Spontaneous breakdown of Lorentz symmetry in a simplified IKKT matrix model

Konstantinos N. Anagnostopoulos, Takehiro Azuma and Jun Nishimura

1. Introduction

Matrix models as a constructive definition of superstring theory iKKT model (IIB matrix model)

⇒ Promising candidate for constructive definition of superstring theory. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115.

$$S=N\left(-rac{1}{4} ext{tr}\left[A_{\mu},A_{
u}
ight]^{2}+rac{1}{2} ext{tr}\,ar{\psi}\Gamma^{\mu}[A_{\mu},\psi]
ight).$$

- Dimensional reduction of $\mathcal{N} = 1$ 10d Super-Yang-Mills (SYM) theory to 0d. A_{μ} (10d vector) and ψ (10d Majorana-Weyl spinor) $\Rightarrow N \times N$ matrices.
- Evidences for spontaneous breakdown of SO(10) → SO(4).
 J. Nishimura and F. Sugino, hep-th/0111102,
 H. Kawai, et. al. hep-th/0204240,0211272,0602044,0603146.
- Complex determinant (from integrating out fermions) :
 - * Crucial for breakdown of rotational symmetry. J. Nishimura and G. Vernizzi, hep-th/0003223.
 - * Difficulty of Monte Carlo simulation.

2. Simplified IKKT matrix model

Simplified model with spontaneous rotational symmetry breakdown, N. Nishimura, hep-th/0108070.

$$S = \underbrace{\frac{N}{2} \operatorname{tr} A_{\mu}^{2}}_{=S_{b}} \underbrace{-\bar{\psi}_{\alpha}^{f}(\Gamma_{\mu})_{\alpha\beta}A_{\mu}\psi_{\beta}^{f}}_{=S_{f}}$$

• A_{μ} : $N \times N$ hermitian matrices ($\mu = 1, \dots, 4$) $\overline{\psi}^{f}_{\alpha}, \psi^{f}_{\alpha}$: *N*-dim vector ($\alpha = 1, 2, f = 1, \dots, N_{f}$), $N_{f} =$ (number of flavors).

- SU(N) symmetry and SO(4) rotational symmetry.
- Partition function:

$$egin{aligned} Z &= \int dA e^{-S_B} (\det \mathcal{D})^{N_f} = \int dA e^{-S_0} e^{i\Gamma}, ext{ where} \ \mathcal{D} &= \Gamma_\mu A_\mu = (2N imes 2N ext{ matrices}), \ e^{-S_0} &= e^{-S_B} |\det \mathcal{D}|^{N_f}. \end{aligned}$$

Analytical studies of the model

Solvable at $N \rightarrow \infty$ using random matrix theory (RMT) technique.

$$\langle rac{1}{N} {
m tr} \, A_{\mu}^2
angle = \left\{ egin{array}{cc} 1+r+{
m o}(r), & (\mu=1,2,3) \ 1-r+{
m o}(r), & (\mu=4), \end{array}
ight.$$

for small $r = N_f/N$.

Spontaneous breakdown of SO(4) symmetry to SO(3).

For the phase-quenched partition function $Z_0 = \int dAe^{-S_0}$,

 $\left< \frac{1}{N} \operatorname{tr} A_{\mu}^{2} \right> = 1 + r/2 \text{ for } \mu = 1, 2, 3, 4.$

Phase \Rightarrow crucial in rotational symmetry breakdown.

Gaussian expansion analysis up to 9th order: T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194. Spontaneous breakdown of SO(4) to SO(2) at finite r.

3. Monte Carlo studies of the model

(Hybrid Monte Carlo (HMC) simulation of the phase-quenched model)

HMC simulation of partition function Z_0 (with the phase omitted).

Observable for probing dimensionality : $T_{\mu\nu} = \frac{1}{N} \operatorname{tr} (A_{\mu}A_{\nu}).$

 $\lambda_i \ (i=1,2,3,4)$: eigenvalues of $T_{\mu
u} \ (\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4)$

Results for $r = \frac{1}{8}$ (left) and r = 1 (right).

$$\lambda_1, \cdots, \lambda_4 \to 1 + \frac{r}{2} \text{ (as } N \to \infty \text{)}.$$

Factorization method

Numerical approach to the complex action problem.

