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‘ 1. Introduction '

Lattice Monte-Carlo vs. Holography in 4dim Yang-Mills
Both methods have several merits and demerits.
— We need to know their validity.

An analytic approach through a 1/D expansion is available in lower
dimensional gauge theories.

— It is valuable to compare these three methods in the lower dimen-
sional gauge theories to understand the above problem.

Today we test these three methods in the following SU (IN) matrix
quantum mechanics (MQM):
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{Features and Demerits in the three approaches }

Monte-Carlo 0. Aharony et. al. hep-th/0406210,0508077 , N. Kawahara, J. Nishimura
and S. Takeuchi arXiv:0706.3517, 0710.2188
Non-perturbative. Any finite N, D OK.

o Demerit: N — oo limit is difficult. Numerical errors.
Cut off (lattice space) dependence.

o Feature :

Holography (N D1 branes on a Scherk-Schwarz circle)
O. Aharony et. al. hep-th/0406210,0508077
e Leature: Non-perturbative, N — oo, D = 9
o Demerit: Gravity describes a strong coupling 2dim SYM. We need
to extraporate the information of the MQM from the SYM.
Cut off (KK scale) dependence.
1/D expansion G.Mandal, M.Mahato and T.Morita. arXiv:0910.4526
e Feature: Non-perturbative, N > 1, D > 1

e Demerit: The 1/D expansion is valid in D > N > 1 case.
The validity in N > D > 1 case is subtle.

— We will see that the Monte-Carlo and 1/D expansion are consistent
even in small D. We also find some agreements including finite IV effects.
However, several results from the holography disagree.

{Large N phase transition in the MQM}
Phase transitions happen in the MQM in the large N limit.

e Analogues of the confinement/deconfinement transition.

e Correspond to a black string/black hole transition via holography.

— We investigate how this transition is resolved through finite IN effects,
which correspond to quantum gravity effects in the holography.

‘ 2. Effective action via 1/D expansion '

By taking a 't Hooft like limit D — oo, g — 0 with a fixed coupling
A = g2DN, we can derive an effective action,
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where A is an auxiliary field and wyn are Wilson loops defined by:
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Especially if temperature is low and wyn, are small, we can integrate out
A and obtain a Landau-Ginzburg type effective action:
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We will investigate the phase structure of this model in the next section.
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3. Phase structure of the MQM from 1/D expansion

In large IN, three phases and two critical temperatures T.1, T2 appear.
un, are the order parameters of these phase transitions.

e Confinement phase (T < Te1): un = 0 for all n.
e Deconfinement phase (non-uniform) (Te1 < T < Te2):
ur = /—a1/2by <1/2, up, =0 forn > 2.

e Deconfinement phase (gapped) (Te2 < T):
u1 > 1/2, uyp # 0 forn > 2.

e The transition at Teq is second order and the transition at Teo is
Gross-Witten-Wadia type third order.
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(Here we have evaluated O(1/D) corrections in the effective action.)

[Resolution of the transitions through 1/N effects

We evaluate the leading finite IN effects in the path-integral and ob-
serve that all u, become non-zero :
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— The order parameters are always non-zero. The transitions are re-
solved to crossovers.
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4. 1/D expansion vs. Monte-Carlo '

We evaluated the MQM through the Monte Carlo and obtained the
following results:
(Curves in the plots are the results from the 1/D expansion up to Te2.)

[Behavior of upn, at low temperatures (D = 6)]
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The Monte-Carlo agrees with the 1/D expansion even in finite IN.

[Behavior of w1 around Te1 (D = 6)]
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e Numerical errors are large near Te1 but we can see some similari-
ties.

e As is predicted from the 1/D expansion, there is no sharp phase
transition at finite INV.
‘We need a special care to extrapolate the critical temperature at
large N from the finite-IN Monte Carlo data.

{D dependence of the Critical Temperatures}

Preliminary Monte Carlo results of critical temperature Te1,c2 versus

1/D expansion.
035
1.6 03
TaMC: | y. / 0.25
~ L 02
pTo 0.15
S o1
0.05
0
-0.05
-0.1

LO\#
,Tff/
0.8 01

e The nature of the phase transitions do not depend on D.
(Always two phase transitions occur.)

1/D

0.2 0.3 0.4 0.5 1/D

e The critical temperatures are consistent. The differences between
the Monte-Carlo and 1/D expansion are within O(1/D?2) order.
(the errorbar of the 1/D expansion’s result is
Tcl,c2(1 :l: 1/D2))

e There is an ambiguity in the Monte Carlo results of Te1,c2, which
comes from the extrapolation from finite-IN Monte Carlo results.

o Teo2 — Te1 for smaller D does not agree well. But the errors in
the Monte-Carlo are also large and we need to investigate them
further.

[Physical quantities in the confinement phase (T < Tcl)j

We evaluate the following two quantities:
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Due to the large IN volume independence, the T dependence of these
quantities should be O(1/N?2) at T < Te1.
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Results from the 1/D expansion at T' < Tex:
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These quantities also agree very well for various D (T = 0.5, N = 44):
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5. Comments on holography '

Witten proposed that we can extrapolate the p-dim non-supersymmetric
gauge theory from N Dp branes wrapped on a Scherk-Schwarz circle.
E. Witten hep-th/9803131
According to his proposal, D1 brane geometries predict the MQM with
D = 9 as follows:
e The confinement/deconfinement transition is first order.
— Disagree with the 2nd+3rd order transitions in the Monte-Carlo
and 1/D expansion.

e Internal energy in the confinement phase:
E/N? « —)\_I/ZLR%Z negative (L k : cut off)
— Disagree with the positive energy in the Monte-Carlo and 1/D
expansion.

We need a special care for the application of holography to the non-
supersymmetric gauge theories e.g. QCD, CMP.

‘ 6. Conclusion '

e We calculated the finite IN effects in the 1/D expansion and
showed how the 1/IN effects resolve the transitions.

e We compared the predictions from the 1/D expansion with Monte-
Carlo simulation. We found several good agreements.
— 1/D works even D > 2 and finite (but large) V.

e It seems that the 1 /D expansion is available without the condition
D> N.

e So far the Monte-Carlo does not work well near the critical points.

e Naive application of the holography for non-supersymmetric gauge
theories is not always correct even qualitatively.

{ Further development J

e Finite IN effect vs. finite string coupling effect in holography.
e Improvement of the numerical calculation near the critical points.

e Numerical calculation of Seg(A, A)
— We can evaluate Seg for any temperature. (partially done)

o Effects of matter fields on the confinement/deconfinement phase
transition.

T. Azuma, T. Morita and S. Takeuchi, in progress



