Gauge Theory on Fuzzy $\mathbf{S}^{2} \times \mathbf{S}^{2}$ and Regularization on Noncommutative \mathbf{R}^{4} (hep-th/0503041)

Wolfgang Behr, Frank Meyer and Harold Steinacker

Journal Club at KEK, presented by Takehiro Azuma, ${ }^{1}$ May. 16th 2005, 12:15 ~13:15 Contents

2 Fuzzy spaces S_{N}^{2} and $S_{N_{L}}^{2} \times S_{N_{R}}^{2}$33 Gauge theory on fuzzy $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$ 6
4 Formulation based on $\mathrm{SO}(6)$ 8
5 Quantization 12
6 Topologically nontrivial solutions on $S_{N_{L}}^{2} \times S_{N_{R}}^{2}$ 13
7 Gauge theory on R_{θ}^{4} from fuzzy $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$ 16
8 Fermions 20
9 Summary 24

[^0]
1 Introduction

Motivations of fuzzy manifold studies:

- Prototype of the curved-space background in the large- N reduced models.
- Dynamical generation of spacetime / gauge group.

A plethora of works for the fuzzy sphere physics:
hep-th $/ 0101102,0103192,0204256,0209057,0301055,0303120,0307007,0312241,0401038,0403242,0405096,0405277,0410263$,
0412303,0412312,0504217...
Four-dimensional fuzzy manifolds:
$\mathrm{S}^{2} \times \mathrm{S}^{2}, \mathrm{~S}^{4}=\mathrm{SO}(5) / \mathrm{U}(2), \mathrm{CP}^{2}=\mathrm{SU}(3) / \mathrm{U}(2), \cdots$.

These fuzzy manifolds are compact, and thus realized by finite matrices.

We focus on the gauge theory on fuzzy $\mathrm{S}^{2} \times \mathrm{S}^{2}$:
\Rightarrow We obtain R_{θ}^{4} as a scalar field.

2 Fuzzy spaces S_{N}^{2} and $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$
Definitions of fuzzy S ${ }^{2}$
$x_{i}=\left(x_{1}, x_{2}, x_{3}\right)=($ Hermitian operators $)$

$$
\left[x_{i}, x_{j}\right]=i \Lambda_{N} \epsilon_{i j k} x_{k}, \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=R^{2}, \quad \Lambda_{N}=\frac{2 R}{\sqrt{N^{2}-1}}
$$

$\Lambda_{N}=\left(\mathrm{NC}_{\text {parameter }}\right)=\mathrm{O}\left([\text { length }]^{1}\right)$.
They are obtained from the N-dimensional representation of $\operatorname{su}(2) \lambda_{i}$:

$$
x_{i}=\Lambda_{N} \lambda_{i}, \quad \Lambda_{N}=\frac{2 R}{\sqrt{N^{2}-1}}, \text { where }\left[\lambda_{i}, \lambda_{j}\right]=i \epsilon_{i j k} \lambda_{k}, \quad \lambda_{i}^{2}=\frac{N^{2}-1}{4} .
$$

(algebra of functions f on $\left.S_{N}^{2}\right) \Leftrightarrow($ matrix algebra $\operatorname{Mat}(N, C)$):

$$
\int_{\mathrm{S}_{N}^{2}} f=\frac{4 \pi R^{2}}{N} \operatorname{tr} f
$$

$N \rightarrow \infty$ (R fixed) limit : commutative S_{N}^{2} is recovered.

$$
\text { Definition of fuzzy } \mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}
$$

$\lambda_{i}^{L}, \lambda_{j}^{R} \Rightarrow N_{L}\left(N_{R}\right)$-dimensional representation of su(2) algebra:

$$
\left[\lambda_{i}^{L}, \lambda_{j}^{L}\right]=i \epsilon_{i j k} \lambda_{k}^{L}, \quad\left[\lambda_{i}^{R}, \lambda_{j}^{R}\right]=i \epsilon_{i j k} \lambda_{k}^{L}, \quad\left[\lambda_{i}^{L}, \lambda_{j}^{R}\right]=0, \text { where }\left(\lambda_{i}^{L, R}\right)^{2}=\frac{N_{L, R}^{2}-1}{4} .
$$

This representation is realized by the tensor product:

$$
\lambda_{i}^{L}=\lambda_{i} \otimes 1_{N_{R}}, \quad \lambda_{i}^{R}=1_{N_{L}} \otimes \lambda_{i}
$$

(algebra of functions f on $S_{N_{L}}^{2} \times S_{N_{R}}^{2}$) $=($ matrix $\operatorname{algebra} \operatorname{Mat}(\mathcal{N}, \mathrm{C})$),
where $\mathcal{N}=N_{L} N_{R}$.
Normalized coordinate function

$$
x_{i}^{L, R}=\frac{2 R}{\sqrt{\left(N_{L, R}\right)^{2}-1}} \lambda_{i}^{L, R}, \quad\left(x_{i}^{L}\right)^{2}=\left(x_{i}^{R}\right)^{2}=R^{2} .
$$

