Finite temperature effective action, AdS_{5} black holes, and $1 / N$ expansion

$$
\begin{gathered}
\text { (hep-th/0502227) } \\
\text { Luis Alvarez-Gaume, Cesar Gomez, Hong Liu and Spenta Wadia }
\end{gathered}
$$

Journal Club at KEK, presented by Takehiro Azuma, ${ }^{1}$ May. 15th 2006, 12:15 ~13:15

Contents

1 Introduction 2
2 Hawking-Page transition in Euclidean Quantum Gravity 3
3 Effective action at finite temperature 6
4 Large- N phase structure of the universality class 7
5 Small Black Hole and Tunneling 13
6 Conclusion 16

[^0]
1 Introduction

AdS/CFT correspondence: J. M. Maldacena, hep-th/9711200 duality between type IIB superstring on $\operatorname{AdS}_{5} \times S^{5}$ and $\mathcal{N}=44$-dim SYM.

Blackhole

We study the non-perturbative aspects of black hole physics in AdS_{5} using the dual gauge theory at finite temperature.

2 Hawking-Page transition in Euclidean Quantum Gravity

Thermodynamic aspects of quantum gravity in AdS spacetime.
S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983).

AdS spacetime allows two Schwarzschild blackhole solutions.

- Small black hole (SBH): Horizon radius smaller than AdS.

Negative specific heat. Unstable.

- Big black hole (BBH): horizon radius comparable to AdS. Positive specific heat.

First-order phase transition between the AdS space and the BBH.

Hawking-Page transition corresponds to a large- N deconfinement transition in the gauge theory at strong coupling. E. Witten, hep-th/9803131.

Metric of the Euclidean AdS_{5} and Schwarzschild space:

$$
\begin{aligned}
& d s^{2}=V d t^{2}+V^{-1} d r^{2}+r^{2} d^{2} \Omega, \text { where } \\
& V= \begin{cases}1+\frac{r^{2}}{R^{2}}, & (\text { AdS metric }), \\
1+\frac{r^{2}}{R^{2}}-\frac{w_{4} M}{r^{2}}, & (\text { Schwarzschild }(\mathrm{BBH})) .\end{cases}
\end{aligned}
$$

- $R=$ (curvature radius of the AdS_{5} space).
- $M=$ (mass of the blackhole)
- $w_{4}=\frac{16 \pi G_{N}}{3 \operatorname{vol}\left(\mathrm{~S}^{3}\right)}, G_{N}=(3 \mathrm{~d}$ Newton constant $), \operatorname{vol}\left(\mathrm{S}^{3}\right)=\left(\right.$ volume of unit S^{3} sphere $)$.

For the Schwarzschild solution, the radius must be $r>r_{+}$, where $\boldsymbol{r}_{+}=\left[\right.$largest solution of $\left.1+\frac{r^{2}}{R^{2}}-\frac{w_{4} M}{r^{2}}=0\right]$.

The Schwarzschild metric is smooth only if

$$
\beta=(\text { period of } t)=\frac{2 \pi R^{2} r_{+}}{2 r_{+}^{2}+R^{2}}
$$

Maximum of the period : $\beta_{\max }=\frac{\pi R}{\sqrt{2}}$ at $r_{+}=\frac{R}{\sqrt{2}}$.
Schwarzschild blackhole exists only for $T>T_{0}=\frac{1}{\beta_{\max }}=\frac{\sqrt{2}}{\pi R}$.

Bulk Euclidean action:

$$
I=-\frac{1}{16 \pi G_{N}} \int d^{5} x \sqrt{g}\left(\mathcal{R}+\frac{6}{R^{2}}\right) .
$$

Substituting the classical solution $\mathcal{R}=-\frac{8}{R^{2}}$, we obtain $I=\frac{1}{2 \pi G_{N}} \int d^{5} x \sqrt{g}$.

$$
\begin{aligned}
I_{\text {dif }} & =\left[\text { difference for }(\text { Schwarzschild }(\mathrm{BBH}))-\left(\mathrm{AdS}_{5} \text { metric }\right)\right] \\
& =\frac{1}{2 \pi G_{N}}\left(V_{2}-V_{1}\right)=\frac{\operatorname{vol}\left(\mathrm{S}^{3}\right)}{8 G_{N}} \frac{R^{2} r_{+}^{3}-r_{+}^{5}}{2 r_{+}^{2}+R^{2}} .
\end{aligned}
$$

$V_{1}\left(V_{2}\right)=\left[\right.$ regularized volume of AdS_{5} (Schwarzschild) space].
[Hawking-Page transition]
Critical point exists at $r_{+}=R$, where $I_{\text {dif }}=0 \Rightarrow \beta=\frac{2 \pi R}{3}, T_{1}=\frac{3}{2 \pi R}$.