K. N. Anagnostopoulos and J. Nishimura, hep-th/0108041,

J.Ambjorn, K.N.Anagnostopoulos, J.Nishimura and J.J.M.Verbaarschot, hep-lat/0208025. Overlap problem: Discrepancy of a distribution function between the phase-quenched model Z_0 and the full model Z.

Force the simulation to sample the important region for the full model.

Standard reweighting method:

$$\langle \lambda_i
angle = rac{\langle \lambda_i \cos \Gamma
angle_0}{\langle \cos \Gamma
angle_0},$$

where $\langle *
angle_0 = ($ V.E.V. for the phase-quenched model Z_0)

(\sharp of configurations required) $\simeq e^{O(N^2)}$. \Rightarrow complex-action problem. $\tilde{\lambda}_i \stackrel{\text{def}}{=} \lambda_i / \langle \lambda_i \rangle_0$: deviation from $1 \Rightarrow$ effect of the phase.

Distribution function

$$ho_i(x) \stackrel{ ext{def}}{=} \langle \delta(x- ilde{\lambda}_i)
angle = rac{1}{C}
ho_i^{(0)}(x) w_i(x),$$

where

$$\begin{split} C &= \langle \cos \Gamma \rangle_0, \quad \rho_i^{(0)}(x) = \langle \delta(x - \tilde{\lambda}_i) \rangle_0, \quad w_i(x) = \langle \cos \Gamma \rangle_{i,x}, \\ \langle * \rangle_{i,x} &= [\text{V.E.V. for the partition function } Z_{i,x} = \int dA e^{-S_0} \delta(x - \tilde{\lambda}_i)]. \end{split}$$

Resolution of the overlap problem:

 \Rightarrow Visit the configurations where $\rho_i(x)$ is important.

Monte Carlo evaluation of $\rho_i^{(0)}(x)$ and $w_i(x)$

Approximation of the partition function $Z_{i,x}$:

Monte Carlo evaluation of $\rho_i^{(0)}(x)$ and $w_i(x)$:

$$ho_{i,V}(x) \stackrel{ ext{def}}{=} \langle \delta(x- ilde{\lambda}_i)
angle_{i,V} \propto
ho_i^{(0)}(x) \exp(-V(\langle \lambda_i
angle_0 x)).$$

The position x_p of the peak for $\rho_{i,V}(x)$:

$$egin{aligned} 0 &= rac{\partial}{\partial x}\log
ho_{i,V}(x) = f_i^{(0)}(x) - \langle\lambda_i
angle_0 V'(\langle\lambda_i
angle_0 x),\ f_i^{(0)}(x) &\stackrel{ ext{def}}{=} rac{\partial}{\partial x}\log
ho_i^{(0)}(x). \end{aligned}$$

- Determination of x_p : Approximated as $x_p \simeq \langle \tilde{\lambda}_i \rangle_{i,V}$.
- Determination of $\rho_i^{(0)}(x)$:
 - 1. Vary **ξ**.
 - 2. Calculate $f_i^{(0)}(x_p)$ for different x_p (and ξ).
 - 3. Evaluate $ho_i^{(0)}(x) = \exp[\int_0^x dz f_i^{(0)}(z) + \text{const.}].$
- Why such a roundabout way? \Rightarrow To capture the skirt of $\rho_i^{(0)}(x)$.

Monte Carlo evaluation of $\langle \tilde{\lambda}_i \rangle$

 $\tilde{\lambda}_i = \lambda_i/\langle \lambda_i
angle_0$: deviation from phase-quenched model.