This space is a regularization of $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2} \subset \mathrm{R}^{6}$.
Normalized integral of a function $f \in \mathrm{~S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$:

$$
\int_{\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}} f=\frac{V}{\mathcal{N}} \operatorname{tr} f, \text { where we define the volume } V=16 \pi^{2} R^{4} .
$$

Quantum plane limit R_{θ}^{4}

Tangential coordinate $x_{1,2}$ near the "north pole":
For $R^{2}=N \theta / 2$, we obtain

$$
\left[x_{1}, x_{2}\right]=i \frac{2 R}{N} x_{3}=i \frac{2 R}{N} \sqrt{R^{2}-x_{1}^{2}-x_{2}^{2}}=i \theta(1+\mathrm{O}(1 / N))
$$

Algebra of the quantum plane $\left[x_{1}, x_{2}\right]=i \theta(\boldsymbol{R}, \boldsymbol{N} \rightarrow \infty, \boldsymbol{\theta}$ fixed $)$.

The fuzzy $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$ case: $\left(R^{2}=N_{L, R} \theta_{L, R} / 2\right)$

$$
\left[x_{i}^{L}, x_{j}^{L}\right]=i \epsilon_{i j} \theta^{L}, \quad\left[x_{i}^{R}, x_{j}^{R}\right]=i \epsilon_{i j} \theta^{R}, \quad\left[x_{i}^{L}, x_{j}^{R}\right]=0 .
$$

Integral of a function $f(x) \in \mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$:

$$
\int_{\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}} f(x) \rightarrow 4 \pi^{2} \theta_{L} \theta_{R} \operatorname{tr} f(x)=\int_{\mathrm{R}_{\theta}^{4}} f(x) .
$$

3 Gauge theory on fuzzy $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$
Construct $S_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$ as "submanifold" of R^{6}.
Consider a multi-matrix model with 6 dynamical fields $B_{i}^{L, R}$:

$$
\begin{aligned}
& S=\frac{1}{g^{2}} \int_{\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}}\left(\frac{1}{2} F_{i a, j b} F_{i a, j b}+\varphi_{L}^{2}+\varphi_{R}^{2}\right), \text { where } \\
& \varphi_{L(R)}=\frac{1}{R^{2}}\left(B_{i}^{L(R)} B_{i}^{L(R)}-\frac{N_{L(R)}^{2}-1}{4}\right), \\
& F_{i L(R), j L(R)}=\frac{1}{R^{2}}\left(i\left[B_{i}^{L(R)}, B_{j}^{L(R)}\right]+\epsilon_{i j k} B_{k}^{L(R)}\right), \quad F_{i L, j R}=\frac{i}{R^{2}}\left[B_{i}^{L}, B_{j}^{R}\right] .
\end{aligned}
$$

Invariant under $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$ and $\mathrm{U}(\mathcal{N})$.
Equation of motion

$$
\left\{B_{i}^{L},\left(B_{j}^{L}\right)^{2}-\frac{N_{L}^{2}-1}{4}\right\}+\left(B_{i}^{L}+i \epsilon_{i j k} B_{j}^{L} B_{k}^{L}\right)+i \epsilon_{i j k}\left[B_{j}^{L},\left(B_{k}^{L}+i \epsilon_{k r s} B_{r}^{L} B_{s}^{L}\right)\right]+\left[B_{j}^{R},\left[B_{j}^{R}, B_{i}^{L}\right]\right]=0 .
$$

Classical solution $F=\varphi=0 \Rightarrow B_{i}^{L(R)}=\lambda_{i}^{L(R)}$.
Expansion around the classical solution $B_{i}^{a}=\lambda_{i}^{a}+R A_{i}^{a}$.
Gauge transformation of the fluctuation : $A_{i}^{L(R)} \rightarrow A_{i}^{\prime L(R)}=U A_{i}^{L(R)} U^{-1}+U\left[\lambda_{i}^{L(R)}, U^{-1}\right]$.

The field strength takes the form

$$
\begin{aligned}
& F_{i L(R), j L(R)}=\frac{i}{\boldsymbol{R}}\left(\left[\lambda_{i}^{L(R)}, A_{j}^{L(R)}\right]-\left[\lambda_{j}^{L(R)}, A_{i}^{L(R)}\right]+R\left[A_{i}^{L(R)}, A_{j}^{L(R)}\right]\right) \\
& F_{i L, j R}=\frac{i}{R}\left(\left[\lambda_{i}^{L}, A_{j}^{R}\right]-\left[\lambda_{j}^{R}, A_{i}^{R}\right]+R\left[A_{i}^{L}, A_{j}^{R}\right]\right)
\end{aligned}
$$

Commutative limit \Rightarrow separate the radial/tangential degrees of freedom.
$\varphi_{L(R)}$ is bounded for configurations with finite action.

$$
\varphi_{L(R)}=\frac{1}{R}\left(\lambda_{i}^{L(R)} A_{i}^{L(R)}+A_{i}^{L(R)} \lambda_{i}^{L(R)}\right)+A_{i}^{L(R)} A_{i}^{L(R)} \quad \Rightarrow x_{i} A_{i}^{a}+A_{i}^{a} x_{i}=\mathrm{O}\left(\frac{\varphi}{N}\right)
$$

A_{i}^{a} is tangential in the commutative limit.

