=\mathbf{1}, \cdots, 4)$
$\bar{\psi}_{\alpha}^{f}, \psi_{\alpha}^{f}: N$-dim vector $\left(\boldsymbol{\alpha}=\mathbf{1}, \mathbf{2}, \boldsymbol{f}=\mathbf{1}, \cdots, \boldsymbol{N}_{f}\right)$,
$\boldsymbol{N}_{\boldsymbol{f}}=$ (number of flavors).

$$
\begin{aligned}
& \Gamma_{1}=i \sigma_{1}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad \Gamma_{2}=i \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \Gamma_{3}=i \sigma_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \Gamma_{4}=\sigma_{4}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

- $\mathrm{SU}(N)$ symmetry and $\mathrm{SO}(4)$ rotational symmetry.
- Partition function:

$$
\begin{aligned}
& Z=\int d A e^{-S_{B}}(\operatorname{det} \mathcal{D})^{N_{f}}=\int d A e^{-S_{0}} e^{i \Gamma}, \text { where } \\
& \mathcal{D}=\Gamma_{\mu} A_{\mu}=(2 N \times 2 N \text { matrices }) \\
& e^{-S_{0}}=e^{-S_{B}}|\operatorname{det} \mathcal{D}|^{N_{f}}
\end{aligned}
$$

Analytical studies of the model

Solvable at $\boldsymbol{N} \rightarrow \infty$ using random matrix theory (RMT) technique.

$$
\left\langle\frac{1}{N} \operatorname{tr} A_{\mu}^{2}\right\rangle= \begin{cases}1+r+o(r), & (\mu=1,2,3) \\ 1-r+o(r), & (\mu=4),\end{cases}
$$

for small $r=N_{f} / N$.
Spontaneous breakdown of $\mathrm{SO}(4)$ symmetry to $\mathrm{SO}(3)$.
For the phase-quenched partition function $Z_{0}=\int d A e^{-S_{0}}$,

$$
\left\langle\frac{1}{N} \operatorname{tr} A_{\mu}^{2}\right\rangle=1+r / 2 \text { for } \mu=1,2,3,4
$$

Phase \Rightarrow crucial in rotational symmetry breakdown.
Gaussian expansion analysis up to 9 th order:
T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194

Spontaneous breakdown of $\mathrm{SO}(4)$ to $\mathrm{SO}(2)$ at finite r.

3. Monte Carlo studies of the model

Hybrid Monte Carlo (HMC) simulation of the phase-quenched model
HMC simulation of partition function Z_{0} (with the phase omitted).
Observable for probing dimensionality : $T_{\mu \nu}=\frac{1}{N} \operatorname{tr}\left(A_{\mu} A_{\nu}\right)$.
$\lambda_{i}(i=1,2,3,4):$ eigenvalues of $\boldsymbol{T}_{\boldsymbol{\mu} \boldsymbol{L}}\left(\boldsymbol{\lambda}_{\mathbf{1}} \geq \boldsymbol{\lambda}_{\mathbf{2}} \geq \boldsymbol{\lambda}_{\mathbf{3}} \geq \boldsymbol{\lambda}_{\mathbf{4}}\right)$

Results for $r=\frac{1}{8}$ (left) and $r=1$ (right).

$$
\lambda_{1}, \cdots, \lambda_{4} \rightarrow 1+\frac{r}{2}(\text { as } N \rightarrow \infty)
$$

Factorization method

Numerical approach to the complex action problem.
K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041,
J.Ambjorn, K.N.Anagnostopoulos, J.Nishimura and J.J.M.Verbaarschot, hep-lat/0208025.

Overlap problem: Discrepancy of a distribution function between the phase-quenched model Z_{0} and the full model \boldsymbol{Z}.

Force the simulation to sample the important region for the full model.
Standard reweighting method:

$$
\left\langle\lambda_{i}\right\rangle=\frac{\left\langle\lambda_{i} \cos \Gamma\right\rangle_{0}}{\langle\cos \Gamma\rangle_{0}}
$$

where $\langle *\rangle_{0}=\left(\mathrm{V} . \mathrm{E} . \mathrm{V}\right.$. for the phase-quenched model $\left.\boldsymbol{Z}_{0}\right)$.
$(\sharp$ of configurations required $) \simeq e^{\mathbf{O}\left(N^{2}\right)} . \Rightarrow$ complex-action problem.
$\tilde{\boldsymbol{\lambda}}_{i} \stackrel{\text { def }}{=} \boldsymbol{\lambda}_{i} /\left\langle\boldsymbol{\lambda}_{i}\right\rangle_{0}$: deviation from $1 \Rightarrow$ effect of the phase.
Distribution function

$$
\rho_{i}(x) \stackrel{\text { def }}{=}\left\langle\delta\left(x-\tilde{\lambda}_{i}\right)\right\rangle=\frac{1}{C} \rho_{i}^{(0)}(x) w_{i}(x),
$$

where

$$
\begin{aligned}
& C=\langle\cos \Gamma\rangle_{0}, \quad \rho_{i}^{(0)}(x)=\left\langle\delta\left(x-\tilde{\lambda}_{i}\right)\right\rangle_{0}, \quad w_{i}(x)=\langle\cos \Gamma\rangle_{i, x}, \\
& \langle *\rangle_{i, x}=\left[\text { V.E.V. for the partition function } z_{i, x}=\int d A e^{-S_{0} \delta\left(x-\tilde{\lambda}_{i}\right)}\right] .
\end{aligned}
$$

