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I) Introduction

Gauge / gravity correspondence (& matrix models) continue to
be the central themes of string theory

- (1) BDS’s (Bern, Dixon, Smirnov) conjectured exponentiation
a la Sudarkov of the all order planar n- gluon amplitudes
for perturbative N=4 SYM,

= e Pn
which is now known to be slightly violated at n=6, L=2
loop level. BDKKRSVV 08031465

DHKS 08031466



(2 A new version of gauge-string duality by Alday-Maldacena :
computation at strong coupling by the minimal surface of

an AdS; string
= e rAN

?

» Mand @ = A fruitful assessment of the issue D ~ kAn
and its reformulation are called for today.

Hints in the strong coupling limit would be supplied by IMM?2

Note that D = <kARp , if it were true, would give a resolution
to the AdS-minimal surface problem.
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II) symbolically
“An(P1s-- 5 PrlA) = Atree AIR Afinite

factorizes & exponentiates
To be more precise,

o)
An=g"2 Y ol Tr(T%® - 7)) A (p(1).. . p(n))
L=0 P
A= 92N
D=4 — D¢

p . honcyclic perm

Define, with the help of MHV & N=4 SUSY,

T(LL)(e) = A%L)(e)/Aéo) " . scalar function



Ap = A9 T JLafB (e
L=0

= A9 [T’ O )M (Le) + 9 4 o(e }
AP en | 3 a (1O@MD ) ©)

BDS conjecture

7O = 1§ + et + 250

known
BES {
f(\) =4 Z ff(*g) planar cusp anomalous dimension large /x
(=1

g(\) =2 Z f(g) planar collinear anomalous dimension

(=
k(N = %
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i)

is expressed as a sum of the so-called "'two mass easy
box functions’’ F2™me : (Bern, Dunbar, Dixon, Kosower)

b—1
L = S F2"(pe, Py Py Pra) » Pav= Y Pe

a<b T~ c=a+1
P, Py massless massive
with
— 2 — 2
s=(@+P), t=0(+Q)
Pa P 4= st — P2QQ2 ? Ip(2) = 1P

dilogarithmic rep. of F2me

me 1 —s\ ¢ AN —P2\"° _Q2 B
F? (p,P,qu)=_62 [(uz) + (P) B ( 2 ) - ( j1? )

+Lis(1 — aP?) 4+ Lis(1 — aQ?) — Lis(1 — as) — Lin(1 — at)

I — |



dyHdy’ ) :
Dn :]{ ]{ ( i /;Jg+€ is known to reproduce, after computation,
Y=Y the rep. of pz{1)

In momentum space

[T : polygon made of light-like segment
external momenta p,

Drummond, Korchemsky, Sokatchev; Brandhuber, Heslop, Travaglini

= ) _(pair of segments in M)

- p®M 4+ p@ 4 p®

two identical adjacent nonadjacent
1

(—€)?




Dr ~ log of abelian Wilson loop

< exp (z]{_l dy“Au(y)> >  free field

1

= exp (_Efﬁ dy“fﬂ dy" < Ap(y)Av(y') >)

= exp(const Dp)
M,,(ll) = (const) Dpn

situation ; T-dualities operating

@ ourcorner

rep. on D instantons

rep. on D3 branes

weak coupling strong coupling



V)
AdS / CFT duality ; VX =1/g° R— — ~ gs assumed

compute the same gluon amplitude at strong coupling using
tree level semiclassical string theory

The original AdS. geometry

—(XTH2 = (X0 + (XD + (X2 + (X)) + (XH)? = —R?
embedding into R**

.2 o
X—1+X4:£. X 1_x4=R°" +"1"“"I’H XH =R ﬁ
B2 dz? + dz,dx”

2

ds?® = dXPdX, =

place D3 braneat = ;5 — o (IRregulator)



take T-duality in s« = 0,1,2,3 directions

T-dualized geometry, which is again AdS;

dr? + dy,,dy* R?
2 ‘|‘2yu Y , TIR=— —— — 0]
T ZIR

ds° = R
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semiclassical string amplitudes

— Q[ = = 4.]
~ (prefactor) eSB! =Ysar=rah]

Equivalence of Neuman rep. and Dirichlet rep. (AdSg o-model)

N: I[z,2"] = Sglz. a*] — i fp A& Ju(& Bz (€)

Ju(& kY =S k6P (e — ¢p)
I

af[z, ot _ 9
d1{z, ) 2oty 2 -
, NoN! dinzy0Inzy 1
[eats 2] = gifpd “Toge og 12 ?‘ o
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D:

\/Il/ dzgaln-rd@lnrd_l_ﬁ
| 2

1.,/ 1
Ir . g™ = _ = ﬂb/ dEyP =8,
e ¥al = 575 [T Taga aga Toapt ¢ Jop Y 2%

The 2nd term, after T-duality relation, and = the D-instanton
condition ™ y"|, 5 undary () = > y6©(sr < s < sp41)
I

\/_ ff{,l"“ 2T
_ o (5 H — H
— ﬁ 2 ID as s (8 \/Xk] N (yO] yO]_l)
= 23 Wu(er)
IHesT
2 !