- $T_{0}\left(=\frac{\sqrt{2}}{\pi R}\right)<T<T_{1}$: saddle point for AdS dominates.
- $T_{1}<T$: saddle point for Schwarzschild (BBH) dominates.

Small black hole $(\mathrm{SBH}) \Rightarrow$ instanton for tunneling between AdS to BBH.

3 Effective action at finite temperature

Phenomenological matrix model for string theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ at finite temperature.
$\beta=\frac{1}{T}$: period of the Euclidean time.
Yang-Mills partition function on S^{3} at temperature T
\Rightarrow integral over a $\mathrm{U}(N)$ matrices U.

$$
Z(\lambda, T)=\int d U e^{S_{\mathrm{eff}}(U)}, \text { where } U=\mathrm{P} \exp \left(i \int_{0}^{\beta} A d t\right)
$$

- $A(t)$: zero mode of the time component of the gauge field in S^{3}.
- Gauge invariance : \boldsymbol{U} only contributes as $\operatorname{tr} \boldsymbol{U}^{n}$.
- Z_{N} symmetry: $U \rightarrow U e^{2 \pi i / N}$.
- Generic components of the action $S_{\text {eff }}$:

$$
\operatorname{tr} U^{n_{1}} \operatorname{tr} U^{n_{2}} \cdots \operatorname{tr} U^{n_{k}}, \text { where } n_{1}+n_{2}+\cdots+n_{k} \equiv 0(\bmod N)
$$

In general, we consider the action

$$
S_{\text {eff }}=S(x), \text { where } x=\frac{1}{N^{2}} \operatorname{tr} U \operatorname{tr} U^{\dagger}, \quad S(x) \text { is convex (凸), } S^{\prime}(x) \text { is concave (凹). }
$$

For simplicity, we focus on the truncated action

$$
Z(a, b)=\int d U \exp \left(a \operatorname{tr} U \operatorname{tr} U^{\dagger}+\frac{b}{N^{2}}\left(\operatorname{tr} U \operatorname{tr} U^{\dagger}\right)^{2}\right), \quad(b>0)
$$

4 Large- N phase structure of the universality class

We introduce new parameters as

$$
\begin{aligned}
Z(a, b) & =\frac{N}{2 \sqrt{\pi b}} \int_{-\infty}^{+\infty} d \mu \exp \left(-\frac{N^{2}(\mu-a)^{2}}{4 b}\right) \exp \left(\mu \operatorname{tr} U \operatorname{tr} U^{\dagger}\right) \\
& =\frac{N}{2 \sqrt{\pi b}} \int_{-\infty}^{+\infty} d \mu \exp \left(-\frac{N^{2}(\mu-a)^{2}}{4 b}\right) \frac{N^{2}}{2 \mu} \int_{0}^{+\infty} d g g \exp \left(-\frac{N^{2} g^{2}}{4 \mu}+N^{2} F(g)\right),
\end{aligned}
$$

where $\exp \left(N^{2} \boldsymbol{F}(g)\right)=\int d U \exp \left(\frac{N g}{2}\left(\operatorname{tr} U+\operatorname{tr} U^{\dagger}\right)\right)$.