Standard electrodynamics on commutative $\mathbf{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$:

$$
S=\frac{1}{2 g^{2}} \int_{\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}} F_{i a, j b}^{t} \boldsymbol{F}_{i a, j b}^{t}
$$

At the north pole, $\frac{i}{R}$ ad $\lambda_{i}^{L(R)}=-\epsilon_{i j} \frac{\partial}{\partial x_{j}^{L(R)}}$.
The field strength $: F_{i L, j R}^{t}=\partial_{i}^{L} A_{j}^{(\mathrm{cl}) R}-\partial_{j}^{R} A_{i}^{(\mathrm{cl}) L},\left(A_{i}^{(\mathrm{cl}) L(R)}=-\epsilon_{i j} A_{j}^{L(R)}\right)$.

4 Formulation based on $\mathrm{SO}(6)$

We cast the action on $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$ into the formulation based on $\mathrm{SO}(6)$.
Embed $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2} \subset \mathrm{R}^{6}\left(\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{R} \subset \mathrm{SO}(6)\right):$

$$
\begin{aligned}
B_{\mu} & =\left(B_{i}^{L}, B_{j}^{R}\right), \quad \gamma_{\mu}=\left(\gamma_{i}^{L}, \gamma_{i}^{R}\right) \\
B^{L} & =\frac{1}{2}+B_{i}^{L} \gamma_{i}^{L}, \quad B^{R}=\frac{i}{2}+B_{i}^{R} \gamma_{i}^{R} .
\end{aligned}
$$

The gamma matrices' relations:

$$
\begin{aligned}
& \left(\gamma_{i}^{L}\right)^{\dagger}=\gamma_{i}^{L}, \quad\left(\gamma_{i}^{R}\right)^{\dagger}=-\gamma_{i}^{R} \\
& \gamma_{i}^{L} \gamma_{j}^{L}=\delta_{i j}+i \epsilon_{i j k} \gamma_{k}^{L}, \quad \gamma_{i}^{R} \gamma_{j}^{R}=-\delta_{i j}-\epsilon_{i j k} \gamma_{k}^{R}, \quad\left[\gamma_{i}^{L}, \gamma_{j}^{R}\right]=0 .
\end{aligned}
$$

(1) separate B into two $4 \mathcal{N} \times 4 \mathcal{N}$ matrices

We break the symmetry as $\mathrm{SO}(6) \rightarrow \mathrm{SO}(3) \times \mathrm{SO}(3)$.

$$
\gamma_{i}^{L}=\sigma_{i} \otimes 1_{2 \times 2}, \quad \gamma_{i}^{R}=1_{2 \times 2} \otimes i \sigma_{i}
$$

For the projector $P=\frac{1}{2}\left(1+\sigma_{i} \otimes \sigma_{i}\right)$, they satisfy $\gamma_{i}^{R}=i P \gamma_{i}^{L} P, P^{2}=1$.
The degree of freedom reduces to two $2 \mathcal{N} \times 2 \mathcal{N}$ matrices:

$$
B_{L}=\underbrace{\left(B_{i}^{L} \sigma_{i}+\frac{1}{2}\right)}_{=X_{L}} \otimes 1_{2 \times 2}, \quad B_{R}=i P\{\underbrace{\left(B_{i}^{R} \sigma_{i}+\frac{1}{2}\right)}_{=X_{R}} \otimes 1_{2 \times 2}\} P
$$

The action $S=S_{6}-2 S_{\text {break }}$ recovers the action of $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$:

$$
\begin{aligned}
S_{6} & =2 \operatorname{Tr}\left(B_{L}^{2}-B_{R}^{2}-\frac{N^{2}}{2}\right)^{2}+2 \operatorname{Tr}\left[B_{L}, B_{R}\right]^{2}, \\
S_{\text {break }} & =-2 \operatorname{Tr}\left(B_{L}^{2}-\frac{N^{2}}{4}\right)\left(-B_{R}^{2}-\frac{N^{2}}{4}\right) .
\end{aligned}
$$

(2) Embed B into one $8 \mathcal{N} \times 8 \mathcal{N}$ matrices

Construct the 8×8 gamma matrices:

$$
\Gamma^{\mu}=\left(\begin{array}{cc}
0 & \gamma^{\mu} \\
\left(\gamma^{\mu}\right)^{\dagger} & 0
\end{array}\right), \text { where }\left\{\Gamma^{\mu}, \Gamma^{\nu}\right\}=2 \delta^{\mu \nu}
$$