. I[cha$g[] — SE[Tclayg[]

12



V)

work on the Euclidean worldsheet

choose ¢l =y . &=y

The 1stansatz; yz3 =0 -+ @
. . |
SENG = oy dyrdyovdet H, H;; = T—2(@fj—55y03jya+3ﬂ‘3ﬂ‘)

recognize thisas #(}) * arge 5

The 2ndansatz; 1=yt +r° < Y* =0 ... @
IMM1, IM8

@ and @ form AdS; ansatz, which contains the Alday-
Maldacena rhombus solution.
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Eq. of motion

) Ho) Hy
0 0190 | + 0 G,
/0 (rz dot 7T 1y0) 2 (Tz Gt 2?0)
Hp H
(rz det H zyﬂ) 2(r2 det H lyﬂ)

linear approximation to NG

eliminate r* through Sg n¢ and @, linearize w.rt. Yo
No1yo =0 ,where N =Ag—D2+D
solution Ng = 498, D= 20+ 3D

kk—1 )
Yyo — Z Re(akzk)zFl(E,?; E+ 12z = $)

k>0 .
(14+EV/T —2)(1—VI—ax)k ) 2F
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Vi)

?
how to deal with the issue D ~ kAp fruitfully in the strong
coupling side

explicit examples containing oo ly many parameters needed

= an infinitesimal deformation of the unit circle into an
arbitrary curve on the plane

circle solution (formal n = oo limit of lightlike n-gon)

y3 =0
2 2

AdS, ansatz {
’ 1 =ty = r°—y5+y;

now yo = O
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1
Lyng = T—Q\/l + (9;r)*

The only candidate to the solution which lie in these ansatze is

2 IMM1

r=1-y? ,which in fact solves

r(9;r)(9;7)(8;0;r) = (2 + rd?r)(1 + (8;r)?)

unit circle < B

formulation
> bdd by Tl
Z=y1 + 1yo

consider the conformal map z = H(¢)

find the shape of the minimal surface
r?(2,2) = 1 - ({+a((, Q)
by solving the NG eq. for a(¢,{) subject to the b.c.
aljgl=1 =0
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action = some simplification due to 5, = 0

o0
write 92 =1+ Y kil =0H =14 0h
k=1

Sngla.hl = 2 [d&, 21|8H|2(|8H|2—|—48?*5-r)

- ﬁ/d 11+ 0R2(1 = (T4 a + (92200e=0y1/2
or ] (1 - ¢C+a)3/2

need to compute a=a(h) (atleast) to the lowest order in

b regularization needed

_ oL (oL \ oL 1/4
U T ’ (a(aa))Jra (8(5a)) da  (1-¢0)3/2

A1 (a+Ch+CRh)+o(h?)

Eqg. of motion
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Aoq1th = (Ag—D?*+D)y = 0, Ag = 498, D = 20420

has appeared again in a-linearized problem

The solution which satisfies the boundary condition is

a(¢,0) =2 Y Re(hp¢"1)AL(CD)

k=1
Ap(z) = Fi_1(z) — @

(14 kVvI—2)(1—-V1I—2)k
k

i

Fi(x) =

remaining procedure

substitute the solution into the regularized area

and evaluate it
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Evaluating the regularized area

Area = Syala(h), h] = Seire+Solh]+S1[a, h]+Ss[a]l+o(a®7 h7)

Ways i) p-reg. : replace ;2 in the denominate by ;2 4 ;2
ii) c—reg. : cuttheintegralover » =¢¢ at , — 1 — 2

iii) dimensional reg. : we did not accomplish

i) = direct evaluation without partial integration
w2 12, 24 T 3
(Area), = —(1—|-EZ_L: hyl )—Ek(ﬁ;—l)(ﬁ:—z)—zwﬁ(h, )
H L

manage to find the local boundary counterterm

o0 k2|hk|2

L _ 3
g_j¢§rlci:2_1+z + o(h3)
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i) * partial integration to isolate the singularities

hard to find local boundary counterterms

shift the boundary condition to a(h) to the regularized
boundary ~ omitting the surface terms

2 k(k—1)(k-2)

3
o 5 )+ o(h”)

bulke = K
X (5



Double contour integral

. LN . . .. /
For example, in " r’/r regularization “ : two radii are s.t. rm =1

1 3= - !
s(dzdz' + dzdz") 0 1 5
Dn = ]%]{1 : = D4 D4 DBy 5(h3)

v (z=2")(=z-7") !
0
(0) _ . . _ 2 1 !
Dy’ = a Poisson integral = 2(2w) (1_ 5 — 1) , 4= —
2 _ 2 o> [ [ dw w R fi(w)?
Dy’ = —2(2n) Zkzlhﬂ [jgzm. 1 - w)?
= —202m?2 Y |y PRE D)
2 6
1 —
Jilz) = —

The alternative ; A regularization
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Results

Dn L
o0 = Z—2n—4n [Q‘(ﬂzj QB _ Q(ﬂ?’*z)] +47Q% +o(h®)
An L
2” — [Q(z) Q(3 1) Q(3 2)] —|—O(h4)

T 4;1,

k(k — 1)(k — 2)

(2] - Z Bplhil?, By = c

Q(3) Q(?:- 1)_|_Q(3 2) 5 Z CIj(h hjhl+j 1‘|‘h T h1—|-j' 1)

v RS

diagonal off-diagonal

7
Cis = é’ +3ij+j2—6i—6j+7)

The red denote discrepancies
22



comments on our result

¥
Fp = 3 in front of the bracket
4 inside the bracket
Ky oW 3.14 .
— —~ = = = =1.05 5%discrepanc
IQD 8 HI_I 3 3 p y

partin Dn whichis linear in , is consistent with
the expression which is made of the Schwarzian derivative :

-

) LM g 2
fe-Dsecic. s =2-2(Z)
- e

",
. & 2
unit circle

The planar nature of our wavy circle may have obscured
some of the symmetry properties that this problem possesses.



