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1. Introduction

Lattice Monte-Carlo vs. Holography in 4dim Yang-Mills
Both methods have several merits and demerits.
→ We need to know their validity.

An analytic approach through a 1/D expansion is available in lower
dimensional gauge theories.
→ It is valuable to compare these three methods in the lower dimen-
sional gauge theories to understand the above problem.

Today we test these three methods in the following SU(N) matrix
quantum mechanics (MQM):
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�� ��Features and Demerits in the three approaches

Monte-Carlo O. Aharony et. al. hep-th/0406210,0508077 , N. Kawahara, J. Nishimura

and S. Takeuchi arXiv:0706.3517, 0710.2188

• Feature : Non-perturbative. Any finite N , D OK.

• Demerit: N → ∞ limit is difficult. Numerical errors.
Cut off (lattice space) dependence.

Holography (N D1 branes on a Scherk-Schwarz circle)
O. Aharony et. al. hep-th/0406210,0508077

• Feature: Non-perturbative, N → ∞, D = 9

• Demerit: Gravity describes a strong coupling 2dim SYM. We need
to extraporate the information of the MQM from the SYM.
Cut off (KK scale) dependence.

1/D expansion G.Mandal, M.Mahato and T.Morita. arXiv:0910.4526

• Feature: Non-perturbative, N ≫ 1, D ≫ 1

• Demerit: The 1/D expansion is valid in D ≫ N ≫ 1 case.
The validity in N ≫ D > 1 case is subtle.

→ We will see that the Monte-Carlo and 1/D expansion are consistent
even in smallD. We also find some agreements including finiteN effects.
However, several results from the holography disagree.�� ��Large N phase transition in the MQM

Phase transitions happen in the MQM in the large N limit.

• Analogues of the confinement/deconfinement transition.

• Correspond to a black string/black hole transition via holography.

→We investigate how this transition is resolved through finiteN effects,
which correspond to quantum gravity effects in the holography.

2. Effective action via 1/D expansion

By taking a ’t Hooft like limit D → ∞, g → 0 with a fixed coupling
λ̃ = g2DN , we can derive an effective action,

Z =

∫
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Seff/DN2 = −
∆4

8T λ̃
1
3

+
∆

2T
+

+∞∑
n=1

1

n

(
1

D
− exp

(
−

n∆

T

))
|un|2

where ∆ is an auxiliary field and un are Wilson loops defined by:
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Especially if temperature is low and un are small, we can integrate out
∆ and obtain a Landau-Ginzburg type effective action:

SLG/DN2 =
3λ̃

1
3

8T
+ b1|u1|4 +

+∞∑
n=1

an|un|2,

an =
1

n

(
1

D
− exp

(
−

nλ̃
1
3

T

))
, b1 =

λ̃
1
3

3T
exp

(
−

2λ̃
1
3

T

)
,

We will investigate the phase structure of this model in the next section.

3. Phase structure of the MQM from 1/D expansion

In large N , three phases and two critical temperatures Tc1, Tc2 appear.
un are the order parameters of these phase transitions.

• Confinement phase (T < Tc1): un = 0 for all n.

• Deconfinement phase (non-uniform) (Tc1 < T < Tc2):

u1 =
√

−a1/2b1 ≤ 1/2, un = 0 for n ≥ 2.

• Deconfinement phase (gapped) (Tc2 < T ):
u1 ≥ 1/2, un ̸= 0 for n ≥ 2.

• The transition at Tc1 is second order and the transition at Tc2 is
Gross-Witten-Wadia type third order.
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(Here we have evaluated O(1/D) corrections in the effective action.)�� ��Resolution of the transitions through 1/N effects

We evaluate the leading finite N effects in the path-integral and ob-
serve that all un become non-zero :
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, (T ≲ Tc2, n = 2, 3, 4, · · · )

→ The order parameters are always non-zero. The transitions are re-
solved to crossovers.
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4. 1/D expansion vs. Monte-Carlo

We evaluated the MQM through the Monte Carlo and obtained the
following results:
(Curves in the plots are the results from the 1/D expansion up to Tc2.)�� ��Behavior of un at low temperatures (D = 6)
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The Monte-Carlo agrees with the 1/D expansion even in finite N .�� ��Behavior of u1 around Tc1 (D = 6)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.9  0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99  1

<
|u

1|
>

T

N=24
N=32
N=44
N=60

N=infinity

• Numerical errors are large near Tc1 but we can see some similari-
ties.

• As is predicted from the 1/D expansion, there is no sharp phase
transition at finite N .
We need a special care to extrapolate the critical temperature at
large N from the finite-N Monte Carlo data.�� ��D dependence of the Critical Temperatures

Preliminary Monte Carlo results of critical temperature Tc1,c2 versus
1/D expansion.
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• The nature of the phase transitions do not depend on D.
(Always two phase transitions occur.)

• The critical temperatures are consistent. The differences between
the Monte-Carlo and 1/D expansion are within O(1/D2) order.
(the errorbar of the 1/D expansion’s result is
Tc1,c2(1 ± 1/D2).)

• There is an ambiguity in the Monte Carlo results of Tc1,c2, which
comes from the extrapolation from finite-N Monte Carlo results.

• Tc2 − Tc1 for smaller D does not agree well. But the errors in
the Monte-Carlo are also large and we need to investigate them
further.

�� ��Physical quantities in the confinement phase (T < Tc1)

We evaluate the following two quantities:
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2dt (Internal Energy)

Due to the large N volume independence, the T dependence of these
quantities should be O(1/N2) at T < Tc1.
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Results from the 1/D expansion at T < Tc1:

R2 =
λ̃

1
3

2

(
1 +

0.2405

D

)
+ O(1/N2, 1/D2)

E

DN2
=λ̃

1
3

(
3

8
−

0.1476

D

)
+ O(1/N2, 1/D2)

These quantities also agree very well for various D (T = 0.5, N = 44):
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5. Comments on holography

Witten proposed that we can extrapolate the p-dim non-supersymmetric
gauge theory from N Dp branes wrapped on a Scherk-Schwarz circle.
E. Witten hep-th/9803131

According to his proposal, D1 brane geometries predict the MQM with
D = 9 as follows:

• The confinement/deconfinement transition is first order.
→ Disagree with the 2nd+3rd order transitions in the Monte-Carlo
and 1/D expansion.

• Internal energy in the confinement phase:

E/N2 ∝ −λ−1/2L
−5/2
KK negative (LKK : cut off)

→ Disagree with the positive energy in the Monte-Carlo and 1/D
expansion.

We need a special care for the application of holography to the non-
supersymmetric gauge theories e.g. QCD, CMP.

6. Conclusion

• We calculated the finite N effects in the 1/D expansion and
showed how the 1/N effects resolve the transitions.

• We compared the predictions from the 1/D expansion with Monte-
Carlo simulation. We found several good agreements.
→ 1/D works even D ≥ 2 and finite (but large) N .

• It seems that the 1/D expansion is available without the condition
D ≫ N .

• So far the Monte-Carlo does not work well near the critical points.

• Naive application of the holography for non-supersymmetric gauge
theories is not always correct even qualitatively.

�� ��Further development

• Finite N effect vs. finite string coupling effect in holography.

• Improvement of the numerical calculation near the critical points.

• Numerical calculation of Seff(A,∆)
→ We can evaluate Seff for any temperature. (partially done)

• Effects of matter fields on the confinement/deconfinement phase
transition.
T. Azuma, T. Morita and S. Takeuchi, in progress
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