Consider a single Hermitean $\mathbf{8 \mathcal { N }} \times 8 \mathcal{N}$ matrix:

$$
\begin{aligned}
C & =\Gamma^{\mu} B_{\mu}+\underbrace{\left(C_{0}^{L}+C_{0}^{R}\right)}_{=C_{0}}=\underbrace{\left(\begin{array}{cc}
0 & B^{L} \\
B^{L} & 0
\end{array}\right)}_{=C^{L}}+\underbrace{\left(\begin{array}{cc}
0 & B^{R} \\
-B^{R} & 0
\end{array}\right)}_{=C^{R}} \text {, where } \\
C_{0}^{L} & =-\frac{i}{2} \Gamma_{1}^{L} \Gamma_{2}^{L} \Gamma_{3}^{L}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad C_{0}^{R}=-\frac{i}{2} \Gamma_{1}^{R} \Gamma_{2}^{R} \Gamma_{3}^{R}=\frac{i}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
\end{aligned}
$$

The following action is close to that of $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$:

$$
\begin{aligned}
S_{6} & =\operatorname{Tr}\left(\left(C^{2}-\frac{N^{2}}{2}\right)^{2}\right)=8 \operatorname{tr}\left(B_{\mu} B_{\mu}-\frac{N^{2}-1}{2}\right)^{2}+4 \operatorname{tr} F_{\mu \nu} F_{\mu \nu} . \text { where } \\
\boldsymbol{F}_{i a, j b} & =i\left[B_{i a}, B_{j b}\right]+\delta_{a b} \epsilon_{i j k} B_{k a} .
\end{aligned}
$$

But we have $\left(B_{\mu} B_{\mu}-\frac{N^{2}-1}{2}\right)^{2}$, instead of $\left(B_{i}^{L} B_{i}^{L}-\frac{N_{i}^{2}-1}{4}\right)^{2}+\left(B_{i}^{R} B_{i}^{R}-\frac{N_{R}^{2}-1}{4}\right)^{2}$.
This is because its ground state should be some S^{5}.

We have to explicitly break the symmetry as $\mathrm{SO}(6) \rightarrow \mathrm{SO}(3) \times \mathrm{SO}(3)$.
We introduce the term

$$
S_{\text {break }}=\operatorname{Tr}\left(C_{L}^{2}-\frac{N_{L}^{2}}{4}\right)\left(C_{R}^{2}-\frac{N_{R}^{2}}{4}\right)
$$

The following action recovers that of $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$:

$$
S=S_{6}-2 S_{\text {break }}=8 \operatorname{tr}\left(\left(B_{i L}^{2}-\frac{N_{L}^{2}-1}{4}\right)^{2}+\left(B_{i R}^{2}-\frac{N_{R}^{2}-1}{4}\right)^{2}+\frac{1}{2} F_{\mu \nu} F_{\mu \nu}\right) .
$$

This formulation is useful in introducing fermions.

5 Quantization

The quantization is straightforward by a path integral over the Hermitian matrices: No need to fix the gauge (since the gauge group $\mathrm{U}(\boldsymbol{\mathcal { N }})$ is compact).
Finite path integral for any fixed \mathcal{N}.
(the square term of $B_{i}^{L(R)}$ further suppresses the path integral).
Perturbation around the fuzzy sphere \rightarrow Gauge fixing by usual BRST prescription:

$$
S_{\mathrm{BRST}}=S+\frac{1}{\mathcal{N}} \operatorname{tr}\left(\bar{c}\left[\lambda_{\mu},\left[B_{\mu}, c\right]\right]-\left(\frac{\alpha}{2} b-\left[\lambda_{\mu}, B_{\mu}\right]\right) b\right) .
$$

BRST transformation (such that $s^{2}=0$)

$$
s B_{\mu}=\left[B_{\mu}, c\right], s c=c c, s \bar{c}=b, s b=0 .
$$

6 Topologically nontrivial solutions on $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$

Monopole solutions

$$
\begin{aligned}
& B_{i}^{L}=\alpha^{L} \lambda_{i}^{N-m_{L}} \otimes 1_{N-m_{R}}, \quad B_{i}^{R}=\alpha^{R} 1_{N-m_{L}} \otimes \lambda_{i}^{N-m_{R}}, \\
& \text { where } \alpha^{L, R}=1+\frac{m_{L, R}}{N}, \quad m_{L, R} \ll N .
\end{aligned}
$$

Associated field strength and constraint term:

$$
\begin{aligned}
& F_{i L(R), j L(R)}=-\frac{m^{L(R)}}{2 R^{3}} \epsilon_{i j k} x_{k}^{L(R)}, \quad F_{i L, j R}=0, \\
& \lim _{N \rightarrow \infty}\left(B_{i}^{L(R)} B_{i}^{L(R)}-\frac{N^{2}-1}{4}\right)=0 .
\end{aligned}
$$

Commutative limit: $F=-2 \pi\left(m^{L} \omega^{L}+m^{R} \omega^{R}\right)$, where $\omega^{L(R)}=\frac{1}{4 \pi R^{3}} \epsilon_{i j k} x_{i}^{L(R)} d x_{j}^{L(R)} d x_{k}^{L(R)}$.
This monopole solution is realized for matrix size $\mathcal{N}=\left(N-m_{L}\right)\left(N-m_{R}\right) \neq N^{2}$.
This mismatch can be reconciled by combining this with another type of solution.