Large- \boldsymbol{N} expansion of the function $\boldsymbol{F}(\boldsymbol{g}):$ D. J. Gross and E. Witten, Phys. Rev. D 21 (1980) 446.

$$
F(g)= \begin{cases}\frac{g^{2}}{4}+\cdots, & (g \leq 1 \text { or } g \text { imaginary }) \\ g-\frac{1}{2} \log g-\frac{3}{4}+\cdots, & (g>1)\end{cases}
$$

Vacuum expectation value of the Polyakov loop:

$$
\rho_{1}(g)=\frac{1}{N}\langle\operatorname{tr} U\rangle_{g}=\frac{1}{N}\left\langle\operatorname{tr} U^{\dagger}\right\rangle_{g}=\frac{\partial F}{\partial g}= \begin{cases}\frac{g}{2}+\cdots, & (g \leq 1 \text { or } g \text { imaginary }) \\ 1-\frac{1}{2 g}+\cdots, & (g>1)\end{cases}
$$

Third-order phase transition at $g=1$ in the large- N limit.
$\left(F(g), F^{\prime}(g), F^{\prime \prime}(g)\right.$ are continuous, but $F^{\prime \prime \prime}(g)$ is discontinuous, at $\left.g=1\right)$.

$$
\begin{aligned}
Z(a, b) & =\frac{N^{3}}{4 \sqrt{\pi b}} \int_{-\infty}^{+\infty} \frac{d \mu}{\mu} \int_{0}^{+\infty} d g g \exp \left(-N^{2} V(\mu, g)\right)=\frac{N}{2 \sqrt{\pi b}} \int_{-\infty}^{+\infty} d \mu \exp \left(-N^{2} Q(\mu)\right), \mathrm{wh} \\
V(\mu, g) & = \begin{cases}(1) \frac{(\mu-a)^{2}}{4 b}-\frac{g^{2}(1-\mu)}{4 \mu}, & \mu<0, \\
(2) \frac{(\mu-a)^{2}}{4 b}+\frac{g^{2}(1-\mu)}{4 \mu}, & \mu>0,0 \leq g<1, \\
(3) \frac{(\mu-a)^{2}}{4 b}+\frac{g^{2}}{4 \mu}-g+\frac{1}{2} \log g+\frac{3}{4}, & \mu>0, g>1 .\end{cases} \\
Q(\mu) & =\frac{(\mu-a)^{2}}{4 b}-\mathcal{F}(\mu), \\
\mathcal{F}(\mu) & = \begin{cases}0-\frac{1}{N^{2}} \log (1-\mu)+\cdots, & \mu<1, \\
\frac{w}{2(1-w)}+\frac{1}{2} \log (1-w)+\mathrm{O}\left(1 / N^{2}\right), & \mu>1,\end{cases}
\end{aligned}
$$

$\mathcal{F}(\mu)$ has a first-order discontinuity at $\mu=1$.
$\left(\mathcal{F}(\mu)\right.$ is continuous, but $\mathcal{F}^{\prime}(\mu)$ is discontinuous, at $\left.\mu=1\right)$.

Large- N expansion for the general model $S(x)$

For general action $S_{\text {eff }}=S(x)$ (S is convex (凸), $S^{\prime}(x)$ is concave (凹))

$$
Z=\int d U \int d \mu \exp \left(N^{2}(\mu x-\mathcal{S}(\mu))\right) \stackrel{\text { large }-\mathrm{N}}{\sim} \int d \mu \exp \left(-N^{2} Q(\mu)\right) .
$$

$\mathcal{S}(\mu)=\max _{x}(\mu x-S(x)):$ Legendre transformation of $S(x), \quad Q(\mu)=\mathcal{S}(\mu)-\mathcal{F}(\mu)$.

Phase structure of the model at large N

1. From (1)(2) of $V(\mu, g)$ (namely, for $\mu<0$ or $\mu>0,0 \leq g<1$),

$$
\left(\mu_{1}, g_{1}\right)=(a, 0), \Rightarrow V\left(\mu_{1}, g_{1}\right)=0, \quad V^{\prime \prime}=\left(\begin{array}{cc}
V_{\mu \mu} & V_{\mu g} \\
V_{g \mu} & V_{g g}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
\frac{1}{b} & 0 \\
0 & \frac{1-a}{a}
\end{array}\right), \rho_{1}\left(\mu_{1}, g_{1}\right)=0
$$