Resolution of the overlap problem:
\Rightarrow Visit the configurations where $\rho_{i}(x)$ is important.

Monte Carlo evaluation of $\rho_{i}^{(0)}(x)$ and $w_{i}(x)$
Approximation of the partition function $\boldsymbol{Z}_{\boldsymbol{i}, \boldsymbol{x}}$:

$$
\begin{aligned}
& Z_{i, V}=\int d A e^{-S_{0}} \underbrace{e^{-V\left(\lambda_{i}\right)}}_{\simeq \delta\left(x-\tilde{\lambda}_{i}\right)}, \text { where } \\
& V(x)=\frac{\gamma}{2}(x-\xi)^{2}, \quad \gamma, \xi=(\text { parameters })
\end{aligned}
$$

Monte Carlo evaluation of $\rho_{i}^{(0)}(x)$ and $w_{i}(x)$:

$$
\rho_{i, V}(x) \stackrel{\text { def }}{=}\left\langle\delta\left(x-\tilde{\lambda}_{i}\right)\right\rangle_{i, V} \propto \rho_{i}^{(0)}(x) \exp \left(-V\left(\left\langle\lambda_{i}\right\rangle_{0} x\right)\right)
$$

The position x_{p} of the peak for $\boldsymbol{\rho}_{\boldsymbol{i}, \boldsymbol{V}}(\boldsymbol{x})$:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial x} \log \rho_{i, V}(x)=f_{i}^{(0)}(x)-\left\langle\lambda_{i}\right\rangle_{0} V^{\prime}\left(\left\langle\lambda_{i}\right\rangle_{0} x\right) \\
& f_{i}^{(0)}(x) \stackrel{\text { def }}{=} \frac{\partial}{\partial x} \log \rho_{i}^{(0)}(x)
\end{aligned}
$$

- Determination of x_{p} : Approximated as $x_{p} \simeq\left\langle\tilde{\lambda}_{i}\right\rangle_{i, V}$.
- Determination of $\rho_{i}^{(0)}(x)$:

1. Vary ξ.
2. Calculate $\boldsymbol{f}_{i}^{(0)}\left(x_{p}\right)$ for different $\boldsymbol{x}_{\boldsymbol{p}}$ (and $\left.\boldsymbol{\xi}\right)$.
3. Evaluate $\rho_{i}^{(0)}(x)=\exp \left[\int_{0}^{x} d z f_{i}^{(0)}(z)+\right.$ const.].

Why such a roundabout way?
\Rightarrow To capture the skirt of $\rho_{i}^{(0)}(x)$.
Monte Carlo evaluation of $\left\langle\tilde{\boldsymbol{\lambda}}_{i}\right\rangle$
$\tilde{\lambda}_{i}=\lambda_{i} /\left\langle\lambda_{i}\right\rangle_{0}:$ deviation from phase-quenched model.
Direct evaluation:

$$
\left\langle\tilde{\lambda}_{i}\right\rangle=\int_{0}^{\infty} d x x \rho_{i}(x)=\frac{\int_{0}^{\infty} d x x \rho_{i}^{(0)}(x) w_{i}(x)}{\int_{0}^{\infty} d x \rho_{i}^{(0)}(x) w_{i}(x)}
$$

Difficult because $w_{i}(x) \simeq 0$ at large N.
$\boldsymbol{w}_{\boldsymbol{i}}(\boldsymbol{x})>\mathbf{0} \Rightarrow\left\langle\tilde{\boldsymbol{\lambda}}_{\boldsymbol{i}}\right\rangle$ is the minimum of $\mathcal{F}_{\boldsymbol{i}}(\boldsymbol{x}):$

$$
\mathcal{F}_{i}(x)=(\text { free energy density })=-\frac{1}{N^{2}} \log \rho_{i}(x)
$$

We solve $\mathcal{F}_{i}^{\prime}(x)=0$, namely

$$
\frac{1}{N^{2}} f_{i}^{(0)}(x)=-\frac{d}{d x}\left(\frac{1}{N^{2}} \log w_{i}(x)\right)
$$

Analysis for $r=\boldsymbol{N}_{f} / \boldsymbol{N}=1$.