Fluxon solutions

$$
B_{i}^{L(R)}=\operatorname{diag}\left(d_{i, 1}^{L(R)}, \cdots, d_{i, n}^{L(R)}\right), \text { where } \sum_{i} d_{i, k}^{L(R)} d_{i, k}^{L(R)}= \begin{cases}\frac{N^{2}-3}{4}, & \text { type A, } \\ 0, & \text { type B. }\end{cases}
$$

Associated field strength and constraint term:

$$
\begin{aligned}
& F_{i L(R), j L(R)}=\frac{\epsilon_{i j k}}{R^{2}} \operatorname{diag}\left(d_{k, 1}^{L}, \cdots, d_{k, n}^{L}\right), \quad F_{i L, j R}=0 \\
& \lim _{N \rightarrow \infty}\left(B_{i}^{L(R)} B_{i}^{L(R)}-\frac{N^{2}-1}{4}\right)= \begin{cases}-\frac{1}{2}, & \text { type A } \\
-\frac{N^{2}-1}{4}, & \text { type B. }\end{cases}
\end{aligned}
$$

Only the type A solution has a finite contribution:

$$
S= \begin{cases}\frac{16 \pi^{2} R^{4}}{g^{2} N^{2}}\left(\frac{n}{4 R^{4}}+\frac{2 n}{R^{4}} \frac{N^{2}-3}{4}\right) \rightarrow \frac{8 \pi^{2}}{g^{2}} n, & \text { type } A \\ \frac{16 \pi^{2} R^{4}}{g^{2} N^{2}}\left(2 \times\left(\frac{N^{2}-1}{4}\right)^{2}\right) \rightarrow \infty, & \text { type } B .\end{cases}
$$

We call these type A solutions "fluxons".

Combination of monopole and fluxon solutions

$$
\begin{aligned}
& B_{i}^{L}=\left(\begin{array}{cc}
\alpha^{L} \lambda_{i}^{N-m_{L}} \otimes 1_{N-m_{R}} & 0 \\
0 & \operatorname{diag}\left(d_{i, 1}^{L}, \cdots, d_{i, n}^{L}\right)
\end{array}\right) \\
& B_{i}^{R}=\left(\begin{array}{cc}
\alpha^{R} 1_{N-m_{L}} \otimes \lambda_{i}^{N-m_{R}} & 0 \\
0 & \operatorname{diag}\left(d_{i, 1}^{R}, \cdots, d_{i, n}^{R}\right)
\end{array}\right), \text { where } \\
& m_{L}=-m_{R}=m, \quad n=m^{2}
\end{aligned}
$$

The total action of this solution:

$$
S_{(m)}=\frac{4 \pi^{2}}{g^{2}}\left(2 m^{2}+2 m^{2}\right), \text { as } N \rightarrow \infty
$$

7 Gauge theory on R_{θ}^{4} from fuzzy $\mathrm{S}_{N_{L}}^{2} \times \mathrm{S}_{N_{R}}^{2}$
The most general noncommutative R_{θ}^{4} (for $\mu, \nu=1,2,3,4$)

$$
\left[x_{\mu}, x_{\nu}\right]=i \theta_{\mu \nu}, \text { where } \theta_{\mu \nu}=\left(\begin{array}{cccc}
0 & \theta_{12} & 0 & 0 \\
-\theta_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & \theta_{34} \\
0 & 0 & -\theta_{34} & 0
\end{array}\right) .
$$

. We define the coordinates \boldsymbol{X}_{μ} and ϕ as

$$
\begin{aligned}
& X_{1,2}=\sqrt{\frac{2 \theta_{12}}{N_{L}}} B_{1,2}^{L}, \quad X_{3,4}=\sqrt{\frac{2 \theta_{34}}{N_{R}}} B_{1,2}^{R}, \\
& \phi^{L(R)}=B_{3}^{L(R)}-\frac{N_{L(R)}}{2}+\frac{1}{N_{L(R)}}\left[\left(B_{1}^{L(R)}\right)^{2}+\left(B_{2}^{L(R)}\right)^{2}\right] .
\end{aligned}
$$