$\bullet a<1 \Rightarrow \operatorname{det} V^{\prime \prime}>0$, this is a local minimum.
$\bullet a>1 \Rightarrow \operatorname{det} V^{\prime \prime}<0$, this is tachyonic.
2. From (2) of $V(\mu, g)$: for $a<1$ and $c=2(1-a) / b<1$ (between line III and H),

$$
\left(\mu_{2}, g_{2}\right)=(1, \sqrt{c}), \Rightarrow V\left(\mu_{2}, g_{2}\right)=\frac{(1-a)^{2}}{4 b}, V^{\prime \prime}=\frac{1}{2}\left(\begin{array}{cc}
\frac{1}{b}+c & -\sqrt{c} \\
\sqrt{c} & 0
\end{array}\right) \cdot \rho_{1}\left(\mu_{2}, g_{2}\right)=\frac{\sqrt{c}}{2}<
$$

3. From (3) of $V(\mu, g)$: the critical point satisfies

$$
\begin{gathered}
\frac{\partial V}{\partial \mu}=\frac{\mu-a}{2 b}-\frac{g^{2}}{4 \mu^{2}}=0, \frac{\partial V}{\partial g}=\frac{g}{2 \mu}-1+\frac{1}{2 g}=0 . \\
\frac{\partial V}{\partial g}=0 \Rightarrow g=\frac{1}{1-w}, \rho_{1}=\frac{1+w}{2}>\frac{1}{2},(w=\sqrt{1-1 / \mu}) .
\end{gathered}
$$

For $g=\frac{1}{1-w}(w=\sqrt{1-1 / \mu}), \mu$ satisfies $\frac{\partial V}{\partial \mu}=Q^{\prime}(\mu)=\frac{\mu-a}{2 b}-\frac{(w+1)^{2}}{4}=0 \leftarrow(\star)$.

- Below curve I $\left(Q^{\prime}(\mu)=Q^{\prime \prime}(\mu)=0\right)$: $(a, b)=\left(\frac{1-2 w}{(1-w)^{2}(1+w)}, \frac{2 w}{(1-w)^{2}(1+w)^{3}}\right)$
(\star) has no solutions.
$V(\mu, g)$ has a unique minimum $\left(\mu_{1}, g_{1}\right)$.
- Between I and line III $(b=2-2 a)$: (\star) has two solutions $1<\mu_{2}<\mu_{3}$. $V(\mu, g)$ has three extrema $\mu_{1}, \mu_{2}, \mu_{3}$. ($\mu_{1}, \mu_{3}:$ minima, $\mu_{2}:$ saddle point.)
* Between I and curve II

$$
\begin{aligned}
& \left(Q\left(\mu_{3}\right)=Q^{\prime}\left(\mu_{3}\right)=0\right) \\
& 0=V\left(\mu_{1}, g_{1}\right)<\boldsymbol{V}\left(\mu_{3}, g_{3}\right)<\boldsymbol{V}\left(\mu_{2}, g_{2}\right)
\end{aligned}
$$

* Between II and III,

$$
V\left(\mu_{3}, g_{3}\right)<0=V\left(\mu_{1}, g_{1}\right)<V\left(\mu_{2}, g_{2}\right) .
$$

- Between III and line H $(a=1)$:
$V(\mu, g)$ has three extrema
$\mu_{1}(=a)<\mu_{2}(=1)<\mu_{3}$.
Below (above) III, $\rho_{1}\left(\mu_{2}\right)>\frac{1}{2}\left(<\frac{1}{2}\right)$.
μ_{2} undergoes a Gross-Witten phase transition at large N.
- Right of H $(a>1)$:
μ_{1} is tachyonic. μ_{2} disappears.
Only μ_{3} remains stable.

