Nonperturbative studies of higher-dimensional fuzzy-spheres in the matrix model Takehiro Azuma Department of Physics, Kyoto University

JPS Meeting 2004 at Kyushu University Mar. 30th 2004 11:00-11:15

collaborated with S. Bal, K. Nagao and J. Nishimura

Contents

1 Introduction

2 The phase structure
3 Lower critical point and the one-loop dominance
4 Eigenvalue distribution of the Casimir5 Conclusion9

1 Introduction

Curved-space classical solution of the matrix model

The curved spacetime is a fundamental feature of the gravitational interaction.

It is an important question how we realize the curvedspace background manifestly in terms of the large- N reduced model.

The IIB matrix model has only a flat noncommutative background, and we want to build a matrix model which describes the curved-space background manifestly.

To this end, we consider the matrix model on the homogeneous space:

A homogeneous space is realized as G / H :

- $G=$ (a Lie group)
- $\boldsymbol{H}=($ a closed subgroup of $G)$

There are many cases for such homogeneous spacetimes:

$$
\begin{aligned}
S^{2} & =S U(2) / U(1), \quad S^{2} \times S^{2}, \quad S^{4}=S O(5) / U(2), \\
C P^{2} & =S U(3) / U(2), \cdots
\end{aligned}
$$

Throughout this talk, we scrutinize the homogeneous space $S^{2} \times S^{2}$.
\Rightarrow This gives rise to the 4 -dimensional noncommutative gauge theory in the large- N limit.

As a toy model, we investigate the following 6-dimensional bosonic model:

$$
S=N \operatorname{tr}\left(-\frac{1}{4} \sum_{\mu, \nu=1}^{6}\left[A_{\mu}, A_{\nu}\right]+\frac{2 i}{3} \sum_{\mu, \nu, \rho=1}^{6} f_{\mu \nu \rho} A_{\mu} A_{\nu} A_{\rho}\right) .
$$

- This model is defined in the 6-dimensional Euclidean space.
- A_{μ} : 6-dimensional bosonic vector. Each component is the $N \times N$ hermitian matrix.
- The structure constant is denoted by

$$
f_{\mu \nu \rho}= \begin{cases}\alpha_{1} \epsilon_{\mu \nu \rho} ; & (\mu, \nu, \rho=1,2,3) \\ \alpha_{2} \epsilon_{\mu \nu \rho} ; & (\mu, \nu, \rho=4,5,6) \\ 0 ; & \text { (otherwise) }\end{cases}
$$

Its classical equation of motion

$$
\left[A_{\nu},\left[A_{\mu}, A_{\nu}\right]\right]-i \alpha f_{\mu \nu \rho}\left[A_{\nu}, A_{\rho}\right]=0
$$

accommodates the $S^{2} \times S^{2}$ fuzzy sphere classical solution.

$$
A_{\mu}^{(F S)}= \begin{cases}\alpha_{1}\left(j_{\mu}^{(1)} \otimes 1_{m_{1}}\right) \otimes 1_{k_{1}} ; & (\mu, \nu, \rho=1,2,3), \\ \alpha_{2}\left(1_{m_{2}} \otimes \tilde{j}_{\mu}^{(2)}\right) \otimes 1_{k_{2}} ; & (\mu, \nu, \rho=4,5,6) .\end{cases}
$$

$j_{\mu}^{(1)}, j_{\mu}^{(2)}$ are the $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}$-dimensional representation of $\boldsymbol{S U}(2)$.
The total size of the matrices are given by

$$
N=n_{1} m_{1} k_{1}=n_{2} m_{2} k_{2} .
$$

In the following, we focus on the following case:

$$
\alpha_{1}=\alpha_{2}(=\alpha), n_{1}=n_{2}=m_{1}=m_{2}(=n), k=1 .
$$

2 The phase structure
We launch the simulation from the following two initial conditions for $N=16,25,36(n=4,5,6)$:
$A_{\mu}^{(0)}= \begin{cases}A_{\mu}^{(F S)} & \text { (fuzzy sphere start) }, \\ 0 & \text { (zero start) } .\end{cases}$
We observe a first-order phase transition similar to the bosonic fuzzy S^{2} case.