Scaling limit $R^{2}=\frac{1}{2} N_{L} \theta_{34}=\frac{1}{2} N_{R} \theta_{12} \rightarrow \infty$:
\boldsymbol{X} are the covariant coordinates on the tangential R_{θ}^{4} as $\boldsymbol{N}_{L, R} \rightarrow \infty$:

$$
\begin{aligned}
\frac{1}{R^{2}}\left(\left[B_{1}^{L}, B_{1}^{R}\right]\right)= & \frac{1}{\theta_{12} \theta_{34}}\left[X_{1}, X_{3}\right], \quad \text { etc., } \\
\frac{1}{R^{2}}\left(B_{1}^{L}+i\left[B_{2}^{L}, B_{3}^{L}\right]\right)= & \sqrt{\frac{1}{\theta_{12} \theta_{34} R^{2}}}\left(X_{1}+i\left[X_{2}, \phi^{L}\right]-\frac{i}{2 \theta_{12}}\left[X_{2},\left(X_{1}\right)^{2}\right]\right), \\
\frac{1}{R^{2}}\left(B_{2}^{L}+i\left[B_{3}^{L}, B_{1}^{L}\right]\right)= & \sqrt{\frac{1}{\theta_{12} \theta_{34} R^{2}}}\left(X_{2}+i\left[X_{1}, \phi^{L}\right]-\frac{i}{2 \theta_{12}}\left[X_{1},\left(X_{2}\right)^{2}\right]\right), \\
\frac{1}{R^{2}}\left(B_{3}^{L}+i\left[B_{1}^{L}, B_{2}^{L}\right]\right)= & \frac{1}{\theta_{12} \theta_{34}}\left(\theta_{12}+i\left[X_{1}, X_{2}\right]+\frac{\theta_{12} \theta_{34}}{R^{2}} \phi_{L}-\frac{\theta_{12} \theta_{34}^{2}}{2 R^{4}}\left(\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}\right)\right) \\
\frac{1}{R^{2}}\left(B_{i}^{L} B_{i}^{L}-\frac{N_{L}^{2}-1}{4}\right)= & \frac{1}{\theta_{34} \phi^{L}+\frac{2}{R^{2}}\left(\left(\phi^{L}\right)^{2}+\frac{1}{4}\right)-\frac{1}{\theta_{12} R^{2}}\left\{\phi^{L},\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}\right\}} \\
& +\frac{1}{\theta_{12}^{2} R^{2}}\left(\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}\right)^{2} .
\end{aligned}
$$

The terms from the $S_{N_{L}}^{2} \times S_{N_{R}}^{2}$ action involving $\phi^{L, R}$:

$$
\frac{1}{\theta_{34}^{2}}\left(\phi^{L}\right)^{2}+\frac{1}{\theta_{12}^{2}}\left(\phi^{R}\right)^{2}+\mathrm{O}\left(\frac{1}{R}\right)
$$

At $R \rightarrow \infty$, we obtain the action

$$
S=-\frac{1}{2 g^{2} \theta_{12}^{2} \theta_{34}^{2}} \int\left(\left[X_{\mu}, X_{\nu}\right]-i \theta_{\mu \nu}\right)^{2}
$$

X_{μ} can be written as $X_{\mu}=x_{\mu}+i \theta_{\mu \nu} A_{\nu}$.

$\mathrm{U}(1)$ instantons on R_{θ}^{4}

We consider the self-dual case $\theta_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \theta_{\rho \sigma}$, namely $\theta_{12}=\theta_{34}(=\theta)$.
The action for $\mathrm{U}(1)$ gauge theory on R_{θ}^{4} :

$$
S=\frac{(2 \pi)^{2}}{2 g^{2} \theta^{2}} \operatorname{tr} F_{\mu \nu} F_{\mu \nu}, \text { where } F_{\mu \nu}=i\left(\left[X_{\mu}, X_{\nu}\right]-i \theta_{\mu \nu}\right)
$$

Complex coordinates: $x_{ \pm L}=x_{1} \pm i x_{2}, x_{ \pm R}=x_{3} \pm i x_{4}$.
Commutation relation: $\left[x_{+a}, x_{-b}\right]=2 \theta \delta_{a b},\left[x_{+a}, x_{+b}\right]=\left[x_{-a}, x_{-b}\right]=0$.
Basis of the Fock space \mathcal{H} for these coordinates: $\left|n_{1}, n_{2}\right\rangle, n_{1}, n_{2} \in \mathrm{~N}$.

$$
\begin{aligned}
& x_{-L}\left|n_{1}, n_{2}\right\rangle=\sqrt{2 \theta} \sqrt{n_{1}+1}\left|n_{1}+1, n_{2}\right\rangle, x_{+L}\left|n_{1}, n_{2}\right\rangle=\sqrt{2 \theta} \sqrt{n_{1}}\left|n_{1}-1, n_{2}\right\rangle \\
& x_{-R}\left|n_{1}, n_{2}\right\rangle=\sqrt{2 \theta} \sqrt{n_{2}+1}\left|n_{1}, n_{2}+1\right\rangle, x_{+R}\left|n_{1}, n_{2}\right\rangle=\sqrt{2 \theta} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle
\end{aligned}
$$

Complex covariant coordinates: $X_{ \pm L}=X_{1} \pm i X_{2}, X_{ \pm R}=X_{3} \pm i X_{4}$.
The action is rewritten as

$$
S=\frac{\pi^{2}}{g^{2} \boldsymbol{\theta}^{2}} \operatorname{tr}\left(\sum_{a} \boldsymbol{F}_{+a,-a} \boldsymbol{F}_{+a,-a}-\sum_{a, b} \boldsymbol{F}_{+a,+b} \boldsymbol{F}_{-a,-b}\right), \text { where } \boldsymbol{F}_{a \alpha, b \beta}=\left[X_{\alpha a}, X_{\beta b}\right]-2 \theta \epsilon_{\alpha \beta} \delta_{a b} .
$$

Equation of motion: $\Sigma_{a, \alpha}\left[X_{\alpha, a},\left(F_{\alpha a, \beta b}\right)^{\dagger}\right]=0$.