$\underline{i=2,3 \text { cases }}$

Both $\frac{1}{N^{2}} f_{i}^{(0)}(x)$ and $\frac{1}{N^{2}} \log w_{i}(x)$ scales at large N.

$$
\frac{1}{N^{2}} f_{i}^{(0)}(x) \rightarrow F_{i}(x), \quad \frac{1}{N^{2}} \log w_{i}(x) \rightarrow \Phi_{i}(x)
$$

Extrapolation of $\boldsymbol{F}_{\boldsymbol{i}}(\boldsymbol{x})$ and $\boldsymbol{\Phi}_{\boldsymbol{i}}(\boldsymbol{x})$:
$F_{i}(x) \simeq a_{i, 0}+\left(a_{i, 1} x+\frac{b_{i, 1}}{x}\right)+\cdots+\left(a_{i, 4} x^{4}+\frac{b_{i, 4}}{x^{4}}\right)$,
$\Phi_{i}(x) \simeq \begin{cases}\phi_{i, s}(x)=c_{i, 0}+c_{i, 1} x+\cdots+c_{i, 4} x^{4}, & \left(x<x_{s}\right), \\ \phi_{i, l}(x)=d_{i, 0}+d_{i, 1} x+\cdots+d_{i, 8} x^{8}, & \left(x>x_{l}\right), \\ \frac{\phi_{i, s}(x) e^{-\mathcal{C}(x-\alpha)}+\phi_{i, l}(x) e^{\mathcal{C}(x-\alpha)}}{e^{-\mathcal{C}(x-\alpha)}+e^{\mathcal{C}(x-\alpha)}}, & \\ \left(x_{s}<x<x_{l}\right) .\end{cases}$
At $x=\alpha, \phi_{i, s}(x)=\phi_{i, l}(x)$.

Three solutions of $\mathcal{F}_{i}^{\prime}(x)=0\left(\boldsymbol{x}_{\boldsymbol{s}}<\boldsymbol{x}_{\boldsymbol{b}}<\boldsymbol{x}_{\boldsymbol{l}}\right)$.
Double-peak structure of $\boldsymbol{\rho}_{\boldsymbol{i}}(\boldsymbol{x})$.
Which peak is higher?

- $\frac{1}{N^{2}}\left(\log \rho_{i}\left(x_{l}\right)-\log \rho_{i}\left(x_{b}\right)\right)$
$=\int_{x_{b}}^{x_{l}} d x\left(F_{i}(x)+\Phi_{i}^{\prime}(x)\right)=$ (A's area).
- $\frac{1}{N^{2}}\left(\log \rho_{i}\left(x_{s}\right)-\log \rho_{i}\left(x_{b}\right)\right)$
$=-\int_{x_{s}}^{x_{b}} d x\left(F_{i}(x)+\Phi_{i}^{\prime}(x)\right)=$ (B's area).
Difference of the height:

$$
\begin{aligned}
\Delta_{i} & =\frac{1}{N^{2}}\left(\log \rho_{i}\left(x_{l}\right)-\log \rho_{i}\left(x_{s}\right)\right) \\
& =\left(\Phi_{i}\left(x_{l}\right)-\Phi_{i}\left(x_{s}\right)\right)+\int_{x_{s}}^{x_{l}} d x F_{i}(x) \\
& =(\text { A's area }) \text {-(B's area) } \\
& \simeq\left\{\begin{array}{cc}
+0.12 \cdots>0, & (i=2) \\
-1.93 \cdots<0, & (i=3)
\end{array}\right.
\end{aligned}
$$

For this extrapolation, $\rho_{i}(x)$ is dominant at

$$
x= \begin{cases}x_{l} \simeq 1.38, & (i=2) \\ x_{s} \simeq 0.70, & (i=3)\end{cases}
$$

Result of the 9th order Gaussian expansion: т. Okubo, J. Nishimura and F. Sugino, hep-th/0412194.

$$
\tilde{\lambda}_{i=1} \simeq 1.4, \tilde{\lambda}_{i=2} \simeq 1.4, \tilde{\lambda}_{i=3} \simeq 0.7, \tilde{\lambda}_{i=4} \simeq 0.5
$$

Scenario for Lorentz symmetry breakdown $\mathrm{SO}(4) \rightarrow \mathrm{SO}(2)$.

Ambiguity of the extrapolation of $\boldsymbol{\Phi}_{\boldsymbol{i}}(\boldsymbol{x})$:

- Position of the peaks $\boldsymbol{x}_{\boldsymbol{s}, l}$.
- Value (even the sign) of $\boldsymbol{\Delta}_{\boldsymbol{i}}$ (which peak is higher?).

More solid analysis in the future:
\Rightarrow Analysis of the region at which $\boldsymbol{w}_{\boldsymbol{i}}(\boldsymbol{x}) \simeq \mathbf{0}$.