The lower (upper) critical point is found at

$$
\alpha= \begin{cases}\alpha_{c r}^{(l)} \sim 2.5 N^{-\frac{1}{4}} & \text { (fuzzy sphere start) } . \\ \alpha_{c r}^{(u)} \sim 1.51 & \text { (zero start). }\end{cases}
$$

We have the following two phases:

- Yang-Mills phase: $\boldsymbol{\alpha}<\boldsymbol{\alpha}_{\boldsymbol{c r}} \rightarrow$ Large quantum effect.
- fuzzy sphere phase: $\alpha>\alpha_{c r} \rightarrow$ The fuzzy $S^{2} \times S^{2}$ is stable.

3 Lower critical point and the one-loop dominance
We launch the simulation from the fuzzy-sphere start $A_{\mu}^{(0)}=A_{\mu}^{(F S)}$ for $N=16,25,36(n=4,5,6)$.

We plot the following quantities against $\tilde{\alpha}=\alpha N^{\frac{1}{4}}$. The vacuum expectation value of these quantities are given at one-loop by

$$
\begin{aligned}
\frac{1}{\sqrt{N}}\left\langle\frac{1}{N} \operatorname{tr} \sum_{\mu=1}^{6} A_{\mu}^{2}\right\rangle & \simeq \underbrace{\frac{\tilde{\alpha}^{2}}{2 k}}_{\text {classical one-loop }} \underbrace{-\frac{8}{\tilde{\alpha}^{2}}}_{\text {classical }}, \\
\frac{1}{N^{2}}\langle S\rangle & =\underbrace{-\frac{\tilde{\alpha}^{4}}{12 k}}_{\text {one-loop }}+\frac{D-1}{2}
\end{aligned}, \begin{aligned}
& \frac{1}{N^{\frac{1}{4}}}\langle M\rangle \\
& =\frac{1}{N^{\frac{1}{4}}}\left\langle\frac{2 i}{3 N} \sum_{\mu, \nu, \rho=1}^{6} f_{\mu \nu \rho} \operatorname{tr} A_{\mu} A_{\nu} A_{\rho}\right\rangle=\underbrace{-\frac{\tilde{\alpha}^{3}}{3 k}}_{\text {classical one-loop }} \underbrace{\frac{D-2}{\tilde{\alpha}}}_{\text {classical }}, \\
& \left\langle\frac{1}{N} F_{\mu \nu}^{2}\right\rangle
\end{aligned}=\left\langle\frac{1}{N}\left(i\left[A_{\mu}, A_{\nu}\right]\right)^{2}\right\rangle=\underbrace{+(-2 D+6)}_{\text {one-loop }} .
$$

Results

- The critical point: We have a first-order phase transition, with the critical point $\quad \tilde{\alpha}_{c r}=\alpha_{c r} N^{\frac{1}{4}} \sim 2.5$.
- One-loop dominance: The one-loop effect is dominant at the fuzzy sphere phase.
The finite $-N$ effects are found to be $\mathcal{O}\left(\frac{1}{N}\right)$.

4 Eigenvalue distribution of the Casimir
We launch the simulation from the fuzzy-sphere start $A_{\mu}^{(0)}=A_{\mu}^{(F S)}$.

We observe the eigenvalues of the Casimir

$$
Q_{1}=\sum_{\mu=1}^{3} A_{\mu}^{2}, \quad Q_{2}=\sum_{\mu=4}^{6} A_{\mu}^{2} .
$$

The eigenvalues are at the outset peaked at

$$
Q_{1,2}=\frac{n^{2}-1}{4} 1_{N} .
$$

The eigenvalue distribution is given for $N=16(n=4)$:

- $\alpha=0.1$: in the Yang-Mills phase.
- $\alpha=2.0$: in the fuzzy sphere phase.

5 Conclusion

We have conducted the heat-bath algorithm of the MonteCarlo simulation for the higher-dimensional manifolds.

In this talk, we have focused on the fuzzy $S^{2} \times S^{2}$ case, which gives rise to the 4 -dimensional noncommutative space in the large- N limit.

We have observed the phase structure similar to the fuzzy S^{2} case:

- Yang-Mills phase: $\alpha<\alpha_{c r} \rightarrow$ Large quantum effect.
- fuzzy sphere phase: $\boldsymbol{\alpha}>\boldsymbol{\alpha}_{\boldsymbol{c r}} \rightarrow$ The fuzzy sphere is stable.

Works in progress

- Analysis of the other higher-dimensional manifolds: $C P^{2}=S U(3) / U(2), S^{2 k}, \cdots$.
- The extension to the supersymmetric system via the hybrid Monte Carlo simulation.
- The relation between the gauge group and the clustered eigenvalues.