Finite-dimensional subvector space $V_{n} \subset \mathcal{H}$:

$$
V_{n}=\left\{\left|i_{k}, j_{k}\right\rangle ; k=1,2, \cdots, n\right\} .
$$

Solutions of the equation of motion:

$$
X_{+L(R)}^{(n)}=S x_{+L(R)} S^{\dagger}+\sum_{k=1}^{n} \gamma_{k}^{L(R)}\left|i_{k}, j_{k}\right\rangle\left\langle i_{k}, j_{k}\right| .
$$

- $\gamma_{k}^{L, R} \in \mathrm{C}:$ position of fluxons
- $S=\sum_{k=1}^{\infty}\left|i_{k+n}, j_{k+n}\right\rangle\left\langle i_{k}, j_{k}\right|$, with $S^{\dagger} S=1, S S^{\dagger}=1-\underbrace{\sum_{k=1}^{n}\left|i_{k}, j_{k}\right\rangle\left\langle i_{k}, j_{k}\right|}_{=P_{V_{n}}}$. $P_{V_{n}}:$ projection operator onto V_{n}.

$$
F_{\mu \nu}=P_{V_{n}} \theta_{\mu \nu} \rightarrow S\left[X_{ \pm, a}^{(n)}\right]=\frac{8 \pi^{2}}{g^{2}} \operatorname{tr}\left(P_{V_{n}}\right)=\frac{8 \pi^{2} n}{g^{2}}
$$

This is the $\mathrm{U}(1)$-instanton solutions on R_{θ}^{4}.

8 Fermions

Commutative Dirac operator on $\mathrm{S}^{2} \times \mathrm{S}^{2}$

$$
D_{4}=\Gamma^{\mu} J_{\mu}+2 C_{0}
$$

The 8-component spinor Ψ_{8} is split into two independent 4-component Dirac spinors. Operators that anticommute with D_{4} :

- 6-dimensional chirality operator: $\Gamma=i \Gamma_{1}^{L} \Gamma_{2}^{L} \Gamma_{3}^{L} \Gamma_{1}^{R} \Gamma_{2}^{R} \Gamma_{3}^{R}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.

This satisfies $\left\{D_{4}, \Gamma\right\}=0, \Gamma^{\dagger}=\Gamma$ and $\Gamma^{2}=1$.
The 8 -component spinor is split as $\Psi_{8}=\binom{\psi_{\alpha}}{\bar{\psi}_{\bar{\beta}}}$.

- Operators $\chi_{L(R)}=\Gamma^{i L(R)} x_{i L(R)}$, which preserves $\mathrm{SO}(3) \times \mathrm{SO}(3) \subset \mathrm{SO}(6)$. They satisfy $\left\{D_{4}, \chi_{L(R)}\right\}=\left\{\chi_{L}, \chi_{R}\right\}=0, \chi_{L(R)}^{2}=1$.

We introduce a projector $P_{ \pm}=\frac{1}{2}\left(1 \pm i \chi_{L} \chi_{R}\right)$.

$$
P_{ \pm}^{2}=P_{ \pm}, P_{+}+P_{-}=1, \quad P_{+} P_{-}=0,\left[P_{ \pm}, D_{4}\right]=\left[P_{ \pm}, \Gamma\right]=0
$$

The projected space is preserved by D_{4} and Γ.
spinor Lagrangian : $S_{\mathrm{f}}=\Psi_{8}^{\dagger} D_{4} \Psi_{8}=\Psi_{+}^{\dagger} D_{4} \Psi_{+}+\Psi_{-}^{\dagger} D_{4} \Psi_{-}$, where $\Psi_{ \pm}=P_{ \pm} \Psi_{8}$.
Two ways to obtain a 4-component Dirac spinor:

- Impose the constraint $P_{+} \Psi_{8}=\Psi_{8}$.
- Add a mass term $M_{-} \Psi_{8}^{\dagger} P_{-} \Psi_{8}$, with $M_{-} \rightarrow \infty$.

At the north pole $x_{L}=x_{R}={ }^{t}(1,0,0)$,
$P_{+}=\frac{1}{2}\left\{1+i\left(\begin{array}{cc}-\gamma_{1}^{L} \gamma_{1}^{R} & 0 \\ 0 & \gamma_{1}^{L} \gamma_{1}^{R}\end{array}\right)\right\}=\frac{1}{2}\left(1+\sigma_{3} \otimes \sigma_{3} \otimes \sigma_{3}\right)=\operatorname{diag}(1,0,0,1,0,1,1,0)$.
$P_{ \pm}$actually projects onto a 4-dimensional subspace exactly.