Critical point for general model and universality class

For the general model $S_{\text {eff }}=S(x)\left(S(x)\right.$ is convex（凸），and $S^{\prime}(x)$ is concave（凹））

$$
\begin{aligned}
Q(\mu) & =\mathcal{S}(\mu)-\mathcal{F}(\mu), \quad(\mathcal{S}(\mu) \text { is convex (凸)), } \\
\mathcal{F}(\mu) & =\left\{\begin{array}{ll}
0-\frac{1}{N^{2}} \log (1-\mu)+\cdots, & \mu<1, \\
\frac{w}{2(1-w)}+\frac{1}{2} \log (1-w)+\mathrm{O}\left(1 / N^{2}\right), & \mu>1,
\end{array} \quad w=\sqrt{1-\frac{1}{\mu}} .\right.
\end{aligned}
$$

－$\mu<1: Q(\mu)(=\mathcal{S}(\mu))$ has only one critical point．
－$\mu>1$ ：The critical point satisfies $\mathcal{S}^{\prime}(\mu)=\frac{(1+w)^{2}}{4}$ ． Critical points similar to the truncated model．

Universality of the phase structure．

Phenomenological matrix model and blackhole

Relation between the phenomenological matrix model and the AdS_{5} string theory.

- $\mu_{1}=a: \rho_{1} \simeq 0($ at large $N)$. Corresponds to thermal AdS.
- μ_{2} : Negative specific heat $c_{v}\left(\mu_{c}\right)=-\left.N^{2} \beta^{2} \frac{d^{2}}{d \beta^{2}} Q\left(\beta, \mu_{c}(\beta)\right)\right|_{\mu_{c}=\mu_{2}}<0$.

Corresponds to small black hole (SBH).

- μ_{3} : Positive specific heat $c_{v}\left(\mu_{c}=\mu_{3}\right)>0$. Corresponds to big black hole (BBH).
(\star) Varying temperature T, with 't Hooft coupling $\lambda \rightarrow C_{\lambda}=($ curve of $(a(\lambda, T), b(\lambda, T))$.
- Start from $T=T_{0}$ (low temperature).
- At $T=T_{1}$ (where C_{λ} intersects curve II),

Exchange of the dominance of $\mu_{1}(\mathrm{AdS})$ and $\mu_{3}(\mathrm{BBH})$.
Hawking-Page transition in the matrix model.

- At $T=T_{c}$ (where C_{λ} intersects line III),

Gross-Witten phase transition of the SBH.
Horowitz-Polchinski correspondence point (horizon size of SBH is comparable to the string scale)
G. T. Horowitz and J. Polchinski, hep-th/9612146.

- At $T=T_{H}$ (where C_{λ} intersects line H),

Corresponds to Hagedorn temperature. $\mu_{3}(\mathrm{BBH})$ is the only stable phase.

5 Small Black Hole and Tunneling
Small black hole (SBH) \Rightarrow
Instanton for tunneling between AdS and (\star) Tunneling rate for $\mathrm{BBH} \rightarrow$ AdS. Integral via the contour C_{2} : big black hole (BBH).
(\star) Tunneling rate for AdS \rightarrow BBH.
C.G. Callan and S.R. Coleman, Phys. Rev. D 16, 1762 (1977).

Integral via the contour C_{1} :
$Z_{1} \simeq e^{-N^{2} Q\left(\mu_{1}\right)} \boldsymbol{K}_{1}+\frac{i}{2} e^{-N^{2} Q\left(\mu_{2}\right)} \boldsymbol{K}_{2}+\mathrm{O}\left(\boldsymbol{N}^{-2}\right)$.
($K_{1,2,3}$: Gaussian factor in saddle point approximation at $\boldsymbol{\mu}=\boldsymbol{\mu}_{1,2,3}$).

$$
\begin{aligned}
\Gamma_{1} & \simeq \frac{\omega_{0} \beta}{\pi} \operatorname{Im}\left(-\frac{1}{\beta} \log Z_{1}\right) \\
& =\frac{\omega_{0}}{2 \pi} \exp \left[-N^{2}\left(Q\left(\mu_{2}\right)-Q\left(\mu_{1}\right)\right)\right] \frac{K_{2}}{K_{1}}\left(1+\mathrm{O}\left(N^{-2}\right)\right) \text { Instanton effect for SBH: }
\end{aligned}
$$

$\left(\omega_{0}\right.$: frequency for the unstable mode $\mathrm{O}\left(e^{-1 / g_{s}^{2}}\right)$ for $g_{s}=($ string coupling $)=\frac{1}{N}$. around SBH background).

Gross-Witten transition for small black hole

Behavior of small black hole (SBH) near line III $(b=2-2 a)(0<\epsilon \ll 1)$.

