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1 Introduction

Curved-space classical solution of the matrix model

The curved spacetime is a fundamental feature of the

gravitational interaction.

It is an important question how we realize the curved-

space background manifestly in terms of the large-N re-

duced model.

The IIB matrix model has only a flat noncommutative

background, and we want to build a matrix model which

describes the curved-space background manifestly.

To this end, we consider the matrix model on the ho-

mogeneous space:

A homogeneous space is realized as G/H:

• G = (a Lie group)

• H = (a closed subgroup of G)

There are many cases for such homogeneous spacetimes:

S2 = SU(2)/U(1), S2 × S2, S4 = SO(5)/U(2),

CP 2 = SU(3)/U(2), · · ·

Throughout this talk, we scrutinize the homogeneous

space S2 × S2.

⇒ This gives rise to the 4-dimensional noncommutative

gauge theory in the large-N limit.
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As a toy model, we investigate the following 6-dimensional

bosonic model:

S = Ntr




−

1

4

6∑

µ,ν=1
[Aµ, Aν] +

2i

3

6∑

µ,ν,ρ=1
fµνρAµAνAρ




 .

• This model is defined in the 6-dimensional Euclidean

space.

• Aµ: 6-dimensional bosonic vector.

Each component is the N × N hermitian matrix.

• The structure constant is denoted by

fµνρ =







α1εµνρ; (µ, ν, ρ = 1, 2, 3),

α2εµνρ; (µ, ν, ρ = 4, 5, 6),

0; (otherwise).

Its classical equation of motion

[Aν, [Aµ, Aν]] − iαfµνρ[Aν, Aρ] = 0

accommodates the S2×S2 fuzzy sphere classical solution.

A(FS)
µ =







α1(j
(1)
µ ⊗ 1m1

) ⊗ 1k1
; (µ, ν, ρ = 1, 2, 3),

α2(1m2
⊗ j̃(2)

µ ) ⊗ 1k2
; (µ, ν, ρ = 4, 5, 6).

j(1)
µ , j(2)

µ are the n1, n2-dimensional representation of SU(2).

The total size of the matrices are given by

N = n1m1k1 = n2m2k2.

In the following, we focus on the following case:

α1 = α2(= α), n1 = n2 = m1 = m2(= n), k = 1.
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2 The phase structure

We launch the simulation from the following two initial

conditions for N = 16, 25, 36 (n = 4, 5, 6):

A(0)
µ =







A(FS)
µ (fuzzy sphere start),

0 (zero start).

We observe a first-order phase transition similar to the

bosonic fuzzy S2 case.
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The lower (upper) critical point is found at

α =







α(l)
cr ∼ 2.5N−1

4 (fuzzy sphere start).

α(u)
cr ∼ 1.51 (zero start).

We have the following two phases:

• Yang-Mills phase: α < αcr → Large quantum effect.

• fuzzy sphere phase: α > αcr → The fuzzy S2 × S2 is

stable.
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3 Lower critical point and the one-loop dominance

We launch the simulation from the fuzzy-sphere start

A(0)
µ = A(FS)

µ for N = 16, 25, 36 (n = 4, 5, 6).

We plot the following quantities against α̃ = αN
1

4 .
The vacuum expectation value of these quantities are given
at one-loop by

1√
N

〈 1

N
tr

6∑

µ=1

A2

µ〉 ' α̃2

2k
︸︷︷︸

classical

− 8

α̃2

︸ ︷︷ ︸

one-loop

,

1

N 2
〈S〉 = − α̃4

12k
︸ ︷︷ ︸

classical

+
D − 1

2
︸ ︷︷ ︸

one-loop

,

1

N
1

4

〈M〉 =
1

N
1

4

〈 2i

3N

6∑

µ,ν,ρ=1

fµνρtrAµAνAρ〉 = −α̃3

3k
︸ ︷︷ ︸

classical

+
D − 2

α̃
︸ ︷︷ ︸

one-loop

,

〈 1

N
F 2

µν〉 = 〈 1

N
(i[Aµ, Aν])

2〉 =
α̃4

k
︸︷︷︸

classical

+(−2D + 6)
︸ ︷︷ ︸

one-loop

.

Results

• The critical point: We have a first-order phase transi-

tion, with the critical point α̃cr = αcrN
1

4 ∼ 2.5.

• One-loop dominance: The one-loop effect is dominant

at the fuzzy sphere phase.

The finite-N effects are found to be O( 1
N

).

5



 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  1  2  3  4

<
(1

/N
) 

tr
 A

2 >
/s

qr
t(

N
)

α
∼

N=16
N=25
N=36

classical
one-loop

-25

-20

-15

-10

-5

 0

 5

 0  1  2  3  4

<
S

>
/N

2

α
∼

N=16
N=25
N=36

classical
one-loop

6



-25

-20

-15

-10

-5

 0

 0  1  2  3  4

<
M

>
/N

1/
4

α
∼

N=16
N=25
N=36

classical
one-loop

 0

 50

 100

 150

 200

 250

 300

 0  1  2  3  4

<
(1

/N
) 

tr
 F

2 >

α
∼

N=16
N=25
N=36

classical
one-loop

7



4 Eigenvalue distribution of the Casimir

We launch the simulation from the fuzzy-sphere start

A(0)
µ = A(FS)

µ .

We observe the eigenvalues of the Casimir

Q1 =
3∑

µ=1
A2

µ, Q2 =
6∑

µ=4
A2

µ.

The eigenvalues are at the outset peaked at

Q1,2 =
n2 − 1

4
1N .

The eigenvalue distribution is given for N = 16 (n = 4):

• α = 0.1: in the Yang-Mills phase.

• α = 2.0: in the fuzzy sphere phase.
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5 Conclusion

We have conducted the heat-bath algorithm of the Monte-

Carlo simulation for the higher-dimensional manifolds.

In this talk, we have focused on the fuzzy S2 × S2

case, which gives rise to the 4-dimensional noncommu-

tative space in the large-N limit.

We have observed the phase structure similar to the

fuzzy S2 case:

• Yang-Mills phase: α < αcr → Large quantum effect.

• fuzzy sphere phase: α > αcr → The fuzzy sphere is

stable.

Works in progress

• Analysis of the other higher-dimensional manifolds:

CP 2 = SU(3)/U(2), S2k, · · ·.
• The extension to the supersymmetric system via the

hybrid Monte Carlo simulation.

• The relation between the gauge group and the clus-

tered eigenvalues.
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