Gauged fuzzy Dirac and chirality operators

Fuzzy analogs of D_{4} and χ.
Natural fuzzy spinor action : $S_{F}=\Psi^{\dagger} C \Psi(\Psi=8 \mathcal{N} \times \mathcal{N}$ matrix $)$.
C can be split into fuzzy Dirac operator \hat{D} and operator $\hat{\chi}$:

$$
\hat{\chi} \Psi=\sqrt{\frac{2}{N^{2}}}\left(\Gamma^{\mu} \Psi \lambda_{\mu}-C_{0} \Psi\right), \text { such that } \hat{\chi}^{2}=1 .
$$

Fuzzy Dirac operator:

$$
\hat{D}=C-\sqrt{\frac{N^{2}}{2}} \hat{\chi}=\Gamma^{\mu} \hat{\mathcal{D}}_{\mu}+2 C_{0}, \text { where } \hat{\mathcal{D}}_{\mu} \Psi=\underbrace{\left[\lambda_{\mu}, \Psi\right]}_{=\hat{J}_{\mu} \Psi}+A_{\mu} \Psi .
$$

$\hat{\mathcal{D}}_{\mu}$ is a covariant derivative operator, i.e. $U \hat{\mathcal{D}}_{\mu} \psi=\hat{\mathcal{D}}_{\mu}^{\prime} U \psi$
(where $D_{\mu}^{\prime} \Psi=\left[\lambda_{\mu}, \Psi\right]+\underbrace{U A_{\mu} U^{-1}}_{=A_{\mu}^{\prime}}$)
\hat{D} satisfies $\{\hat{D}, \Gamma\}=0$, however $\{\hat{D}, \chi\} \neq 0$:

$$
\{\hat{D}, \hat{\chi}\}=\mathrm{O}\left(\frac{1}{N}\right)
$$

$$
\hat{D}^{2} \psi=(\Sigma^{\mu \nu} \boldsymbol{F}_{\mu \nu}+\underbrace{\hat{\mathcal{D}}_{\mu} \hat{\mathcal{D}}_{\mu}+\left\{\Gamma^{\mu}, C_{0}\right\} \hat{\mathcal{D}}_{\mu}}_{=\square}+2) \psi
$$

This corresponds to the \hat{D}^{2} on the curved space.
Projectors on the fuzzy spinors:

$$
\hat{\chi}_{L(R)} \Psi=\frac{2}{N}\left(\Gamma^{i L(R)} \Psi \lambda_{i L(R)}+C_{0}^{L(R)}\right) .
$$

We define the projection operators $\hat{P}_{ \pm}=\frac{1}{2}\left(1 \pm i \hat{\chi}_{L} \hat{\chi}_{R}\right)$.

$$
\begin{aligned}
& \hat{\chi}_{L(R)}^{2}=1, \quad\left\{\hat{\chi}_{L}, \hat{\chi}_{R}\right\}=0, \quad\left(\hat{\chi}_{L} \hat{\chi}_{R}\right)^{2}=1, \\
& {\left[\hat{D}^{2}, \Gamma\right]=\left[\Sigma^{\mu \nu} \boldsymbol{F}_{\mu \nu}, \Gamma\right]=\left[\hat{D}^{2}, \hat{P}_{ \pm}\right]=\left[\Sigma^{\mu \nu} F_{\mu \nu}, \hat{P}_{ \pm}\right]=0 .}
\end{aligned}
$$

The projector no longer commutes with the fuzzy Dirac operator: $\left[\hat{D}, \hat{\chi}_{L} \hat{\chi}_{R}\right] \neq 0$. We have to add a mass term to reduce the degrees of freedom: $M_{-} \Psi_{8}^{\dagger} \hat{P}_{-} \Psi_{8}$. The complete action for a Dirac fermion on fuzzy $S^{2} \times S^{2}$:

$$
S_{\text {Dirac }}=\int\left(\Psi_{8}^{\dagger}(\hat{D}+m) \Psi_{8}+M_{-} \Psi_{8}^{\dagger} \hat{P}_{-} \Psi_{8}\right) .
$$

9 Summary

In this paper, we have studied the following:

- Gauge theory on fuzzy $S^{2} \times S^{2}$ as a multi-matrix model.
- Alternative formulations using "collective matrices" based on $\mathrm{SO}(6)$.
- Quantization by a finite path integral.
- The monopole and fluxon solution
- The quantum field theory in the flat noncommutative plane R_{θ}^{4}.
- Fermionic term and the chiral Dirac operator.

[^0]: ${ }^{1}$ This slide is used for Takehiro Azuma's presentation at KEK. Therefore, it is not the authors but the presenter Takehiro Azuma that is responsible for any potential flaws in this slide.