- $c=2(1-a) / b=1+\epsilon: \mu_{2}=1+\frac{\epsilon^{2}}{4}+\cdots, \quad g_{2}=1+\frac{\epsilon}{2}+\cdots, \quad \rho_{1}\left(g_{2}\right)=\frac{1}{2}+\frac{\epsilon}{4}+\cdots$.
- $c=2(1-a) / b=1-\epsilon: \mu_{2}=1$, $g_{2}=1-\frac{\epsilon}{2}+\cdots, \quad \rho_{1}\left(g_{2}\right)=\frac{1}{2}-\frac{\epsilon}{4}+\cdots$.

Smoothening of the discontinuity at $g=1$ at finite N : Rescale g as $g=1-N^{-2 / 3} y$. H. Liu, hep-th/0408001, V. Periwal and D. Shevitz, Nucl. Phys. B 344, 731 (1990).

$$
\begin{aligned}
V(\mu, g) & =\frac{(\mu-a)^{2}}{4 b}+\frac{g_{2}}{4} \frac{1-\mu}{\mu}-\sum_{n=0}^{\infty} N^{-2 n / 3} F_{n}(y), \\
F_{0}(y) & = \begin{cases}\frac{y^{3}}{6}-\frac{1}{8} \log (-y)+\cdots, & -y \gg 1, \\
\frac{1}{2 \pi} \exp \left(-\frac{4 \sqrt{2}}{3} y^{3 / 2}\right)\left(-\frac{1}{8 \sqrt{2} y^{3 / 2}}+\cdots\right), & y \gg 1\end{cases}
\end{aligned}
$$

This interpolates between $g \leq 1$ and $g>1$.

Physics of the small black hole (SBH) near $c=1\left(T=T_{c}\right)$:

$$
\begin{aligned}
& a(T)=a_{0}+a_{1} \epsilon q, \quad b(T)=b_{0}+b_{1} \epsilon q, \quad \mu=1+\epsilon^{2} x, g=1-\epsilon y, \epsilon=N^{-2 / 3}, \text { where } \\
& a_{0}=a\left(T_{c}\right), b_{0}=b\left(T_{c}\right), a_{1}=T_{c} a^{\prime}\left(T_{c}\right), b_{1}=T_{c} b^{\prime}\left(T_{c}\right), \epsilon q=\frac{T-T_{c}}{T_{c}}, \frac{2\left(1-a_{0}\right)}{b_{0}}=1 . \\
& \Downarrow \\
& c=1-c_{1} \epsilon q, \text { where } c_{1}=\frac{1}{b_{0}}\left(2 a_{1}+b_{1}\right) .
\end{aligned}
$$

The potential is written as

$$
N^{2} V=\frac{N^{2}(1-a)^{2}}{4 b}+\frac{x}{2}\left(y-\frac{c_{1} q}{2}\right)-F_{0}(y)+\mathrm{O}(\epsilon) .
$$

Partition function around SBH:

$$
Z_{\mathrm{SBH}}=i N \sqrt{\frac{\pi}{b}} \exp \left(-\frac{N^{2}(1-a)^{2}}{4 b}+F_{0}\left(c_{1} q / 2\right)\right)(1+\mathrm{O}(\epsilon)) .
$$

$F_{0}(t) \rightarrow$ full partition function of the type $0 B$ theory in 0 dimension.
I. R. Klebanov, J. M. Maldacena and N. Seiberg, hep-th/0309168

SBH is described by type $0 B$ theory in 0 dimension.

6 Conclusion

Phenomenological matrix model to study the string theory in $\operatorname{AdS}_{5} \times S^{5}$ space.

- The matrix model reproduces the Hawking-Page phase transition.
- Gross-Witten-type third-order phase transition of the small black hole (SBH).

Further development L. Alvarez-Gaume, P. Basu, M. Marino and S. R. Wadia, hep-th/0605041

- Blackhole string transition of the 10-dimensional small black hole.
- A key to resolve the information puzzle in blackhole physics?

[^0]: ${ }^{1}$ This slide is used for Takehiro Azuma's presentation at KEK. Therefore, it is not the authors but the presenter Takehiro Azuma that is responsible for any potential flaws in this slide.