Direct evaluation:

$$\langle ilde{\lambda}_i
angle = \int_0^\infty dx x
ho_i(x) = rac{\int_0^\infty dx x
ho_i^{(0)}(x) w_i(x)}{\int_0^\infty dx
ho_i^{(0)}(x) w_i(x)}$$

Difficult because $w_i(x) \simeq 0$ at large N.

$$egin{aligned} w_i(x) > 0 &\Rightarrow \langle ar{\lambda}_i
angle ext{ is the minimum of } \mathcal{F}_i(x) \colon & & \mathcal{F}_i(x) = (ext{free energy density}) = -rac{1}{N^2}\log
ho_i(x). \end{aligned}$$

We solve $\mathcal{F}'_i(x) = 0$, namely

$$\frac{1}{N^2}f_i^{(0)}(x) = -\frac{d}{dx}(\frac{1}{N^2}\log w_i(x)).$$

Analysis for $r = N_f/N = 1$.

i = 2, 3 cases

Both $\frac{1}{N^2} f_i^{(0)}(x)$ and $\frac{1}{N^2} \log w_i(x)$ scales at large N.

$$rac{1}{N^2} f_i^{(0)}(x) o F_i(x), \;\; rac{1}{N^2} \log w_i(x) o \Phi_i(x)$$

Extrapolation of $F_i(x)$ and $\Phi_i(x)$:

$$\begin{array}{lll} F_i(x) &\simeq & a_{i,0} + (a_{i,1}x + \frac{b_{i,1}}{x}) + \dots + (a_{i,4}x^4 + \frac{b_{i,4}}{x^4}), \\ \\ \Phi_i(x) &\simeq & \left\{ \begin{array}{ll} \phi_{i,s}(x) = c_{i,0} + c_{i,1}x + \dots + c_{i,4}x^4, & (x < x_s), \\ \phi_{i,l}(x) = d_{i,0} + d_{i,1}x + \dots + d_{i,8}x^8, & (x > x_l), \\ \frac{\phi_{i,s}(x)e^{-C(x-\alpha)} + \phi_{i,l}(x)e^{C(x-\alpha)}}{e^{-C(x-\alpha)} + e^{C(x-\alpha)}}, \\ (x_s < x < x_l). \end{array} \right. \end{array}$$

At
$$x = \alpha$$
, $\phi_{i,s}(x) = \phi_{i,l}(x)$.

Three solutions of $\mathcal{F}'_i(x) = 0$ $(x_s < x_b < x_l)$.

Double-peak structure of $\rho_i(x)$.

Which peak is higher?

•
$$\frac{1}{N^2} (\log \rho_i(x_l) - \log \rho_i(x_b))$$

= $\int_{x_b}^{x_l} dx (F_i(x) + \Phi'_i(x)) = (A's \text{ area}).$
• $\frac{1}{N^2} (\log \rho_i(x_s) - \log \rho_i(x_b))$
= $-\int_{x_s}^{x_b} dx (F_i(x) + \Phi'_i(x)) = (B's \text{ area})$

Difference of the height:

$$egin{array}{rcl} \Delta_i &=& rac{1}{N^2}(\log
ho_i(x_l) - \log
ho_i(x_s)) \ &=& (\Phi_i(x_l) - \Phi_i(x_s)) + \int_{x_s}^{x_l} dx F_i(x) \ &=& (\mathrm{A's\ area}) ext{-(B's\ area)} \ &\simeq& egin{cases} +0.12\cdots>0, & (i=2), \ -1.93\cdots<0, & (i=3). \end{array}$$

For this extrapolation, $\rho_i(x)$ is dominant at

$$x=\left\{egin{array}{cc} x_l\simeq 1.38, & (i=2)\ x_s\simeq 0.70, & (i=3) \end{array}
ight.$$

Result of the 9th order Gaussian expansion: T. Okubo, J. Nishimura and F. Sugino, hep-th/0412194.

$$\hat{\lambda}_{i=1} \simeq 1.4, \ \hat{\lambda}_{i=2} \simeq 1.4, \ \hat{\lambda}_{i=3} \simeq 0.7, \ \hat{\lambda}_{i=4} \simeq 0.5.$$

Scenario for Lorentz symmetry breakdown $SO(4) \rightarrow SO(2)$.

Ambiguity of the extrapolation of $\Phi_i(x)$:

- Position of the peaks $x_{s,l}$.
- Value (even the sign) of Δ_i (which peak is higher?).

More solid analysis in the future:

 \Rightarrow Analysis of the region at which $w_i(x) \simeq 0$.